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Abstract—We present a method for fair agent scheduling in
transportation scenarios. The approach is designed to first ensure
the scheduling of all required task locations and, once this is
achieved, focus on a balancing the workload across the population
of transportation units. This, while almost certainly sub-optimal
in the context of efficiency, facilitates the speedy allocation of
new geographically located tasks due to the distribution of the
remaining capacity across the agent population.

We discuss our method, present results from simulations and
discuss the advantages and disadvantages of the approach.

I. INTRODUCTION

LARGE scale transportation scheduling is a well known

high complexity problem [1]. Arguably, the best known

instance is the class of Travelling Salesman Problems, of

which there are many variations which have been extensively

discussed in the literature. Generally speaking, the problem is

known to be NP-complete, meaning that while it is straight

forward to check whether a given solution is correct, it is

extremely difficult to construct such a solution [2].

In the classic Travelling Salesman Problems (TSP) one is

concerned with finding the shortest path that connects a finite

set of locations; in the multiple travelling salesman problem

(MTSP) this is extended to a finite set of disjoint / mutually

exclusive routes. The method presented in this paper solves a

problem similar to the MTSP with the difference that we are

not interested in the shortest path but in a collection of paths

that do not exceed a certain length or agent capacity.

A. Motivation

The motivation for this is the idea that in the considered

use cases we are in charge of a fleet of mobile agents which

have a certain capacity (fuel, battery level, working time, etc)

which we deem an acceptable investment.

While it is of course of interest to reduce the aggregated

amount of the consumed resources we focus instead on the

quick adaptation we can offer in a dynamic environment.

Specifically, the empirical results we present are generated

using a simulation that adds tasks to the problem after the

initial solutions have been created. The motivation for this is

that we consider scheduling scenarios where locations may be

added throughout the active period of the fleet.

B. Aim of the paper

The aim of this paper is to present the method used

and prove its performance through empirical results. The

evaluation is intentionally kept generic and the focus is on

providing the reader with all the information required to apply

the method to specific problem instances. To this end, a

variety of parameters are reported without any claim regarding

their optimal settings (since we present results on a generic

simulation it is of little interest to report on tuning results).

C. Application scenarios

The initial use case for the approach is the dispatch of

service personnel to a number of locations, as major telecom

operators or internet providers would routinely do. This can

be extended to maintenance personnel as well as corporate

security services on large estates. It should be noted that

neither time windows, nor ordering locations according to

some priority are currently supported.

We are at the moment considering the approach for allocat-

ing computational tasks to processing resources (e.g. servers

in a server farm), also, the approach has potential in large scale

disaster relief or humanitarian aid scenarios.

II. METHOD

We present a novel method [3] for adaptive scheduling in

dynamic environments. At the core of the approach is a self

determined paradigm shift [4] which enables a population of

agents to switch their priorities on the basis of their (locally)

available information: agents are assumed to have a limited

view on the tasks, meaning that they are only aware of tasks

within a certain distance from their position or their path. Their

decisions are based on this limited partial visibility [5].

By stance we understand a predisposition to act one way

or the other [6]. Specifically, agents are considered to be

maximizing (which we will abbreviate to max) if they are

aware of un-scheduled tasks, and balanced (bal) otherwise.

During each iteration all agents are triggered to locate a

task within their reach (i.e. within their remaining capacity)

and to attempt to assimilate this task into their own schedule.

They will make this decision stochastically and depending on

their and the other agent’s remaining capacity. The other agent

here is the agent to whom the task is currently scheduled, if

there is no such agent the decision is foregone and the agent

will simply schedule the task (cf. Figure 1). If the task is

already scheduled to an agent then a value is calculated for

both agents and from these a probability for re-allocating the

task is derived.
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Fig. 1. Flow diagram of the approach

By reversing this value (the probability of successfully

assimilating a task) we enable the agents to shift between two

polar opposite stances: rich gets richer and rich gets poorer,

where richness is associated with load (i.e. the higher the load

the richer the agent). While the max stance means that an

initially homogenous population will split into two groups:

one that is maximised its load and one that is minimizing it,

the bal stance results in agents with a higher load constantly

losing tasks to agents with a lower load, effectively balancing

their loads between themselves and their neighbours.

We require the approach to be non-deterministic (through

the use of random elements like. e.g. the order in which agents

are triggered, the choice of which task to consider for re-

allocation and the stochastic decision whether they will win

or lose the bid for re-allocating a task), as well as to be

applied many times over. This will not result in an immediate

convergence towards the best possible load distribution, but

instead will slowly converge towards a fair state, i.e. the load

distribution that results in roughly even loads for all agents.

Given that the choice of which task to consider is non-

deterministic (and thus not related to the stance of either

agent) we have 4 possible situations to consider (2 stances

for each of 2 agents) when defining the interaction between

any two agents. For the remainder of the paper we will call

the initiating agent active and consequently call the other agent

(the agent to whom the task in question is scheduled) passive.

These 4 combinations and the resulting interactions are:

• bal-bal (active agent balanced - passive agent balanced):

Agents that are not aware of unallocated tasks pursue

their long term objective (load balancing). The agents will

follow the rich gets poorer paradigm when calculating

whether to reschedule the task.

• max-max (active agent max - passive agent max):

If both agents are aware of un-allocated tasks they will

focus on their short term objective, which is to quickly

assimilate new/unscheduled tasks. They will follow the

rich gets richer paradigm which will result in some agents

depleting their capacity almost entirely while others are

freed up, enabling them to assimilate the new tasks.

• max-bal (active agent max - passive agent balanced):

If an agent is aware of unallocated tasks it is not interested

to receive any tasks from an agent that is not. In this

case, the interaction is aborted (this is simply prevented

by restricting the choice of tasks, and thus agents).

• bal-max (active agent balanced - passive agent max):

Balanced agents that happen to come across a task

currently scheduled to an agent that is aware of unal-

located tasks will always take the task in question. The

reasoning is that the overall aim is to remove as many

tasks as possible from the agents that are struggling to

accommodate unallocated tasks.
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III. MODEL

A. Parameters

The following are the parameters used for the model:

• number of agents

• number of tasks

• capacity (the same for all agents per simulation run)

• visibility range (considerably smaller than capacity)

• map size (this was 100x100 for all simulations)

• single depot versus individual depots

In line with our intention to enable the reader to implement

and evaluate the approach independently, we also briefly

discuss the only tuning parameter which we have included

in this paper: α (used in the formulae in §III-B). Changes in

α will affect the speed with which the approach converges to a

somewhat stable solution, while on the other hand determining

the degree of change in the environment which the algorithm

can handle while still performing well.

B. Formulae

The decision whether to re-allocate a task from the active

agent to the passive agent is stochastic. The probability of a

max agent stealing as task from another max agent is:

Pmax

A =
(rem.capacityB)

α

(rem.capacityA)α + (rem.capacityB)α
(1)

with P bal
A

the probability of agent A stealing a task from B,

and rem.capacityX the remaining capacity of an agent X.

The corresponding P bal

A
is simply the opposite of Pmax

A
:

P bal

A = 1− Pmax

A (2)

In other words, P bal

A
= Pmax

B
, which preserves the symmetry

of the probabilities in the opposing stances, i.e. if A were likely

to win for rich gets richer, it should be equally likely to loose

for rich gets poorer.

C. Scenario

a) Agents: have a capacity, a visibility range, a starting

depot and a route. The capacity is static, while the remaining

capacity is the capacity minus the cost of the current route.

b) Tasks: have a location, expressed by x-y coordinates.

c) Depots: mark the beginning and the end of each route.

Each agent is assigned a depot, expressed by x-y coordinates.

d) Routes: start and end with the depot of the respective

agent. Routes are assigned a cost, which is the sum of the

travel distances between the individual entries in the route.

The distance is calculated as the Euclidean Distance.

e) World: has a map, a list of agents and a list of routes

(schedules). The act of re-allocating a task from one route to

another is assumed to be instantaneous and cost free.

IV. SIMULATIONS

A. Scenarios

Two scenarios were used for the simulations:

1) 40 tasks were added to the map once (at iteration 25):

This is used for smaller scenarios, where the 40 tasks

constitute a substantial percentage of the existing tasks,

and where a small number of agents attempt to effi-

ciently schedule the new tasks. This scenario is used to

see whether, and how fast, the new tasks can be allocated

and how long it takes for the average of the individual

schedules to converge to a somewhat stable value.

All tasks were randomly given coordinates in the range

([50, 70], [−50, 50]); since the board is initialized to

[−50, 50] for both x and y coordinates these new tasks

appear across the range of the y axis and further on the

x than any other tasks.

2) 100 tasks are added every 25 iterations:

This scenario is used to investigate the robustness of the

approach and to see how a simulated population holds

up in the face of a task load that is getting closer and

closer to the total capacity of the population. Contrary

to the above these tasks were placed all over the map

([−50, 50], [−50, 50]).

B. Route calculations

We are interested in the least cost for a schedule, that is,

the shortest path thorough all tasks in a list. This is the well

known Travelling Salesman Problem, which is known to be

NP-complete. Since the algorithm will need to calculate this

for every task in the vicinity of an agent when computing the

list of visible or reachable tasks, this is a calculation that is

performed many times (millions of times, to be more precise,

for any of the presented simulations).

To reduce the computation times two steps are taken: First of

all, for routes of short length (≤8) the best route is calculated

via brute force, as this has proven to be the most effective

approach for us. Secondly, for longer routes, we use simulated

annealing with very soft convergence criteria. Because paths

are recalculated and built upon at every iteration, repeatedly

accepting a sub-optimal path still tends to progressively im-

prove the solutions, yielding good results.

C. Extremely large scenarios

We investigated the performance of the approach for very

large scenarios to verify that the approach is a) scalable and

b) does indeed perform better with larger agent populations.

To this end we simulated a scenario with 10,000 initial tasks

and 1000 agents. We then added 100 tasks every 25 iterations

and let the simulation run for 1000 iterations. This was done 4

times with different seeds. The generation of the results took

4-5 weeks because of the massive number of route calculations

that had to be done.
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Fig. 2. Three separate runs of the simulation (x-axis: iterations; y-axis: load).
Simulation setting: Scenario 2, agents = 50, tasks = 100, capacity = 75, 300
iterations, visibility = 40, map = 100x100. ∆: 100 new tasks every 25 steps

V. RESULTS AND DISCUSSION

A. Parameter space exploration

We ran a number of identical simulations (for each agent

population size, simulations were ran multiple times with

different seeds, the seeds used for the different population sizes

were the same so as to ensure comparability of the results)

where we increased the number of agents to investigate the

relevance of the size of the agent population. To this end,

Scenario 1 was used and separate batches were run for small

populations (20-100 agents, increasing in steps of 10) and large

populations (200-1000 agents, increasing in steps of 100). The

adaptation of the new tasks worked equally well across all

population sizes, with tasks being assimilated into schedules

as fast as possible (considering that each agent can only add

one task per iteration; larger populations could assimilate tasks

faster). The same holds for the aggregated load as well as the

individual agents’ loads. Other than the obvious differences in

the performance, the algorithm performed well, even for very

small numbers of agents (e.g. 20 agents for 500 tasks).

B. Performance evaluation

1) Adaptation of new tasks: To investigate the adaption of

new tasks into schedules we looked at the average load of the

max agents (as their the presence indicates the existence of

unallocated tasks). For very small numbers of agents (fewer

than the number of new tasks that were added) there is a

noticeable difference, but as soon as the number of agents

equals the number of new tasks there is no more difference in

the number of turns it takes for all new tasks to be assimilated.
2) Optimization of the aggregated load: Addition of new

tasks accounts for a sudden increase in the averages. For

all but the smallest agent populations, however, we can see

a steady and fast decrease in the reported averages. As

expected, smaller populations struggle more with the process

of decreasing the aggregated workload. This can be explained

by the fact that for smaller populations the exchange of tasks

is much more likely to have a more dramatic impact on their

route length. This was also reflected in the standard deviations.
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Fig. 3. Five separate runs of the simulation (x-axis: iterations; y-axis: load).
Simulation setting: Scenario 2, agents = 50, tasks = 100, capacity = 150, 500
iterations, visibility = 40, map = 100x100. ∆: 100 new tasks every 25 steps

3) Optimization of the individual agents’ loads: Population

size has an impact on the standard deviation itself as well

as on the rate of its decline. Smaller populations seem to

quickly decrease the standard deviation between time step 120

and 140. This was, however, not reflected in the averages

themselves. For larger populations we witnessed a much

smoother return to small standard deviations, with the largest

populations reaching a plateau very quickly.

4) Adaptivity and resilience: In order to evaluate the re-

silience of the approach and to investigate how the approach

performs when it subjected to repetitive heavy strain, we ran

a number of concurrent simulations for 300, 500 and (due to

time constraints) one single simulation for 1000 time steps.

All simulations started with 100 initial tasks which were

supplemented by another 100 every 25 iterations thereafter

(Scenario 2). The first set of simulations increased the number

of tasks to 1200, the second set to 2000 and the final simulation

ended with 4000 tasks all-together. While the first of these 3

batches was run with a capacity of 75, the latter two used a

capacity of 150 (so as to provide the agents with the capacity

required to accommodate all the new tasks). As before, we

investigated the performance with regard to the aggregated

load of all agents as well as the load of the individual agents:

a) Aggregated load of the population: Figures 2, 3 and

4 show the average loads of the agents over the course of

the simulations. Even for large (and very large, as depicted

in Figure 7) numbers of added tasks, the rate of convergence

towards a good average remains stable. The overall increase of

the load is not very large, and is decreasing with time as new

tasks are added. This is understandable since the agents are

using the shortest path through all tasks to calculate their load,

and for increasing task numbers new tasks are more likely to

be very close to already scheduled tasks.
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Fig. 4. The average load (y-axis) for one long simulation (x-axis: iterations).
Simulation setting: Scenario 2, agents = 50, tasks = 100, capacity = 150, 1000
iterations, visibility=40, map=100x100. ∆: 100 new tasks every 25 steps

b) Performance of max agents: Regarding the perfor-

mance of the max agents, we can see in Figure 5 that each

time new tasks are added there is a quick burst of activity

before the averages drop again sharply. This corresponds to

the number of max agents dropping to zero and the balanced

agents optimizing their schedules. Besides showing us that

the time used for the assimilation of the new tasks does

not increase with larger task counts, it also demonstrates the

effectiveness of the paradigm shift. These claims are best

discussed in combination with the next paragraph.

c) Load balancing between individual agents: Regarding

the performance of the individual agents, the graphs presented

in Figure 6 show the standard deviation from the averages

(already discussed above). We can see that the deviation from

the average more than doubles briefly as the balanced agents

take on tasks from the max agents. However, in all simulations

it then drops almost immediately to the previous values. There

seems to be a turning point around time step 200 (or when the

task count has reached 900) after which the deviation is slowly

decreasing. This is to be expected: with an increasingly denser

task distribution we can realistically assume that the individual

agents can balance their load more minutely.
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Fig. 5. The averages (y-axis) of the max agents for 3 separate runs (x-axis:
iterations). Setting: Scenario 2, agents = 50, tasks = 100, capacity = 75, 300
iterations, visibility = 40, map = 100x100. ∆: 100 new tasks every 25 steps

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  100  200  300  400  500  600  700  800  900  1000

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

lo
a
d
)

Time (iterations)

standard deviation

Fig. 6. The standard deviation (y-axis) from the average load for agents over
1000 iterations (x-axis). Setting: Scenario 2, agents = 50, tasks = 100, capacity
= 150, visibility = 40, map = 100x100. ∆: 100 new tasks every 25 steps

d) Performance of balanced agents: We observed that

the averages of the balanced agents jumped each time a new

batch of tasks was added to the map but quickly dropped again,

with the standard deviation following shortly thereafter.

Figures 4 and 6 report on results from small agent popu-

lations while Figures 7 and 8 show the performance of very

large populations, both running for 1000 iterations, but with

widely different task counts.

In Figure 4, the averages of the balanced agents increased

slowly for smaller agent populations (capacity = 150) but

their averages converged towards a plateau at around 120. The

standard deviation, converging towards 25 (which is about the

remaining capacity left for the agents) explains this plateau.

Regarding the corresponding standard deviation (Figure

6), we noticed a decrease in the deviation with increasing

task counts. This matches the increased averages (decreased

remaining capacity) but can also be explained by the fact that

in larger task count new tasks are placed in closer proximity

of existing (and already scheduled) tasks. In addition, the load

balancing improves with the number of tasks to exchange.

As for the much larger simulation reported upon in Figures

7 and 8, we argue that the results show that the approach is

scalable. We furthermore suggest that the increases in average

load and standard deviation are stable because, unlike the other

simulation discussed above, the agents had sizable remaining

capacity and the sheer number of the agents in the simulation

resulted in a much higher chance of tasks being placed in close

proximity of agents.

The patterns observed in the other simulations are repeated

here: after tasks are added a brief period of ensues within

which the agents change paradigm, assimilate the new tasks

and increase their load. This is followed immediately by a

steady optimization which reduces the average load to (almost)

the values from before the adding of the tasks. As far as the

standard deviation is concerned, while the above graph (Figure

6) shows a convergence towards somewhat stable values, the

much larger simulation (Figure 8) does not. This is because in

the larger scenario agents can still assimilate far away tasks.

HANNO HILDMANN, MIQUEL MARTIN: ADAPTIVE SCHEDULING IN DYNAMIC ENVIRONMENTS 1335



 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500  600  700  800  900  1000

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

lo
a
d
)

Time (iterations)

run 1

run 2

run 3

run 4

Fig. 8. The standard deviation (y-axis) from the average load for 4 runs
(x-axis: iterations) of a very large simulation (Scenario 2, with 1000 agents)
starting with 10,000 tasks and increasing to 14,000 tasks. Setting: see Fig. 7
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Fig. 7. The average load (y-axis) of the agents for 4 runs (x-axis: iterations)
of a very large simulation (Scenario 2, with 1000 agents) that started with
10,000 tasks and over the course of 1000 iterations increased to 14,000 tasks.
Setting: capacity = 400, visibility = 40, map = 100x100. Cf. also Fig. 8

C. Restrictions to the approach

The proposed method relies on a number of agents working

in proximity, such that the schedule assigned to a specific agent

can be partly absorbed into another agent’s schedule. It is

expected that there is a critical mass which is required in order

for the method to outperform other approaches. We tested the

approach against small numbers (as few as 20) of agents and

it performed well; however the critical mass depends on the

size of the map, the visibility and the capacity of the agents.

Furthermore, there is an upper limit to the degree of change

over time in which the method can be expected to perform

well. If the changes are too rapid or dramatic, recalculating

the entire solution will be the better approach. This is due

to the iterative nature of the approach, which will quickly

adapt to changes and follow moving centers of gravity in the

problem space. If such centers appear and disappear seemingly

at random it becomes impossible to follow them, and thus the

method loses its edge over other approaches.

D. Closing remarks

The combination of probabilistic decision making as well

as the balancing and maximizing paradigm results in the

minimization of agents to which a subset of the tasks (i.e.

tasks from some region of the problem space) is scheduled to.

This means that under the right conditions some agent might

have very few or no tasks scheduled, which enables them to

take on tasks from other regions of the problem space. This is

expected to result in the ability to cross over large distances

and effectively to reallocate agents within a problem space.

Local optimization techniques normally consider only local

alterations to a solution and recalculating the complete set of

schedules for the whole problem space may be expensive in

terms of computational effort.
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