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Abstract—The paper presents creating web system models.
The aim of the work was to develop models of the distributed
Internet system that allow the performance evaluation. From
many possible methods we have selected Queueing Petri Nets
consisted of two classes of formal models (Queuing Nets and
Petri Nets). In the paper web systems are modeled by Queueing
Petri Nets tool. The paper includes the selected results of models
simulation. Our approach predicts the performance of distributed
Internet system.

I. INTRODUCTION

T
HE Internet system consists of a set of distributed nodes

to provide up-to-date data in set time frames. Groups of

nodes (clusters) are organized in layers conducting predefined

services (e.g. WWW service).

Nowadays, Internet systems modeling and design develop in

two ways. On the one hand, formal models which can be used

to analyze performance parameters are proposed [1], [2], [3],

[4], [5]. To describe Internet systems such formal methods like

Queuing Nets and Petri Nets are used. Sometimes elements

of the control theory are used to manage the movement of

packages on web servers [6]. Experiments are the second way

[7]. Applying experiments and models greatly influences the

validity of the systems being developed. The convergence of

simulation results with the real systems results confirms cor-

rectness of the modeling methods. The following mathematical

models are used to describe Internet systems:

• analytical models: obtained on the basis of systems

observation for the queuing systems with significant

assumptions regarding the requests arrival and service

process,

• simulation models of qualitative and quantitative analysis:

Time Coloured Petri Nets, Queuing Petri Nets [8] or

generalized queuing models based on the queuing theory

(e.g. CSIM software libraries [9], [10]).

Our earlier works [9], [11] are based on Queuing Nets (QN)

and Timed Coloured Petri Nets (TCPN). A distributed Internet

system model, initially described in compliance with Queuing

Net rules, is mapped onto Timed Coloured Petri Net structure

by means of queueing system templates. We have used two

types of formal models that have been exploited in the

industry. In our elaboration we created separate system models

using Queuing Nets and Petri Nets, which allow the perfor-

mance analysis. We used experiments to check real distributed

Fig. 1. Distributed Internet system architecture

Internet system parameters. We verified some constructed

models with the real experimental environment as a benchmark

(Performance Engineering analysis). The validation results

show that the model is able to predict the performance with

error about 20[%] [9].

Distributed Internet systems analysis based on Quality

of Service metrics: performance (utilization, throughput, re-

sponse time), availability, reliability. In these studies the per-

formance is measured in terms of the mean response time of

business transactions.

The remaining work is organized as follows. Section II

presents distributed Internet system architecture. In the next

section, we describe used formal methods. Section IV presents

models and simulation analysis. The final section contains

concluding remarks.

II. DISTRIBUTED INTERNET SYSTEM ARCHITECTURE

Distributed Internet system architecture is made up of

several layers. In our approach the presented architecture has

been simplified to two layers (Fig. 1) based on [8] results:

• Front-end layer is based on the presentation and process-

ing mechanisms.

• Back-end layer contains one or - in the case of replication

[9] - several databases. This layer keeps the system data.

Architecture composed of these layers is used for e-business

systems. The presented double-layer system architecture real-

izes Internet system functions. Access to the system is realized

through transactions. Proposed in the paper our approach

may be treated as an extension and continuation of solutions

presented in [9].

In the paper we consider one class of Internet systems.

In these systems a started transaction may be cancelled as

a result of a system offer change. Not all transactions will

be successfully finished. We shall consider cases in which

the number of requests per second is hundreds or thousands.
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Such a situation may cause the rejection of a large number of

requests, due to timeliness loss. Therefore, partial processing

of unrealized requests, also increases the response time for

requests processed correctly. Transactions realization related

to the system offer must take into account the results of

previous transactions associated with this offer. Such systems

are known as Interactive Internet Systems with Dynamically

Changing Offers [9]. The presented systems class is interesting

from the practical point of view. A stock exchange system (e-

trading), where transactions are carried out on-line, could be

their representative. The study considers the class of interactive

Internet systems, for which the rate of offer change is equal

to clients’ time of interaction with the system. It is assumed

that the offers are submitted by a seller or a broker. The

offer change may cause that a transaction started earlier, is

interrupted and unfinished. It is also assumed that transactions

are realized immediately and they apply a common set of

resources (such as sale of goods). It is assumed that the

buyer can buy a collection of shares in a single transaction.

The following features distinguish the described systems from

others:

• short response time required - a necessity to transfer

results to a client in a short time,

• sequence processing - a large part of transactions requires

sequential processing,

• peak of intensity processing - processing a large number

of client requests at the same time.

The Internet systems have different response time require-

ments. The response time for different Internet system types

divided into three main groups. The major group, from the

viewpoint of our study, is a group of systems, for which

the required response time is the shortest. On-line auctions,

sports betting, on-line ticketing and e-trading are distributed

Internet system examples [9]. Within the Internet system

classes we can distinguish a class for which the service is

heavily dependent on the offers’ time variability.

The characteristic feature of many Internet systems is a large

number of customers using the Internet services at the same

time. In the case of the described systems class, customers are

often focused on one event related to the same system offer

(the same database resources). Based on these futures we used

e-trading system as a benchmark with two-layered architecture

(cluster in front-end layer and one database instance in back-

end layer).

III. MATHEMATICAL MODELS

In our solution we propose a very popular formal method -

Queueing Petri Net (QPN). This method is based on Queueing

Nets and Petri Nets.

A. Queuing Theory

Queuing Theory deals with modeling and optimizing dif-

ferent types of service units. Queueing Net usually consists

of a set of connected queuing systems. The various queue

systems represent computer components. Queueing Nets are

very popular for the quantitative analysis. To analyze any

queue system it is necessary to determine:

• arrival process,

• service distribution,

• service discipline,

• scheduling strategies.

B. Petri Nets

Petri Nets are used to specify and analyze the concurrency

in systems. The system dynamics is described by the rules

of tokens flow. The net scheme can be subjected to a formal

analysis in order to carry out a qualitative analysis, based on

determining its logical validity. Petri Nets are referred to as

the connection between engineering description and theoretical

approach. Petri Nets are well-known models used to describe

and analyze the service units. Petri Net cannot be used for a

quantitative analysis due to lack of time aspects. Some Petri

Nets, such as Stochastic Petri Nets or Time Coloured Petri

Nets, try to meet the requirements of quantitative analysis.

The studies focus on incoming load measuring, e.g. measure

of the response time or presentation of an overall modeling

plan.

C. Queueing Petri Nets

In our solution we propose Queueing Petri Net formalism

[12]. There is a very popular formal method of functional

and performance modeling (performance analysis). These nets

provide sufficient power to express modeling and analyzing of

complex on-line systems. The choice of Queueing Petri Net

was caused by a possibility of obtaining the different character

information. The main idea of Queueing Petri Net is to add

queueing and timing aspects to the net places.

Queuing Nets - quantitative analysis - have a queue and

scheduling discipline and are suitable for modeling compe-

tition of equipment. Petri Nets - qualitative analysis - have

tokens representing the tasks and are suitable for modeling

software. Queueing Petri Nets have the advantages of Queuing

Nets (e.g., evaluation of the system performance, the network

efficiency) and Petri Nets (e.g., logical assessment of the

system correctness).

Queueing Petri Net consists of queueing places (resource

or state) which contain two components: a queue and a

depository for tokens that completed their service at a queue.

Input transitions are fired and then tokens are inserted into a

queueing place according to the queue’s scheduling strategy.

Tokens are entered into the queueing place in the same way as

in other Petri nets. After service, the tokens are not available

for output transactions. They are immediately moved to a

depository, where they become available for output transitions.

Queueing places can have variable scheduling strategies and

service distributions or impose a scheduling discipline on

arrival tokens without a delay. [8]

The response time for analysis was chosen from many

Performance Engineering parameters. The response time is a

sum of residences and queues time and service demand.

770 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



TABLE I
PARAMETERS OF EXPERIMENTAL ENVIRONMENT

Parameter Value

Software
Application server threads pool per
node

30

Database server connections pool
per node

40

Client workload
Number of requests per second 5-20
Number of clients 220
Experiment time [s] 300

IV. PERFORMACE ANALYSIS

Queueing Petri Net models are used to predict the dis-

tributed Internet system performance.

A. Experiments

First we present the results of our experimental analysis.

The goal is to check the service demand parameters for front-

end and back-end nodes.

Deployment details are as follows: Gbit LAN network

and three front-end nodes and one back-end node. Software

environment is based on Linux and consists of: workload gen-

erator, load balancer (Apache Tomcat Connector), application

server (GlassFish) and database server (Oracle). All important

configuration parameters were described in the table (Table I).

Modern distributed Internet systems are usually built on

middleware platforms such as J2EE. We use DayTrader perfor-

mance benchmark which is available as an open source appli-

cation. Overall, the DayTrader application is primarily used for

performance research on a wide range of software components

and platforms. Experimental system helps to identify config-

uration parameters. DayTrader is a suite of workloads that

allows performance analysis of J2EE application server. Day-

Trader is a benchmark application built around the paradigm

of an online stock trading system. It drives a trade scenario

that allows to monitor the stock portfolio, inquire about stock

quotes, buy or sell stock. The load generator is implemented

using multi-threaded Java application connected to DayTrader

benchmark. By client business transactions we mean the stock-

broker operations: Buy Quote, Sell Quote, Update Profile,

Show Quote, Get Home, Get Portfolio, Show Account and

Login/Logout (Table II). Each business transaction emulates a

specyfic class of client session.

Experiments (one node in front-end and one node in back-

end layer) have shown that the mean number of requests per

second (DayTrader was able to complete) for front-end layer

is about 1300. The figure (Fig. 2) shows among others the

mean number of requests per second (DayTrader was able to

complete) for front-end layer (maximum 1309 requests per

second for 220 clients and 15 requests per second workload).

Respectively the mean measured number of requests per

second for back-end layer is about 7500 requests per second.

Starting the server cluster in the front-end layer requires

a mechanism that would allow an equable distribution of

load. It must also be a gateway that transfers requests and

responses between a user and an application. In such a
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Fig. 2. Number of requests vs load (number of requests and mean number
of requests per second)
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Fig. 3. Number of requests vs number of nodes (number of requests and
mean number of requests per second)

scenario, only a gateway is visible from the outside and -

on the basis of the request - it determines which part of

the system (application server), and how, will be used to

perform the request. Built-in load balancer is not available

in the free version of the GlassFish server. Apache Tomcat

Connector (mod_jk) has been used as the load balancer.

Exampled client Uniform Resource Identifier query (Table II):

http://[DayTraderApp]/daytrader/app?action=query.

Also cluster (three nodes in front-end and one node in

back-end layer) experiments (Fig. 3) have shown that the

mean number of requests per second (DayTrader was able to

complete) for the front-end layer is about 2400 (for three front-

end nodes, 220 clients and 15 requests per second workload).

The mean measured number of requests per second for the

back-end layer is the same as earlier.

One of the most important requests - Buy Quote (Requests

class, which has a bigger impact on the behavior of the system

(Fig. 4)) is used in simulations, because we have one class of

requests in simulations. Simulations are only an approximation

of reality. Buy Quote is only a few percent of all requests

(Table III), because the experimental system is based on the

real system workload.

B. Models

Multiple front-end nodes and one back-end node are the

main configuration scenario. The Queueing Petri Net models

(Fig. 5) are used to predict the system performance. We use the

Queueing Petri net Modeling Environment [8] tool. Queueing
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TABLE II
VALUE OF ACTION PARAMETER IN UNIFORM RESOURCE IDENTIFIER ADDRESS

Query Transaction Parameters Description

buy (GET) Buy Quote symbol – stocks symbols; quantity – number Buy and return the number of specified stocks
sell (GET) Sell Quote holdingId – stocks ID, which will be sold Sell indicated stocks

update_profile (GET) Update Profile password and cpassword – new password;
fullname – name and surname; address – ad-
dress; creditcard – credit card number; email
– email address

Update the logged-in user profile

quotes (GET) Show Quotes symbols – comma-separated stocks to display Display information about the required stocks
home (GET) Get Home – Generates a logged-in user’s homepage

portfolio (GET) Get Portfolio – Display a list of stocks held by the user
account (GET) Show Account – Display the logged-in user profile
login (POST) – uuid – user ID; password – user password Log the user in the system (session is created on the

server side and its identifier returned in cookie)
logout (GET) – – Close the user session

TABLE III
PERCENTAGE OF QUERIES

Query [%]

buy 5
sell 5

update_profile 4
quotes 40
home 20

portfolio 12
account 10

login/logout 4
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Fig. 4. Exampled real system response time for 15 requests per second
workload (one node in front-end layer and one node in back-end layer)

Petri net Modeling Environment is an open-source tool for

stochastic modeling and analysis based on the Queueing Petri

Net modeling formalism was used in many works [13], [8], [2],

[3], [4]. Total response time (Eq. 1) is a sum of all individual

response times of queues and depositories in a simulation

model without the client queue response time (client think

time).

R = RQPN_PLACES(QUEUE)
+

RQPN_PLACES(DEPOSITORY )
+RPLACES(QUEUE)

+

RQPN_CLIENTS_PLACE(DEPOSITORY )

(1)

Servers of the front-end layer are modeled using the Pro-

cessor Sharing (PS) queuing systems (FE_CPU places). The

back-end server is modeled by First In First Out (FIFO) queue

(BE_I/O place). PLACES (Eq. 1) represent the places (FE

and BE) used to stop incoming requests when they await

application server threads and database server connections

respectively. Clients think time is modeled by Infinite Server

(IS) scheduling strategy (CLIENTS place). Application

server threads and database server connections are modeled

respectively by THREADS and CONNECTIONS places

(Fig. 5).

Software and client workload parameters are the same

as in the experiment environment. Service in all queueing

places is modeled by an exponential distribution (λ param-

eter). Service demands in layers are based on experimen-

tal results in Sect. IV-A: dFE_CPU = 0, 714 [ms] and

dBE_I/O = 0, 133 [ms]. Initial marking for places corresponds

to the input parameters of the cluster experiment: number

of clients (number of tokens in CLIENTS place), applica-

tion server threads pool (number of tokens in THREADS
place), database server connections pool (number of tokens in

CONNECTIONS place). In these models we have three

types1 of tokens: requests, application server threads and

connections to the database server. The process of requests

arrival to the system is modeled by the exponential distribution

with the λ parameter (client think time) corresponding to the

number of client requests per second.

C. Simulation Results

Many simulations were performed for various input param-

eters (Table IV).

The number of clients was increasing in accordance with the

values presented in the table (Table IV). We used scenarios

in witch we have a single requests class, the Buy Quote

transactions. The first scenario involves a certain number of

clients, a variable number of nodes and a variable number

of requests per second for the entire system. The second

scenario involves the response time of the entire system (Sys),

the response time of the front-end layer and back-end layer

(FE+BE) and the response time of the back-end layer (BE).

In both scenarios the number of application server nodes is

1, 3, 6 and 9. The distributed Internet system model is used

to predict the performance of the system for the scenarios

mentioned above.

1A color specifying the types of tokens that can be resided in the place.
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Fig. 5. Model of Internet system with front-end cluster (example for 9 nodes)

TABLE IV
PARAMETERS OF SIMULATIONS (ONE CLASS OF REQUESTS CORRESPONDS

WITH BUY QUOTE REQUESTS)

Parameter Value

QPME
FE queuea FE_CPUn
BE queue BE_I/O

Softwareb
THREADS place 30c

CONNECTIONS place 40d

Client workload
λ 0,015e

CLIENT place 30; 120; 210; 300; 390; 480
Simulation time [s] 300

a n - number of front-end nodes
b Initial marking per node
c 30 threads for one front-end node, 60 threads for two front-end nodes, etc.
d 40 connections for one front-end node, 80 connections for two front-end
nodes, etc.
e Client think time equals 66,67 [ms]

The figure (Fig. 6) reports the analysis results for all sce-

narios. In all cases, the model predictions are understandable.

We investigate the behavior of the system as the workload

intensively increases. As a result, the response time of trans-

actions is improved for cases with a higher number of front-

end nodes. As we can see increasing the number of nodes

while simultaneously increasing number of application server

threads and connections to the database is a good solution.

The overall response time decreases while the number of

nodes increases (the change of requests per second (15, 30, 45,

60)). The response time of one front-end node architecture for

all cases is the biggest. The response time difference between

the 6 and 9 nodes is much smaller than that between 1 and 3

nodes in the front-end layer. When more nodes in the front-end

layer are added the analysis of their impact on other elements

of the system should be preluded.

In the second scenario the changes of the number of requests

per second (1 and 3 nodes) do not have an impact on the

back-end layer response time (BE). In the next cases with
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Fig. 6. Mean response time simulation results (system, fron-end and back-
end layer, back-end layer) for different number of nodes (1, 3, 6 and 9),
requests per second (15, 30, 45 and 60) and clients (30, 120, 210, 300, 390
and 480)

a higher number of nodes in the front-end layer (6 and 9)

we can observe an increasing response time for the back-

end layer. It can be seen already at 30 and more requests

per second (Fig. 7). Overall system response time increases

with increasing workload, even with a larger number of nodes

(Fig. 7).

V. CONCLUSIONS

We can not always add new devices to improve perfor-

mance, because the initial cost and maintenance will become

too large. Also not every system can or should be virtualized or

put in the cloud computing. Because the overall system capac-

ity is unknown we propose the combination of benchmarking

and modeling solution. Our earlier works propose Performance

Engineering frameworks to evaluate performance during the

different phases of their life cycle. Our present approach

predicts performance for the distributed Internet system. The

benchmark used in our work has got realistic workload.
We analyze the response time characteristics of different

configurations. We develop a framework that helps to identify

TOMASZ RAK: PERFORMANCE ANALYSIS OF DISTRIBUTED INTERNET SYSTEM MODELS USING QPN SIMULATION 773
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performance requirements. The study demonstrates the mod-

eling power and shows how the discussed models can be used

to represent the system behavior. We used Queueing Petri Net

models to predict the system performance for several different

workloads and configuration scenarios. We used simulations

because available analysis techniques are useless. It was not

possible to predict the system performance under a large

workload and a large number of nodes.
A number of different models of realistic size and complex-

ity were considered. The benchmark was run for 300 seconds

per test and each test was repeated 10 times to improve the

reliability of results. The QPN model was simulated using the

method of non-overlapping batch means method to estimate

steady state mean token residence times. The average predicted

response times are within the 95[%] confidence interval of the

measured average response times. For all the simulations the

confidence intervals were sufficiently small for the results to

be reliable. Our analysis showed that the data reported by

SimQPN is very stable.

The convergence of simulation results with the real systems

results confirms the correctness of the modeling methods and

their theoretical values. The validation results show the main

advantage of this model (Table V). The relative error is lower

than 15[%]. QPN model is a better than QN or TCPN models.

TABLE V
MODELING RESPONSE TIME ERROR FOR SCENARIO WITH 300 CLIENTS

(EXAMPLE FOR 60 [REQUESTS/S])

Number of nodes Model [ms] Measured [ms] Error [%]

1 198,48 229,65 13,5
3 99,47 114,96 13,4

Energy consumption in information and communications

technology is growing annually by 4[%] despite efficiency

gains in technology. It is therefore important to study ways

of reducing energy consumption [14]. Power consumption

depends on the load and on the number of running nodes

in the cluster-based Web system. We shall study the compro-

mise between a perceived average response time and energy

consumption (practical value).
The future research will focus on verification of the system

behavior in the case of a higher number of requests classes

used in simulations. We shall provide a larger-scale analysis

using hundreds of nodes.
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