
Exploratory Equivalence in Graphs:
Definition and Algorithms

Jurij Mihelič, Luka Fürst, and Uroš Čibej
University of Ljubljana, Faculty of Computer and Information Science

Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

Email: {jurij.mihelic,luka.fuerst,uros.cibej}@fri.uni-lj.si

Abstract—Motivated by improving the efficiency of pattern
matching on graphs, we define a new kind of equivalence on
graph vertices. Since it can be used in various graph algorithms
that explore graphs, we call it exploratory equivalence. The
equivalence is based on graph automorphisms. Because many
similar equivalences exist (some also based on automorphisms),
we argue that this one is novel. For each graph, there are many
possible exploratory equivalences, but for improving the efficiency
of the exploration, some are better than others. To this end, we
define a goal function that models the reduction of the search
space in such algorithms. We describe two greedy algorithms for
the underlying optimization problem. One is based directly on the
definition using a straightforward greedy criterion, whereas the
second one uses several practical speedups and a different greedy
criterion. Finally, we demonstrate the huge impact of exploratory
equivalence on a real application, i.e., graph grammar parsing.

I. INTRODUCTION

GRAPHS are an ubiquitous format for structural-data
representation and are gaining popularity in various sci-

entific disciplines. They are used to represent diverse types of
entities and relations between them in various areas, ranging
from chemistry [1], [2], economy [3], politics [4], to popular
culture [5]. Such representation enables a more general and
global view on the data. Additionally, researchers may benefit
from powerful theoretical tools developed in graph theory to
extract new insights.

One of the most general problems on various graphs is
search for patterns, i.e., finding occurrences of small graphs in
larger graphs. In theory, this is known as the subgraph isomor-
phism problem and has been thoroughly studied, as this is one
of the fundamental problems in theoretical computer science.
The decision version of this problem is NP-complete, and the
counting version of the problem is #P -complete. Furthermore,
no exponential-time algorithm with a lower bound better than
the naive enumeration of pattern is known [6]. This makes the
problem intrinsically hard. Despite these pessimistic results,
various algorithms exist for finding patterns, a vast majority
of them based on the branch-and-bound method (e.g., [7], [8]).
In many practical instances, however, these algorithms perform
much better than the expected worst-case scenario and are
able to solve relatively large instances (e.g., patterns of 1000
vertices in graphs of 10,000 vertices, and even larger).

Despite the practical usability of the current algorithms,
there is a large set of problem instances that are often very hard
for all the search algorithms. These are graphs with a lot of
symmetries, i.e., graphs with many automorphisms. Detecting
these symmetries before the start of the search can speed up

the algorithm by very large constants, since the search does
not have to be repeated for the symmetrical vertices. The goal
of this paper is to formally define an equivalence on graph
vertices, called exploratory equivalence, that captures such
symmetries in graphs and can be easily utilized in algorithms
for finding patterns (e.g., subgraph isomorphism) in graphs.
Since there can be many exploratory equivalences in a graph
(and some capture more symmetries than others), we also
define the corresponding optimization problem. Our work is
based on the ideas already developed by Fürst et al. [9] for
the purpose of improving the Rekers-Schürr parser [10] for
context-sensitive graph grammars. However, while Fürst et al.
recognized the concept of exploratory equivalence (under the
name ‘interchangeability’), they did not treat it in a general
graph-theoretic and group-theoretic manner. Besides that, they
did not consider the possibility of having multiple exploratory
equivalences for a single graph, nor did they define the notion
of optimal exploratory equivalence. In this paper, we address
all of these issues.

Informally, if a group of k vertices in an unlabeled graph
belong to the same exploratory equivalence class, then they are
interchangeable in the following sense: if each of them were
labeled with a unique label, their labels could be arbitrarily
interchanged with each other without affecting the graph. The
graph would remain isomorphic after any of the k! possible
interchanges. It is important to note that a single graph may
have multiple exploratory equivalences, i.e., multiple ways of
partitioning the graph vertex set into a set of exploratory equiv-
alent classes. Among all possible exploratory equivalences for
a given graph, the algorithms proposed in this paper seek the
one that captures the largest number of symmetries. As we
show later, this is the equivalence with the largest product of
the factorials of the cardinalities of its equivalence classes.

Graph grammars [11] are production-based graph rewrite
systems and are regarded as a generalization of well-known
string-based formal grammars. The Rekers-Schürr parser is
an algorithm that, for a given graph and a context-sensitive
graph grammar, determines whether the graph belongs to the
language generated by the grammar and returns a derivation
of the graph in the grammar if this is the case. However, the
algorithm may exhibit a heavily exponential behavior when
presented with a grammar containing many symmetries. In
particular, given a simple grammar for chemical formulas
of linear alkanes, the algorithm failed to parse the struc-
tural formula of propane within several hours. By exploiting
the symmetries in the grammar, the parser’s performance is
brought down to polynomial for several meaningful classes

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 447–456

DOI: 10.15439/2014F352

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 447

of grammars [9]. For instance, the parsing of propane now
takes less than a second. In general, however, the worst-case
performance remains exponential, since the graph grammar
parsing problem is NP-hard even for highly restricted graph
grammar formalisms [12].

Symmetry reduction techniques are not unique to graph-
related decision and optimization problems. Liberti [13], for
instance, proposed a novel approach to symmetry reduction
in branch-and-bound-based MIP (mixed integer programming)
solvers. His approach was applied to the discretizable molec-
ular distance problem in the field of organic chemistry [14].

The paper is structured as follows. In the next section, we
briefly present definitions and notions used in the rest of the
paper. The third section includes the definition of exploratory
equivalence, the optimization problem of finding the best
exploratory equivalence in a given graph, and an example
demonstrating the introduced concepts. We also present the
argument that exploratory equivalence does not belong to the
class of well-known regular equivalences. The fourth section
presents two heuristic algorithms for solving the optimization
problem. In Section V, we briefly describe the relevant portion
of the Rekers-Schürr parser, its improvement with regard
to exploratory equivalence, and some experimental results.
Finally, Section VI concludes the paper and gives some ideas
for the future work.

II. PRELIMINARIES

Given a (finite) set S, a family {P1, P2, . . . , Ps} of
nonempty subsets of S is a partition of S if every element
in S is exactly in one of the subsets, i.e., Pi ⊆ S and Pi 6= ∅,
where 1 ≤ i ≤ s,

⋃
1≤i≤s Pi = S, and Pi ∩ Pj = ∅ for all

1 ≤ i, j ≤ s where i 6= j. When the partition {P1, P2, . . . , Ps}
is given explicitly, we usually use {i ∈ P1 | i ∈ P2 | . . . | i ∈
Ps} as a short form, e.g., {{1, 2}, {3}, {4}} is shortened to
{1, 2 | 3 | 4}. In what follows, the order of the sets in a
partition is often important. In such cases, we use the form
〈i ∈ P1 | i ∈ P2 | . . . | i ∈ Ps〉, e.g., 〈1, 2 | 3 | 4〉.

A group Γ = (A, ◦) with the underlying set A and the
binary operation ◦ on the elements of A is an algebraic
structure satisfying the following conditions: closure, i.e.,
x ◦ y ∈ A, associativity, i.e., (x ◦ y) ◦ z = x ◦ (y ◦ z), identity
element e, i.e., ∃e ∈ A∀x ∈ A : e ◦x = x ◦ e = x, and inverse
element, i.e., ∀x ∈ A∃x−1 ∈ A : x ◦ x−1 = x−1 ◦ x = e.

A permutation σ is a bijective function of a finite set S
onto itself, i.e., σ : S → S. Let Π[S] denote the set of all
permutations of the elements in the set S. Notice that the
set Π[S] together with the operation of function composition
forms a group, which is called the symmetric group. Since
all the groups discussed in this paper are subgroups of a
symmetric group, we write as a group its underlying set only.
Additionally, we also define Π[n] = Π[{1, 2, . . . , n}].

Let Γ be a subgroup of Π[S]. An element i ∈ S is called
a fixed point of the permutation σ ∈ Γ if σ(i) = i. The set of
all permutations for which i is a fixed point is a subgroup and
is called the stabilizer subgroup, i.e.,

StabΓ(i) = {σ ∈ Γ | σ(i) = i}.

Notice that all stabilizer subgroups include the identity permu-
tation.

Now let us generalize the definition of a stabilizer from an
element to a set. Given P ⊆ S, a stabilizer on P is a set of
permutations which have a fixed point for all the positions in
P :

StabΓ(P) = {σ ∈ Γ | ∀i ∈ P : σ(i) = i}.

Equivalently, StabΓ(P) can also be defined in terms of inter-
sections of StabΓ(i), where i ∈ P , i.e.,

StabΓ(P) =
⋂

i∈P

StabΓ(i).

From the latter definition it is clear that StabΓ(P) also satisfies
all four group conditions. We thus have the following theorem.

Theorem 1: Given a set S, a set P ⊆ S, and a subgroup
Γ of the group Π[S], StabΓ(P) is a subgroup of Γ.

We also write StabΓ(P) as Stab(Γ, P).

The set of all images of i ∈ S under permutations of the
group Γ is called the group orbit of i, i.e.,

OrbitΓ(i) = {σ(i) | σ ∈ Γ}.

Let G = (V,E) denote a simple undirected graph, where
V = {1, 2, . . . , n} is a set of vertices and E ⊆ V ×V is a set of
edges. When two graphs are considered, the second is usually
denoted with H = (U,F). To denote an edge (i, j) ∈ E, we
usually use a shorter version ij ∈ E. A neighborhood of a
vertex i ∈ V , i.e., a set of vertices adjacent to i, is denoted
with N (i). More formally,

N (i) = {j ∈ V | ij ∈ E}.

A coloration C of a graph G is an assignment of colors
to the vertices V of G, i.e., a surjective function C from V
onto {1, 2, . . . , c} for some c, where colors are denoted with
integers from 1 to c. Any coloration defines a partition of
the vertices V , and vice versa. If S ⊆ V , then the spectrum
of S, denoted C(S), is a set of all colors assigned to the
vertices of S. If S = {i} is a singleton, then C(i) = C(S)
denotes the color assigned to the vertex i ∈ V . A coloration C
induces a graph partition {C−1(1), C−1(2), . . . , C−1(c)}, and
vice versa. A coloration C1 is finer or equal than a coloration
C2 (denoted C1 � C2) if

∀i, j ∈ V : C2(i) < C2(j) =⇒ C1(i) < C1(j).

This implies that each set of the C1-induced partition is a
subset of (or equal to) some set of the C2-induced partition.

A graph homomorphism from a graph G = (V,E) to a
graph H = (U,F) is a mapping f : V → U such that for
each ij ∈ E it also holds that f(i)f(j) ∈ F . Homomorphism
f : V → U is usually denoted with f : G→ H . We also write
G→ H if there exists a homomorphism from G to H . A graph
isomorphism is a bijective homomorphism, i.e., a mapping
f : G→ H such that ij ∈ E if and only if f(i)f(j) ∈ F . We
write G ≃ H if there exists an isomorphism from G to H; such
graphs G and H are called isomorphic. Since isomorphisms
are bijective, every isomorphism also has an inverse. A graph
endomorphism is a homomorphism whose domain is equal to
its codomain, i.e., f : G→ G.

A graph automorphism is both an endomorphism and an
isomorphism, i.e., a mapping f : G → G such that ij ∈ E if

448 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

and only if f(i)f(j) ∈ E. Notice that every automorphism is
a permutation. If identity is the only automorphism of a graph,
we say that the graph is rigid. The set of all automorphisms
of a graph G is denoted with

Aut(G) = {a ∈ Π[n] | G ≃ a(G)}

and is called the automorphism group of a graph G. Con-
structing Aut(G) is at least as difficult as solving the graph
isomorphism problem, since graphs G and H are isomorphic
if and only if the disconnected graph formed by the disjoint
union of G and H has an automorphism that swaps the two
components. Several practical algorithms are known for finding
Aut(G); the most well-known is probably NAUTY [15].

III. PROBLEM DESCRIPTION

As already mentioned in the introduction, our goal is to find
equivalent (also called indistinguishable) vertices of a graph.
There are many types of equivalences already discussed in
the literature. We give several examples later in this section.
Our definition of equivalence is associated with the algorithmic
exploration of a graph; for example, when the task is to find
a pattern graph that is a subgraph in another target graph. In
particular, branch-and-bound search algorithms could exploit
such equivalences by reducing the number of (partial) matches
established between a set of equivalent vertices in the pattern
graph and a corresponding set of vertices in the target graph.
In the remainder of this section, we formally describe our type
of equivalence and the problem of finding the corresponding
equivalence classes. Additionally, we also discuss several other
similar equivalences and argue that our type is novel.

First, let us define a few additional notions. Let S be a set,
and let P ⊆ S be a set of positions. We say that a permutation
σ1 ∈ Π[P] is covered by a permutation σ2 ∈ Π[S] if the two
permutations have the same image on the positions P , i.e.,

σ1 � σ2 ≡ ∀i ∈ P : σ1(i) = σ2(i).

Observe that P is equal to the domain of σ1.

Now let A ⊆ Π[S]. We say that a set A of permutations
covers a set P of positions if every permutation of P is covered
by a permutation in A. More formally,

cover(A,P) ≡ ∀σ ∈ Π[P] ∃a ∈ A : σ � a.

Given a graph G = (V,E), we say that a partition
{P1, P2, . . . , Ps} of V is exploratory equivalent if for all
1 ≤ i ≤ s the following two conditions hold:

cover(Ai−1, Pi) and Ai = Stab(Ai−1, Pi), (1)

where A0 = Aut(G). The sets P1, P2, . . . , Ps are the equiva-
lence classes. Notice that the order of classes regarding the
partition {P1, P2, . . . , Ps} is irrelevant, but it is important
when checking the conditions (1), since not all orders of
P1, P2, . . . , Ps satisfy them. In this sense the exploratory
equivalence is an algorithmic concept. In particular, an algo-
rithm processing a vertex u ∈ Pi may ignore all other vertices
in Pi, since the automorphisms Ai−1 cover all permutations of
Pi. However, it is important to observe that equivalence classes
are not independent. For example, when a vertex u ∈ Pi is
processed, this may influence the rest of the algorithm. There-
fore, when determining the next class Pi+1, one must exclude

the automorphisms corresponding to the already processed
classes P1, P2, . . . , Pi, which is the same as restricting to the
automorphisms where the positions P1∪P2∪· · ·∪Pi are fixed
points. That is the reason why in each step the automorphism
group is restricted from Ai−1 to Ai = Stab(Ai−1, Pi).

3

44

1 2

5

6

Fig. 1. An example graph with several exploratory equivalences.

Let us demonstrate the introduced concepts with an exam-
ple. Consider the 6-vertex graph of Fig. 1. Its automorphism
group consists of the following eight permutations (written in
the one-line notation):

123456, 123465, 124356, 124365, (2)

215634, 215643, 216534, 216543.

There are twelve exploratory equivalent partitions of the graph.
They are given in the form of a Hasse diagram (using the
refinement relation � between two partitions) in Fig. 2. The

Fig. 2. Hasse diagram of all the exploratory equivalent partitions of the
graph from Fig. 1. (The four partitions on the right-hand side are actually
four separate vertices in the diagram.)

trivial partition ({1 | 2 | 3 | 4 | 5 | 6} in the case
of the graph of Fig. 1) is always exploratory equivalent.
For the trivial partition, any ordering of its constituent sets
satisfies the conditions (1). By contrast, for the exploratory
equivalent partition {1, 2 | 3, 4 | 5, 6}, only the orderings
〈3, 4 | 5, 6 | 1, 2〉 and 〈5, 6 | 3, 4 | 1, 2〉 satisfy those conditions.

Corollary 1: Given a graph and its partition {P1, P2, . . . ,
Ps}, let A0 = Aut(G) and Ai = Stab(Ai−1, Pi) for 1 ≤ i ≤ s.
Then each Ai, where 1 ≤ i ≤ s, is a subgroup.

Proof: Aut(G) is a group. By repeatedly applying The-
orem 1, we know that Ai is a subgroup of Ai−1, for all
1 ≤ i ≤ s.

Now we are ready to define the problem. The input of the
problem is a graph G = (V,E) and its automorphism group
Aut(G), and the goal of the problem is to find an exploratory
equivalent partition {P1, P2, . . . , Ps} of V that maximizes the

JURIJ MIHELI, LUKA FRST, UROS CIBEJ: EXPLORATORY EQUIVALENCE IN GRAPHS: DEFINITION AND ALGORITHMS 449

product
s∏

i=1

|Pi|!.

The reason for using the product of factorials in the objective
function is that each class Pi covers |Pi|! automorphic graphs,
and the total number of automorphic graphs covered is thus
the product above. In the following sections, we denote the
problem with MAXEXPLOREQ.

In the paper [16], a large class of the so-called regular
equivalences (called colorations therein) is surveyed. A col-
oration of a graph is regular when the equality of the spectra
of two vertices implies the equality of the spectra of the
corresponding neighborhoods. More formally, a coloration C
of graph G is regular if and only if for all i, j ∈ V

C(i) = C(j) =⇒ C(N (i)) = C(N (j)).

Many different types of colorations are regular, e.g., strong
and weak structural coloration, orbit coloration, perfect col-
oration, and exact coloration. See [16] for details. For example,
coloring each orbit of Aut(G) gives orbit coloration. However,
as it turns out, exploratory equivalence is not regular. To
demonstrate this, consider again the graph from Fig. 1 and
its exploratory equivalent partition {1, 2 | 3, 4 | 5, 6}, where
the color of each class is different. It is easy to see that it is
not regular, since C(1) = C(2) but C({3, 4}) is not equal to
C({6, 7}).

IV. ALGORITHM DESCRIPTION

In this section, we will describe two greedy algorithms
for the MAXEXPLOREQ problem. The first algorithm is based
on restricting the set of automorphisms to the stabilizer of
the equivalent vertices found in one iteration. The second
algorithm is more time-efficient owing to a faster detection
of equivalent sets.

A. Greedy algorithm based on stabilizer restrictions

The first algorithm for the optimization problem MAX-
EXPLOREQ is based on the definition and will represent a
reference algorithm that can be further improved. The idea of
the algorithm is to start with the initial automorphism group,
find one equivalence class of the partition, reduce the set of
automorphisms only to the stabilizer of A, and recursively
find new equivalence classes until the entire set of vertices
is contained in the equivalence.

The input to this problem is the set of automorphisms
(permutations) A and a set V ′ ⊆ V of vertices not yet included
in any equivalence class; initially V ′ is the entire set V .

If the set of automorphisms contains only the identity, then
each vertex in V ′ represents a different equivalence class (i.e.,
no new indistinguishable vertices exist in the graph). If there
is more than one automorphism in A, then at least two vertices
are indistinguishable. At this point, the goal of the algorithm is
to find a subset S ⊆ V ′ that is covered by A. Usually, however,
there are many possibilities for S, and different choices can
lead to very different final solutions. The greedy criterion for
this choice is the size of S, i.e., among many possibilities, the
largest set S is chosen. When there are more sets with the

{1, 2}

{3, 4}

{5, 6}

{3, 4}{5, 6}

{5, 6}

{3, 4}

{4, 6}
{3, 6}
{3, 5}
{4, 5}

start

identity

Fig. 3. The search space of Algorithm 1 for the graph in Fig. 1

same size, the algorithm chooses the one that has the largest
stabilizer in A. The described algorithm is shown in more
detail as Algorithm 1.

Algorithm 1 Greedy algorithm for MAXEXPLOREQ based on
stabilizer restrictions.

1: function GREEDY1(A, V ′)
2: if |A| = 1 then return singletons(V’)

3: bestP = ∅
4: bestA = ∅
5: for all P : P ⊆ V ′ ∧ cover(A,P) do
6: A′ ← Stab(A,P)
7: if |P | > |bestP | ∨
8: |P | = |bestP | ∧ |A′| > |bestA| then
9: bestP ← P

10: bestA← A′

11: return {bestP} ∪ GREEDY1(bestA, V ′ \ bestP)

To make this algorithm a little more clear, we will show its
trace on the simple example graph of Fig. 1. The initial set of
all automorphisms A is already shown in equation (2). From
this set, the algorithm finds the equivalence class {1, 2} and
reduces A to the set Stab(A, {1, 2}), which is:

A′ = {123456, 123465, 124356, 124365}

In this automorphism group, it finds the equivalence class
{3, 4} and reduces the automorphisms to the stabilizer:

A′ = {123456, 123465}

The final equivalence class from this group is {5, 6}, and the
corresponding stabilizer contains only the identity. This yields
the final result, namely the partition {1, 2 | 3, 4 | 5, 6}. If, at
the moment when A′ contained only the identity, the current
partition did not include all six vertices of the graph, each of
the missing vertices would be added as a singleton set to the
equivalence. The entire search space for this example is shown
in Fig. 3. Each vertex in this graph represents an automorphism
group. The bottom vertex is the set of all automorphisms, and
the top vertex is the set containing only the identity. Each edge
represents a stabilization with the set that is written as the label
of the edge. The bold vertices and edges are the ones that our
algorithm follows.

Now we will discuss the correctness of the described
algorithm.

450 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

1

2

3

4

5

6

1

2 3

4

56

7

Fig. 4. Two graphs on which Algorithm 1 returns a suboptimal solution. The
left graph is the smallest counterexample in terms of the number of vertices,
and the right one is the smallest counterexample in terms of the number of
edges.

Theorem 2: Algorithm 1 returns a partition of exploratory
equivalent vertices.

Proof: Since the algorithm closely follows the definition,
the proof is trivial. Each partition is covered by the automor-
phism group; the loop only iterates over the subsets that are
covered. The second criterion from the definition is guaranteed
by the recursion, since the set of automorphisms used in the
recursion is only the stabilizer of the equivalence class found
in the previous step.

Another question we need to address is the optimality of
this algorithm. Unfortunately, the greedy criterion does not
guarantee the optimality of the solution. We will demonstrate
this by two examples shown in Fig. 4. These two exam-
ples were found by the exhaustive enumeration of all non-
isomorphic connected graphs (starting with the smallest graph),
and the graphs of Fig. 4 are the smallest examples where
Algorithm 1 does not find an optimal solution. The optimal
solution for the left graph in Fig. 4 is one with value 8
(partition {1, 4 | 2, 5 | 3, 6}), whereas the algorithm returns
a solution with value 6 (partition {1, 3, 5 | 2 | 4 | 6}).
A similar situation occurs with the right graph, where the
optimal solution is 8 (partition {1 | 2, 3 | 4, 5 | 6, 7}), but the
algorithm returns a suboptimal solution with value 6 (partition
{2, 4, 6 | 1 | 3 | 5 | 7}).

Because of the exhaustive search over all subsets of V ′, the
described algorithm is not very practical for larger graphs. In
the next subsection, we will describe a more efficient algorithm
that utilizes an incremental procedure to find the possible
equivalence classes.

B. Greedy algorithm based on positional restriction of auto-
morphisms

For a more convenient presentation of our second greedy
algorithm, let us define a few auxiliary terms. The positional
restriction of an automorphism (permutation) a ∈ Π[S] to a
set R ⊆ S (denoted ρ(a,R)) is a partial function a′ : S → S
with a′(i) = a(i) for all i ∈ R and a′(i) being undefined for
all i ∈ S \R. For example, ρ((3, 2, 1, 4), {2, 4}) = (↑, 2, ↑, 4).
We use the one-line notation for representing automorphisms
((1, 2, 3, 4) ≡ 1234) and the symbol ↑ for indicating the
undefined values. Therefore, a = (↑, 2, ↑, 4) represents the fact
that both a(1) and a(3) are undefined, whereas a(2) = 2 and
a(4) = 4.

The positional restriction of a set of automorphisms
A ⊆ Π[S] to a set R ⊆ S (denoted ρ(A,R)) is a set
{ρ(a,R) | a ∈ A}. For example, ρ({(1, 2, 3, 4), (3, 2, 1, 4)},

1

2

3

4

5

6

Fig. 5. A sample graph

{2, 4}) = {(↑, 2, ↑, 4)}. As illustrated by this example, several
automorphisms may collapse into one as a side-effect of a
positional restriction.

For a given set S and a given set of (positionally un-
restricted or restricted) set of automorphisms A ⊆ Π[S], a
permofix is a pair (P, F) such that the following conditions
hold: (1) P ⊆ S, (2) F ⊆ S, (3) P ∩ F = ∅, and (4) for each
permutation σ ∈ Π[P] there exists an automorphism a ∈ A
such that a(i) = σ(i) for all i ∈ P and a(i) = i for all
i ∈ F . In other words, a pair (P, F) is a permofix if there
exists a set of automorphisms A′ ⊆ A that covers the set
P (i.e., all permutations of P) and simultaneously fixes all
elements of F . Given a permofix (P, F), the sets P and F
will be called the perm-set and the fix-set, respectively. A k-
permofix is a permofix (P, F) with |P | = k. The potential of a
permofix (P, F) is the product |P |! |F |!. A permofix (P ′, F ′)
is contained in a permofix (P, F) (denoted (P ′, F ′) ⊑ (P, F))
if P ′ ⊂ P (a strict subset) or P ′ = P and F ′ ⊆ F .

As an example, consider the graph of Fig. 5. The 12
automorphisms of this graph are as follows:

a1 = (1, 2, 3, 4, 5, 6) (3)

a2 = (2, 3, 4, 5, 6, 1)

a3 = (3, 4, 5, 6, 1, 2)

a4 = (4, 5, 6, 1, 2, 3)

a5 = (5, 6, 1, 2, 3, 4)

a6 = (6, 1, 2, 3, 4, 5)

a7 = (1, 6, 5, 4, 3, 2)

a8 = (2, 1, 6, 5, 4, 3)

a9 = (3, 2, 1, 6, 5, 4)

a10 = (4, 3, 2, 1, 6, 5)

a11 = (5, 4, 3, 2, 1, 6)

a12 = (6, 5, 4, 3, 2, 1)

For this graph, the pair ({1, 3}, {2, 5}) is a permofix, since the
automorphisms a1 and a9 cover both permutations of the set
{1, 3} while fixing the elements 2 and 5. The pair ({1, 3, 5}, ∅)
is a permofix as well, since the automorphisms a1, a3, a5,
a7, a9, and a11 collectively cover all permutations of the set
{1, 3, 5}. We also have ({1, 3}, {2, 5}) ⊑ ({1, 3, 5}, ∅).

Given the set of automorphisms A ⊆ Π[n] of a n-vertex
graph, the algorithm works as a greedy iterative process. In
each iteration, it produces the set of all permofixes in the
current set of automorphisms (in the first iteration, this is the
unrestricted set A) and greedily selects a permofix with the

JURIJ MIHELI, LUKA FRST, UROS CIBEJ: EXPLORATORY EQUIVALENCE IN GRAPHS: DEFINITION AND ALGORITHMS 451

largest potential. After making its selection, the algorithm posi-
tionally restricts all automorphisms to the fix-set of the selected
permofix. The positionally restricted set of automorphisms
serves as the input to the next iteration. The process stops
once all automorphisms have become completely undefined
functions. The output of the algorithm is a set composed of
all perm-sets of the permofixes selected in individual iterations
and of the singletons containing the individual vertices that are
not present in any of the selected perm-sets. Later, we shall
show that the algorithm’s output is an exploratory equivalent
partition of the vertex set.

The rationale for selecting a permofix with the highest
potential is based on the following heuristics: Recall that
the algorithm’s goal is to find a partition {P1, . . . , Ps} of
{1, . . . , n} with a maximum value of |P1|! . . . |Ps|!. A per-
mofix (P, F) is guaranteed to contribute at least a factor of
|P |! to the target product |P1|! . . . |Ps|! (since the perm-set
of the selected permofix is part of the algorithm’s output),
but it can potentially contribute up to |P |! |F |!. The optimal
scenario takes place when the entire fix-set F serves as a perm-
set of some permofix selected later in the process. Therefore,
a permofix (P, F) having the largest value of |P |! |F |! may
potentially contribute the largest factor to the target product.

The pseudocode of the greedy algorithm based on po-
sitional restrictions of the automorphism set is shown as
Algorithm 2.

To show that the output produced by the algorithm con-
forms to our problem definition, we shall first prove the
following lemma:

Lemma 1: Each element of the set returned by the proce-
dure GREEDY2 is a perm-set of the input set A of automor-
phisms.

Proof: The singletons are perm-sets by definition, so let
us focus on the elements of the set P inside the procedure
GREEDY2. In each iteration, the algorithm first applies the
procedure FIND2PERMOFIXES to the current set of automor-
phisms A. This procedure returns a set of all pairs ({p, q},
{r1, . . . , rt}) such that there exists an automorphism a with
a(p) = q, a(q) = p, and a(r1) = r1, . . . , a(rt) = rt.
By the definition of automorphism group, the set A always
contains the identity automorphism aid with the property
aid(p) = p, aid(q) = q, and aid(r1) = r1, . . . , a(rt) = rt.
The automorphisms a and aid jointly form a proof that the
pair ({p, q}, {r1, . . . , rt}) is indeed a permofix.

The procedure EXTEND iteratively produces k-permofixes
based on sets of (k − 1)-permofixes in the set of auto-
morphisms A. For k = 3, the procedure creates a pair
PF = ({p, q, r}, F1 ∩ F2 ∩ F3) from the permofixes PF 1 =
({p, q}, {r} ∪ F1), PF 2 = ({p, r}, {q} ∪ F2), and PF 3 =
({q, r}, {p} ∪ F3). Neglecting the sets F1, F2, and F3 for
the time being, the permofix PF 1 represents the permutation
(p q)(r) in the cycle notation. Likewise, PF 2 and PF 3

represent the permutations (p r)(q) and (q r)(p), respectively.
Since (A, ◦) is a group, the permutation (p q)(r) ◦ (p r)(q) ◦
(q r)(p) = (p q r) has to be completely present in A; in other
words, A has to contain an automorphism for each of the
3! permutations of the set {p, q, r}. Therefore, {p, q, r} is a
perm-set in A. The fix-set corresponding to this perm-set is (a
superset of) the intersection of the fix-sets of PF 1, PF 2, and

Algorithm 2 Greedy algorithm based on positional restrictions

1: function GREEDY2(A, V)
2: // A: a set of automorphisms, V = {1, . . . , n}
3: P := ∅;
4: W ::= V ;
5: while A contains at least one valid element do
6: R := CLEANUP(FIND2PERMOFIXES(A));
7: k := 3;
8: repeat
9: R′ := R;

10: R := CLEANUP(EXTEND(R, k));
11: k := k + 1
12: until R′ = R;
13: (Pm, Fm) := highest-potential permofix in R;
14: P := P ∪ {Pm};
15: W := W \ Pm;
16: A := ρ(A,Fm)

17: return P ∪ singletons(W)

18:

19: function FIND2PERMOFIXES(A)
20: R := ∅;
21: for all a ∈ A do
22: for all (i, j): i 6= j ∧ a(i) = j ∧ a(j) = i do
23: P := {i, j};
24: F := {k | a(k) = k};
25: R := R∪ {(P, F)}

26: return R
27:

28: function EXTEND(R, k)
29: for all P : P ⊆ {1, . . . , n} ∧ |P | = k do
30: F := {1, . . . , n};
31: i := 0;
32: for all p ∈ P do
33: if ∃F ′ : (P \ {p}, {p} ∪ F ′) ∈ R then
34: F := F ∩ F ′;
35: i := i+ 1
36: else
37: break
38: if i = k then
39: R := R∪ {(P, F)}

40: return R
41:

42: function CLEANUP(R)
43: for all (P, F) ∈ R do
44: for all (P ′, F ′) ∈ R \ {(P, F)} do
45: if (P ′, F ′) ⊑ (P, F) then
46: R := R \ {(P ′, F ′)}

47: return R

452 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

PF 3. Consequently, PF is a permofix in A. This reasoning
can be straightforwardly extended to the general case of k > 3.
Therefore, every pair created by the procedure EXTENDS is a
permofix in the current set of automorphisms.

The procedure CLEANUP does not produce anything new;
it merely reduces the number of permofixes. For a permofix
(P, F), all permofixes (P ′, F ′) with (P ′, F ′) ⊑ (P, F) are
heuristically pronounced redundant. If P ′ = P and F ′ ⊆ F ,
the permofix (P ′, F ′) is clearly superfluous. If P ′ ⊂ P , then
the permofix (P, F) has been created from (P ′, F ′) within the
EXTEND procedure.

The positional restriction can only reduce the set of per-
mofixes. It is easy to see that if a pair (P, F) is a permofix
in a positionally restricted set of automorphisms, then it is a
permofix in the original set, too.

In summary, the set R consists of permofixes of the initial
set of automorphisms A, and every element of the set returned
from the procedure GREEDY2 is a perm-set of A.

In the following theorem, we show that the algorithm pro-
duces a solution to our problem, i.e., an exploratory equivalent
partition of the vertex set.

Theorem 3: The procedure GREEDY2 returns an ex-
ploratory equivalent partition of the vertex set V .

Proof: Let {P1, . . . , Ps, {i1}, . . . , {ir}} be the result of
the algorithm GREEDY2, where P1, . . . , Ps are the perm-sets
produced in individual iterations, and {i1}, . . . , {ir} are the
singletons created from the vertices that do not belong to the
set P1 ∪ . . . ∪ Ps. By construction, the elements of the output
set are mutually disjoint sets that collectively cover the entire
vertex set. The output set is thus a partition of the vertex set.

By definition, each of the produced perm-sets P1, . . . , Ps

is covered by the initial set of automorphisms A0 ≡ A, i.e.,
we have cover(A0, Pi) for all i ∈ {1, . . . , s}. Let us now
show that cover(Stab(A0, Ps), Ps−1) also holds. The perm-
set Ps has to be a subset of the fix-set Fs−1; otherwise, the
algorithm would, at some earlier stage, have set a1(j) := ↑,
. . . , a|A|(j) := ↑ for at least one j ∈ Ps and hence could not
produce Ps. By the definition of permofix, there exists a set
of automorphisms that fixes Fs−1 and simultaneously covers
Ps−1. Since Ps ⊆ Fs−1, the same set of automorphisms also
fixes Ps. Consequently, the set of automorphisms where Ps is
fixed (i.e., Stab(A0, Ps)) covers Ps−1. In the same manner, we
can prove cover(Stab(Stab(A0, Ps), Ps−1), Ps−2), etc. There-
fore, the perm-sets Ps, Ps−1, Ps−2, . . . , P1, together with the
singleton sets formed by the missing elements, constitute an
exploratory equivalent partition of the vertex set V .

In practice, the algorithm GREEDY2 is more efficient than
GREEDY1. For each combination P of the current set of ver-
tices, the first greedy algorithm checks whether P is covered by
the current set of automorphisms (in other words, whether P is
a perm-set in the current set of automorphisms). By contrast,
the algorithm GREEDY2 generates candidate perm-sets (and
the associated fix-sets) in an incremental fashion: a perm-set
with k elements is generated by merging k perm-sets with
k − 1 elements. If no k-element perm-sets are generated, the
algorithm will not attempt to generate any (k + 1)-element
perm-sets.

Let us illustrate the algorithm GREEDY2 with two ex-
amples. Consider the graph of Fig. 5. Given the set of its
automorphisms as input (enumerated in Eq. 3), the algorithm
produces the following 2-permofixes (after executing the pro-
cedure CLEANUP):

({1, 2}, ∅) ({2, 3}, ∅) ({3, 6}, ∅)
({1, 4}, ∅) ({2, 5}, ∅) ({4, 5}, ∅)
({1, 6}, ∅) ({3, 4}, ∅) ({5, 6}, ∅)
({1, 3}, {2, 5}) ({1, 5}, {3, 6}) ({2, 4}, {3, 6})
({2, 6}, {1, 4}) ({3, 5}, {1, 4}) ({4, 6}, {2, 5})

The procedure EXTEND produces two 3-permofixes:
({1, 3, 5}, ∅) and ({2, 4, 6}, ∅). The procedure CLEANUP

subsequently removes all permofixes (P, F) with
|P | = |F | = 2. In the next step, the algorithm selects
a permofix with the highest value of |P |! |F |!. This is either
({1, 3, 5}, ∅) or ({2, 4, 6}, ∅). In either case, the fix-set is
empty, so the procedure RESTRICT sets all elements of all
automorphisms to ↑. As a result, the algorithm immediately
stops with the result {1, 3, 5 | 2 | 4 | 6} (or {2, 4, 6 | 1 | 3 | 5},
depending on its selection). Among all exploratory equivalent
partitions, these two both have the highest product of the
factorials of the cardinalities of their constituent sets and
hence represent two optimal solutions to the MAXEXPLOREQ

problem.

The graph of Fig. 1 has 8 automorphisms:

a1 = (1, 2, 3, 4, 5, 6)

a2 = (1, 2, 3, 4, 6, 5)

a3 = (1, 2, 4, 3, 5, 6)

a4 = (1, 2, 4, 3, 6, 5)

a5 = (2, 1, 5, 6, 3, 4)

a6 = (2, 1, 5, 6, 4, 3)

a7 = (2, 1, 6, 5, 3, 4)

a8 = (2, 1, 6, 5, 4, 3)

In the first iteration, the algorithm produces the following
permofixes:

({3, 5}, ∅) ({1, 2}, ∅)
({3, 6}, ∅) ({3, 4}, {1, 2, 5, 6})
({4, 5}, ∅) ({5, 6}, {1, 2, 3, 4})
({4, 6}, ∅)

The set of automorphisms contains no permofixes (P, F) with
|P | > 2. Using the highest-potential criterion, the algorithm
selects either the permofix ({3, 4}, {1, 2, 5, 6}) or the permofix
({5, 6}, {1, 2, 3, 4}). Let us assume that the former is selected;
the latter permofix leads to the same output. After the selection,
the set of automorphisms is positionally restricted with respect
to the fix-set {1, 2, 5, 6}):

a′1 = (1, 2, ↑, ↑, 5, 6)

a′2 = (1, 2, ↑, ↑, 6, 5)

a′5 = (2, 1, ↑, ↑, 3, 4)

a′6 = (2, 1, ↑, ↑, 4, 3)

JURIJ MIHELI, LUKA FRST, UROS CIBEJ: EXPLORATORY EQUIVALENCE IN GRAPHS: DEFINITION AND ALGORITHMS 453

1

2

3

4

5

6

7
8

Fig. 6. The smallest graph on which Algorithm 2 returns a suboptimal
solution.

The automorphisms a′3 and a′4 are equal to a′1 and a2’,
respectively, and an analogous situation occurs with the au-
tomorhpisms a′7 and a′8. In the second iteration, only two
permofixes are produced: ({1, 2}, ∅) and ({5, 6}, {1, 2}). The
latter has a greater potential than the former and is hence se-
lected, restricting the set of automorphisms to {(1, 2, ↑, ↑, ↑, ↑),
(2, 1, ↑, ↑, ↑, ↑)}. The restricted automorphisms give rise to the
sole permofix ({1, 2}, ∅), which is selected in the third iteration
of the algorithm. The algorithm thus outputs the partition
{3, 4 | 5, 6 | 1, 2}, which is again an optimal solution to the
MAXEXPLOREQ problem.

For a vast majority of input graphs, the algorithm GREEDY2
produces optimal exploratory equivalent partitions. The small-
est graph (in terms of vertex count) with a suboptimal result
is shown in Fig. 6. For this graph, the algorithm produces the
partition {1, 7 | 2, 8 | 3, 5 | 4, 6} with the target cardinality
factorial product being 2! 2! 2! 2! = 16. The optimal solution,
however, is the partition {1, 2, 3, 4 | 5 | 6 | 7 | 8} with the
target product of 4! = 24. In the first iteration, the algorithm
produces 20 permofixes, two of which are ({1, 2, 3, 4}, ∅)
and ({1, 7}, {2, 3, 4, 5, 6, 8}). The former permofix would lead
to an optimal solution, but the algorithm chooses the latter,
since 2! 6! > 4!. However, the fix-set of the selected permofix
eventually contributes only 2! 2! 2! instead of the potential 6! to
the target product, making the algorithm’s first-iteration choice
suboptimal.

Interestingly, the graphs of Fig. 4 are not counterexamples
for the second greedy algorithm, and the graph of Fig. 6 is
not a counterexample for the first algorithm. In contrast to
the algorithm GREEDY1, the algorithm GREEDY2 considers
the combined sizes of individual perm-sets and fix-sets when
making greedy selections. In the right graph of Fig. 4, for
example, the algorithm GREEDY2 has to choose between the
permofix ({2, 3}, {1, 4, 5, 6, 7}) (or an equivalent permofix
with potential 2! 5!) and the permofix ({2, 4, 6}, ∅) (or an
equivalent permofix with potential 3!). The first permofix is ob-
viously preferable, leading to an optimal partition. Conversely,
since the algorithm GREEDY1 considers perm-sets without the
associated fix-sets, it prefers the perm-set {1, 2, 3, 4} over all
2-element perm-sets (regardless of the sizes of their associated
fix-sets) when dealing with the graph of Fig. 6.

V. EXPLORATORY EQUIVALENCE AND THE IMPROVED

REKERS-SCHÜRR PARSER

As we mentioned in the introduction, the concept of
exploratory equivalence was developed by Fürst et al. [9] for

the purpose of improving the Rekers-Schürr graph grammar
parser [10], although the authors did not provide a rigorous
graph-theoretic and group-theoretic definition of exploratory
equivalence and did not consider the possibility of multiple
exploratory equivalent partitions for a single graph. In this
section, we show how a proper consideration of exploratory
equivalence may lead to immense performance gains when
parsing graphs against graph grammars.

The Rekers-Schürr graph grammar parser (both the original
and the improved version) accepts a graph and a context-
sensitive graph grammar on its input. A context-sensitive graph
grammar (called just ‘grammar’ in the sequel) is a quadruple
(N , T , P , A), where N is a set of nonterminal labels, T is a
set of terminal labels, P is a set of productions, and A is a set
of axioms. Each production p is a rule of the form Lhs[p] ::=
Rhs[p], where Lhs[p] (the left-hand side – LHS) and Rhs [p]
(the right-hand side – RHS) are subgraphs of a graph Union[p]
whose elements (vertices and edges) have labels from N ∪T .
The graph Common[p] = Lhs[p]∩Rhs[p] is called the context
of the production. Let Xlhs[p] = Lhs[p] \ Common[p] and
Xrhs[p] = Rhs [p]\Common[p]; note that Xlhs[p] and Xrhs[p]
might not be proper graphs, since they may contain dangling
edges. A sample production, as well as the graphs and the
graph element sets associated with it, is shown in Fig. 7. In
contrast to the graph depictions shown so far, the inscriptions
inside the vertices represent vertex labels rather than vertex
indices. The indices are displayed next to individual vertices.
The yellow-colored vertices belong to the graph Common[p]
and hence to both the LHS and RHS simultaneously; this is
also reflected in the fact that such vertices have the same index
on both sides of the production.

Fig. 7. A sample production and the associated graphs and graph element
sets.

An l-homomorphism h : Lhs[p]→ G for a production p is a
graph homomorphism whose restriction to Xlhs[p] is injective.
An l-occurrence of a production p in a graph G is a graph
L′ ⊑ G such that L′ = h(Lhs[p]) for some l-homomorphism
h. The terms r-homomorphism and r-occurrence are defined
symmetrically (with Rhs [p] and Xrhs[p] instead of Lhs[p] and
Xlhs[p], respectively).

To apply a production p to a graph G, the following
three steps are performed: (1) find an l-occurrence of p in
G (let h : Lhs[p] → G be the associated l-homomorphism);
(2) remove the elements h(Xlhs[p]) from the graph G; (3)
attach fresh copies of the elements Xrhs[p] to the elements

454 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

h(Common[p]) in the same way as the elements Xrhs[p]
are attached to the elements of Common[p] within the graph
Rhs[p]. A derivation of a graph G in a graph grammar is a
sequence of production applications beginning with an axiom
graph and ending with the graph G. The language of a graph
grammar GG is the set of all terminally labeled graphs that
have a derivation in GG . (A graph is terminally labeled if all
of its elements are labeled by labels from the set T .) A parser
is an algorithm that, for a given graph G and a given graph
grammar GG , determines whether G belongs to the language
of GG and produces a derivation of G in GG if this is the
case. Figure 8 shows a grammar for generating the structural
formulas of linear alkanes. All graph labels belong to the set
T , including the ‘non-label’ — a fictitious label for unlabeled
edges. Figure 9 displays the derivation of the propane graph
in that grammar. The derivation starts with the axiom (the
methane graph) and passes through the ethane graph.

Fig. 8. A grammar for generating the structural formulas of linear alkanes.

Fig. 9. Derivation of the propane graph in the grammar of Fig. 8.

The Rekers-Schürr parser works as a two-stage process. In
the first stage, the input graph G is analyzed in order to obtain
a partially ordered redundant set S of candidate production
applications that might take part in a potential derivation of G.
In the second stage, the parser tries to find, using backtracking
if necessary, a sequence of production applications within the
set S that constitutes a correct derivation of the graph G. The
improvement by Fürst et al. pertains only to the first stage of
the parsing process.

At the beginning of the first stage, the parser creates
a graph G as a copy of the input graph G. After that,
it iteratively searches the graph G for all r-occurrences of
individual productions. For each discovered r-occurrence of
a production p, the graph G is augmented by attaching fresh
copies of the elements Xlhs[p] to the r-occurrence, giving rise
to a production instance — a homomorphic image of the entire
production p that defines a candidate application of p in a
potential derivation of G. The augmentation of the graph G
might result in new r-occurrences among the added elements.
The discover-and-augment cycle finishes once all r-occurrences
of all productions have been discovered.

To guarantee the discovery of all r-occurrences, each RHS
has to be matched against the graph G in all possible ways.
In other words, all RHS-to-G r-homomorphisms have to be
established, including different r-homomorphisms between a

production and each of its r-occurrences. However, exploratory
equivalence can make some (or all) of the r-homomorphisms
between a production and its r-occurrence redundant. Let us
assume that a production p contains k distinct vertices v1, . . . ,
vk with the following properties:

• either v1, . . . , vk ∈ Xrhs[p] or v1, . . . , vk ∈
Common[p];

• v1, . . . , vk constitute an equivalence class in at
least one exploratory equivalent partition of the graph
Rhs [p];

• v1, . . . , vk constitute an equivalence class in at least
one explorationally equivalent partition of the graph
Union[p].

Then it can be shown [9] that the set of r-homomorphisms
h : Rhs [p]→ G established between the production p and the
graph G can be safely restricted to those r-homomorphisms
h for which index (h(v1)) < . . . < index (h(vk)), where
index (v) is a unique index assigned to a vertex x ∈ G.
This rule reduces the number of established p-homomorphisms
between the production p and each of its occurrences by a fac-
tor of k!. Since each discovered r-homomorphism is followed
by an augmentation of the graph G, immense performance
gains can thus be attained. This rule can be straightforwardly
extended to multiple non-singleton classes of an exploratory
equivalent partition.

Consider the grammar of Fig. 8. The optimal exploratory
equivalent partition for the axiom graph is {1 | 2, 3, 4, 5}. This
implies that we can employ the rule h(2) < h(3) < h(4) <
h(5) whenever searching for occurrences of the axiom graph
in the graph G. For the RHS of the production p1, the optimal
partition is {1 | 3 | 4, 5, 6}. Since the graph Union[p1] also
has an exploratory equivalent partition in which the vertices 4,
5, and 6 are part of the same equivalence class, we can enforce
the rule h(4) < h(5) < h(6) for every r-homomorphism
established between the RHS of the production p1 and the
graph G. Because of the interleaved discover-and-augment
cycle, the enforcement of these rules may significantly reduce
the parsing time.

For the task of parsing the graphs of methane, ethane,
and propane against the grammar of Fig. 8, Table I com-
pares the duration of parsing without considering exploratory
equivalence (EE) and the duration of parsing when exporatory
equivalence is taken into account in the form of imposing
constraints on r-homomorphisms between the RHSs and the
graph G. The experiments were conducted on a 3.40-GHz Intel
Core i7 machine.

The difference between the two versions of the parser
is striking. Without using the rules based on exploratory
equivalence, the parser quickly succumbs to a combinatorial
explosion as the size of the input graph increases; it took more
than 11 hours to parse the graph of propane with 3 vertices C
and 8 vertices H. By contrast, when exploratory equivalence
is taken into account, the parser takes less than one second
(0.989 seconds) even when parsing the graph C30H62 (30
vertices C, 62 vertices H). Asymptotically, for a graph with
n vertices C, the original parser creates Ω(6n) production
instances (possibly much more than that), while the version
that makes use of exploratory equivalence generates exactly

JURIJ MIHELI, LUKA FRST, UROS CIBEJ: EXPLORATORY EQUIVALENCE IN GRAPHS: DEFINITION AND ALGORITHMS 455

12n− 7 production instances. For many grammars containing
symmetries in the sense of exploratory equivalence, the use of
exploratory equivalence can reduce the asymptotical parsing
time from exponential to polynomial (see [9] for additional
examples).

TABLE I. THE TIME REQUIRED TO PARSE THE INDIVIDUAL GRAPHS

OF FIG. 9 AGAINST THE GRAMMAR OF FIG. 8.

Graph Without EE With EE

methane (CH4) 0.16 0.14
ethane (C2H6) 1.03 0.15
propane (C3H8) 41000. 0.16

VI. CONCLUSION

We introduced a novel type of graph equivalence, called
exploratory equivalence because of its applicability to various
graph search algorithms. Exploratory equivalence was defined
as an automorphism-based equivalence relation on graph ver-
tices. In contrast to our usual perceptions about equivalence,
exploratory equivalence may induce several distinct vertex set
partitions for a given graph.

In addition to defining exploratory equivalence itself, we
have also introduced the concept of an optimal exploratory
equivalent partition for a given graph. We presented two
greedy algorithms for finding such a partition. Both algorithms
produce optimal results for a vast majority of input graphs. For
instance, considering all non-isomorphic graphs on 8 vertices,
the second greedy algorithm produces an optimal partition
for 11116 graphs out of 11117, the sole exception being the
graph of Fig. 6. Among all non-isomorphic 9-vertex graphs,
the algorithm produces suboptimal results for only 2 graphs
out of 261080.

In subgraph search algorithms, exploratory equivalence can
be employed to prevent or at least reduce multiple discoveries
of individual occurrences of graph patterns in a given host
graph. In the Rekers-Schürr graph grammar parser, this strat-
egy may bring about immense performance gains, since each
discovery of a graph in a host graph results in an augmentation
of the same host graph.

A possible direction for the future work is a general-
ization of exploratory equivalence. As defined in this paper,
exploratory equivalence can be regarded as a global relation
between vertices. Informally, a pair of vertices may potentially
belong to the same exploratory equivalence class only if the
entire graph ‘looks the same’ from the viewpoint of both
vertices. For this reason, exploratory equivalence is a fairly
infrequent phenomenon for large random graphs, except for
sets of leaf vertices attached to the same internal vertex. A
natural generalization of ‘global’ exploratory equivalence is
therefore a ‘local’ version of this concept, where only a limited
neighborhood is inspected when determining the equivalence
of a set of vertices. However, practical implications of such a
definitions have yet to be discovered.

As shown in Section V, exploratory equivalence can be
used to impose constraints on graph homomorphisms when
searching for occurrences of a given pattern graph inside
a given host graph. The purpose of such constraints is to

eliminate multiple discoveries of the same occurrence. How-
ever, in some cases, the constraints induced by exploratory
equivalence do not suffice to cover all automorphisms of the
pattern graph. Consider, for example, the graph of Fig. 5.
This graph has 12 automorphisms, but the optimal exploratory
equivalent partition ({1, 3, 5 | 2 | 4 | 6}) only covers half of
them. Consequently, the rule h(1) < h(3) < h(5) still allows
for two different isomorphisms between a pair of 6-cycles.
Besides the constraints induced by the optimal exploratory
equivalence, we would need another constraint to cover the
rotational symmetry of the graph. The relationship between
exploratory equivalence (and other types of equivalence) and
graph search constraints is thus another promising direction
for the future work.

REFERENCES

[1] D. K. Agrafiotis, V. S. Lobanov, M. Shemanarev, D. N. Rassokhin,
S. Izrailev, E. P. Jaeger, S. Alex, and M. Farnum, “Efficient Sub-
structure Searching of Large Chemical Libraries: The ABCD Chemical
Cartridge,” J. Chem. Inf. Model., 2011. doi: 10.1021/ci200413e

[2] J. M. Barnard, “Substructure searching methods: Old and new,” J.

Chemical Information and Computer Sciences, vol. 33, no. 4, pp. 532–
538, 1993. doi: 10.1021/ci00014a001

[3] M. O. Jackson, Social and Economic Networks. Princeton, NJ, USA:
Princeton University Press, 2008. ISBN 0691134405, 9780691134406

[4] D. Knoke, Political Networks: The Structural Perspective, ser. Structural
Analysis in the Social Sciences. Cambridge University Press, 1994.
ISBN 9780521477628

[5] B. Hopkins, “Kevin Bacon and graph theory,” PRIMUS, vol. 14, no. 1,
pp. 5–11, 2004. doi: 10.1080/10511970408984072

[6] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms. Springer,
2011.

[7] J. R. Ullmann, “An Algorithm for Subgraph Isomorphism,” J. As-

soc. for Computing Machinery, vol. 23, pp. 31–42, 1976. doi:
10.1145/321921.321925

[8] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs.” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–72, Oct.
2004. doi: 10.1109/TPAMI.2004.75

[9] L. Fürst, M. Mernik, and V. Mahnič, “Improving the graph grammar
parser of Rekers and Schürr,” IET Software, vol. 5, no. 2, pp. 246–261,
2011. doi: 10.1049/iet-sen.2010.0081

[10] J. Rekers and A. Schürr, “Defining and parsing visual languages
with Layered Graph Grammars,” Journal of Visual Languages and

Computing, vol. 8, no. 1, pp. 27–55, 1997. doi: 10.1006/jvlc.1996.0027

[11] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg, and U. Montanari,
Eds., Handbook of graph grammars and computing by graph transfor-

mation (Vols. 1.–3.). World Scientific, 1997–1999.

[12] G. Rozenberg and E. Welzl, “Boundary NLC graph grammars –
basic definitions, normal forms, and complexity,” Information and

Control, vol. 69, no. 1–3, pp. 136–167, 1986. doi: 10.1016/S0019-
9958(86)80045-6

[13] L. Liberti, “Automatic generation of symmetry-breaking constraints,” in
COCOA, ser. Lecture Notes in Computer Science, B. Yang, D.-Z. Du,
and C. Wang, Eds., vol. 5165. Springer, 2008. doi: 10.1007/978-3-
540-85097-7 31 pp. 328–338.

[14] A. Mucherino, C. Lavor, and L. Liberti, “Exploiting symmetry prop-
erties of the discretizable molecular distance geometry problem,” J.

Bioinformatics and Computational Biology, vol. 10, no. 3, 2012. doi:
10.1142/S0219720012420097

[15] B. D. McKay and A. Piperno, “Practical graph isomorphism,
ii,” J. Symbolic Computation, vol. 60, pp. 94–112, 2013. doi:
10.1016/j.jsc.2013.09.003

[16] M. G. Everett and S. P. Borgatti, “Regular equivalence: General theory,”
Journal of mathematical sociology, vol. 19, no. 1, pp. 29–52, 1994. doi:
10.1080/0022250X.1994.9990134

456 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

