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Abstract—A classical, but even nowadays challenging research
topic in declarative programming, consists in the design of
powerful notions of “equality”, as occurs with the flexible
(fuzzy) and efficient (lazy) model that we have recently proposed
for hybrid declarative languages amalgamating functional-fuzzy-
logic features. The crucial idea is that, by extending at a very
low cost the notion of “strict equality” typically used in lazy
functional (HASKELL) and functional-logic (CURRY) languages,
and by relaxing it to the more flexible one of similarity-based
equality used in modern fuzzy-logic programming languages
(such as LIKELOG and BOUSI∼PROLOG), similarity relations can
be successfully treated while mathematical functions are lazily
evaluated at execution time. Now, we are concerned with the so-
called Multi-Adjoint Logic Programming approach, MALP in brief,
which can be seen as an enrichment of PROLOG based on weighted
rules with a wide range of fuzzy connectives. In this work, we
revisit our initial notion of SSE (Similarity-based Strict Equality)
in order to re-model it at a very high abstraction level by means of
a simple set of MALP rules. The resulting technique (which can
be tested on-line in dectau.uclm.es/sse) not only simulates,
but also surpass in our target framework, the effects obtained
in other fuzzy logic languages based on similarity relations
(with much more complex/reinforced unification algorithms in
the core of their procedural principles), even when the current
operational semantics of MALP relies on the simpler, purely
syntactic unification method of PROLOG.

Index Terms—Equality, Similarity, Fuzzy Logic Programming

I. INTRODUCTION

T
HANKS to the high expressive power and the rule-based

nature of declarative languages, their influences are grow-

ing in the design of intelligent systems and techniques related

with artificial/computational intelligence, expert systems, soft-

computing and so on. In particular, Logic Programming (LP)

[1] has been widely used for problem solving and knowledge

representation in the past. Nevertheless, traditional logic pro-

gramming languages are not able to treat with partial truth.

Fuzzy Logic Programming is an interesting and still growing

research area that agglutinates the efforts for introducing Fuzzy

Logic into Logic Programming, in order to provide these

traditional languages with techniques or constructs (coming up

from the mathematical background of fuzzy logic [2]) to deal
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with uncertainty in a natural way. In the last two decades, sev-

eral fuzzy logic programming languages have been developed

where, in essence, the classical SLD resolution principle of

PROLOG [3] (based on syntactic unification) has been replaced

by a fuzzy variant of itself, with the aim of dealing with

partial truth and reasoning with uncertainty in a natural way.

Most of these languages implement (extended versions of) the

resolution principle introduced by Lee [4], such as Elf-Prolog

[5], Fril [6], F-Prolog [7] and MALP [8]. There exists also a

family of fuzzy languages based on sophisticated unification

methods [9] to cope with similarity/proximity relations, as

occurs with LIKELOG [10], SQLP [11] and BOUSI∼PROLOG

[12], [13] (some related approaches based on probabilistic

logic programming can be found in [14], [15]).
On the other hand, during the last three decades of inves-

tigation in the field of the integration of declarative program-

ming paradigms (functional, fuzzy and logic), the scientific

community of the area has produced important and advanced

contributions related to both theoretical and practical aspects.

However, whereas the functional and logic programming styles

have been successfully integrated in the past and, as said

before, more recently fuzzy logic has also been introduced

into the logic programming paradigm, there is not precedent

for a total integration of all these frameworks, apart from our

preliminary approach presented in [16].
In [17], we gave a new step in this last sense, by proposing

a method combining different equality models traditionally

supported by each one of these declarative paradigms. It is

important to take into account that an appropriate notion

of equality has a crucial importance when designing the

repertoire of expressive resources for a particular declarative

language. In general, when we use the term “equality” in

declarative programming, there are several different meanings

depending of the concrete paradigm being considered. A

representative (not exhaustive) list of some cases could be:

• Syntactic equality. It is the simplest equality model used

in the context of classical pure logic programming (as

occurs with PROLOG, but also in the fuzzy logic lan-

guage MALP) which is simply concerned with syntactic

identity. In this sense, two element are considered “equal”

if they have exactly the same syntax. For instance, f(a)
is equal to f(a) but not to g(b).
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• Strict equality. When considering lazy languages,

both pure functional (HASKELL [18]) and integrated

functional-logic (CURRY [19]) languages, this new equal-

ity notion is the only applicable one in a lazy setting,

mainly due to the possible presence of non terminating

functions. For instance, if the evaluation of f(a) does

not finish then we can not say that f(a) is strictly equal

to itself. And, on the contrary, two terms with different

syntax, such as g(b) and h(c), could be proved equal if

they produce the same final value (for example 0) after

being evaluated by rewriting or narrowing.

• Similarity-based equality. As we will see in Section II,

this model emerges as a direct consequence of several

attempts for fuzzifying the original notion of syntac-

tic equality, which are appreciable in the design of

fuzzy logic languages such as LIKELOG, SQLP and

BOUSI∼PROLOG. In this case, the idea is to allow the

presence of a set of the so-called “similarity/proximity

equations” between symbols of a given program. So, if

we have a program with the equations eq(a, b) = 0.5 and

eq(f, g) = 0.3 then, it could be proved that expressions

f(a) and g(b) are similar with a concrete truth degree.

Here, we recall from [17] our original definition of

SSE (Similarity-based Strict Equality), initially modeled by

means of a set of rewriting rules and which fuses the last two

equality versions above. The crucial idea of our method is

to simply add to a given functional-logic program (written

in CURRY, for instance) a set of rewriting rules defining

the new symbol ≈:≈ which captures similarities and thus,

is implemented at a very low cost by simply performing a

syntactic pre-process on programs.

The main goal of this paper is to adapt such definition to the

MALP framework. In Section III we will see that SSE admits

a much more natural formulation by means of a set of MALP

rules instead of using rewriting rules. Moreover, although

this fuzzy programming style is based on pure syntactic

unification, our method introduces a similarity-based equality

model without altering its core, which is useful not only for

testing if two ground data terms are comparable (as occurs too

with more complex languages -LIKELOG, BOUSI∼PROLOG-

with extended unification algorithms), but also for producing

complete lists of similar terms (not achievable by LIKELOG

and BOUSI∼PROLOG). Although the technique is recasted

from [20], the main contribution of the present paper consists

in proving some interesting formal properties for it. Moreover,

before concluding in Section V, we describe in Section IV

some implementation details regarding the two main processes

needed for effectively embedding SSE into MALP: after

performing the reflexive-symmetric-transitive closure of a set

of similarity equations for obtaining a similarity relation, then

it is easily translated into a set of MALP rules modeling SSE.

II. SIMILARITY RELATIONS AND FUZZY LOGIC

PROGRAMMING

As we have just said, although in principle it is not the

case of MALP (whose operational semantics uses syntac-

tic unification on its core), some fuzzy languages such as

LIKELOG, SQLP and BOUSI∼PROLOG are able to treat with

the mathematical notions of similarity (and proximity), by

incorporating a flexible variant of unification -beyond the

simpler case of PROLOG- on their procedural principles.

A similarity relation is a mathematical notion able to

manipulate alternative instances of a given entity that can

be considered equals with concrete truth degrees. Similarity

relations are closely related with equivalence relations (and,

then, to closure operators) [21]. Let us recall that a T-norm

∧ in [0, 1] is a binary operation ∧ : [0, 1] × [0, 1] → [0, 1]
associative, commutative, non-decreasing in both the variables,

and such that x ∧ 1 = 1 ∧ x = x for any x ∈ [0, 1]. Formally,

a similarity relation ℜ on a domain U is a fuzzy subset

ℜ : U × U → [0, 1] of U × U such that, ∀x, y, z ∈ U , the

following properties hold: reflexivity ℜ(x, x) = 1, symmetry

ℜ(x, y) = ℜ(y, x) and transitivity ℜ(x, z) ≥ ℜ(x, y)∧ℜ(y, z).
It is important to note that this last property is not required

when considering proximity relations. In order to simplify our

developments, as in [9], we assume that x∧y is the minimum

between the two elements x, y ∈ [0, 1].
A very simple, but effective way, to introduce similarity

relations into pure logic programming, generating one of the

most promising ways for the integrated paradigm of fuzzy

logic programming, consists of modeling them by a set of the

so-called similarity equations of the form eq(s1, s2) = α, with

the intended meaning that s1 and s2 are predicate/function

symbols of the same arity with a similarity degree α. As

in [16], we assume here that the intended similarity relation

ℜ associated to a given program P , is induced from the

(safe) set of similarity equations of P , verifying that the

similarity degree of two symbols s1 and s2 is 1 if s1 = s2 or,

otherwise, it is recursively defined as the transitive closure of

the similarity equations.

This approach is followed, for instance, in the fuzzy logic

languages LIKELOG [10] and BOUSI∼PROLOG [12], where

a set of usual PROLOG clauses are accompanied by a set

of similarity equations playing an important role at (fuzzy)

unification time. Instead of classical syntactic unification, we

speak now about weak unification [12]. Of course, the set of

similarity equations is assumed to be safe in the sense that each

equation connects two symbols of the same arity and nature

(both predicates or both functions) and the properties of the

definition of similarity relation are not violated, as occurs, for

instance, with the wrong set {eq(a, b) = 0.5, eq(b, a) = 0.9}
which, in particular, it does not satisfy the symmetric property.

Example 2.1: Following [10], if we consider a database

of books containing the fact “book(horror,drakula)”,

then goal “?-book(adventures,Title)” should

not have classical solution in the case that there

were no rule in the database unifying with atom

“book(adventures,Title)”. Nevertheless, it seems

reasonable that the user considers the words “adventures”

and “horror” to be similar with a certain degree. More

precisely, if the user introduces a similarity equation

like “eq(adventures, horror) = 0.9” into a

120 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



LIKELOG or BOUSI∼PROLOG interpreter, the system should

successfully respond with a computed answer incorporating

the corresponding truth degree “0.9” (i.e, something like the

90 % of credibility) to substitution “Title/ drakula”, as

obviously expected.

III. SSE FOR/WITH MULTI-ADJOINT LOGIC

PROGRAMMING

In this section we firstly summarize the main features of

the MALP language1, next we introduce the “Fuzzy LOgic

Programming Environment for Research”, FLOPER in

brief, developed in our research group (see [26], [27] and

visit http://dectau.uclm.es/floper/) and finally,

we illustrate and formally prove the properties of our new

MALP-based model of SSE according to Figure 2.

A. MALP

We work with a first order language containing

variables, function symbols, predicate symbols, constants,

quantifiers (∀ and ∃), and several arbitrary connectives

such as implications (←1,←2, . . . ,←m), conjunctions

(&1,&2, . . . , &k), disjunctions (∨1,∨2, . . . ,∨l), and

general hybrid operators (“aggregators” @1,@2, . . . ,@n),

used for combining/propagating truth values through the

rules, and thus increasing the language expressiveness.

Additionally, our language contains the values of a

multi-adjoint lattice L = 〈L,�,←1,&1, . . . ,←n,&n〉,
equipped with a collection of adjoint pairs 〈←i,&i〉 (where

each &i is a conjunctor intended to the evaluation of

modus ponens) verifying the so-called adjoint property:

∀x, y, z ∈ L, x � (y ←i z) if and only if (x &i z) � y.

The set of truth values L may be the carrier of any complete

bounded lattice, as for instance occurs with the set of

real numbers in the interval [0, 1] with their corresponding

ordering ≤. A rule is a formula [A ←i B with α], where

A is an atomic formula (usually called the head), B (which

is called the body) is a formula built from atomic formulas

B1, . . . , Bn (n ≥ 0), truth values of L and conjunctions,

disjunctions and aggregators, and finally α ∈ L is the

“weight” or truth degree of the rule. A rule with empty body,

written [A with α], is called fact. Consider, for instance,

the following program P composed by three rules with

associated multi-adjoint lattice 〈[0, 1],≤,←P,&P,←G,&G〉
(where labels P and G mean for Product logic and Gödel

intuitionistic logic, respectively, with the following

connective definitions: “←P (x, y) = min(1, x/y)”,

“&P(x, y) = x ∗ y”, “←G (x, y) = 1 if y ≤ x or x
otherwise” and “&G(x, y) = min(x, y)”):

R1 : p(X) ←P q(X,Y ) &G r(Y ) with 0.8
R2 : q(a, Y ) with 0.9
R3 : r(b) with 0.7

1As said before, this fuzzy language uses a syntax near to PROLOG and
enjoys high level of flexibility, for which we give some theoretical/practical
reinforcements in our precedent works [22], [23], [24], [25].

In order to describe the procedural semantics of the multi–

adjoint logic language, in the following we denote by C[A] a

formula where A is a sub-expression (usually an atom) which

occurs in the –possibly empty– one hole context C[] whereas

C[A/A′] means the replacement of A by A′ in context C[],
and mgu(E) is the most general unifier of an equation set

E. The pair 〈Q;σ〉 composed by a goal and a substitution

is called a state. So, given a program P , an admissible

computation is formalized as a state transition system, whose

transition relation
AS
 is the smallest relation satisfying the

following admissible rules:

1) 〈Q[A];σ〉
AS
 〈(Q[A/v&iB])θ;σθ〉 if A is the selected

atom in goal Q, [A′←iB with v] ∈ P , where B is not empty,

and θ = mgu({A′ = A}).

2) 〈Q[A];σ〉
AS
 〈(Q[A/v])θ;σθ〉 if [A′ with v] ∈ P and

θ = mgu({A′ = A}).

The following derivation illustrates our definition (note that

the exact program rule used -after being renamed- in the

corresponding step is annotated as a super–index of the
AS
 

symbol, whereas exploited atoms appear underlined and id
represents the empty substitution):

〈p(X); id〉
AS
 

R1

〈0.8 &P (q(X1, Y1) &G r(Y1)); {X/X1}〉
AS
 

R2

〈0.8 &P (0.9 &G r(Y2)); {X/a,X1/a, Y1/Y2}〉
AS
 

R3

〈0.8 &P (0.9 &G 0.7); {X/a,X1/a, Y1/b, Y2/b}〉

The final formula without atoms can be directly interpreted

in lattice L to obtain the desired fuzzy computed answer

(or f.c.a., in brief), where the substitution only contains

bindings associated to variables of the initial goal. So, since

0.8 &P (0.9 &G 0.7) = 0.8∗min(0.9, 0.7) = 0.56, in our case

the fuzzy computed answer is 〈0.56, {X/a}〉 indicating that

goal p(X) is true at 56 % when X is a.

B. FLOPER

As detailed in [28], [26], our parser has been implemented

by using the classical DCG’s (Definite Clause Grammars)

resource of the PROLOG language, since it is a convenient

notation for expressing grammar rules. Once the application is

loaded inside a PROLOG interpreter (such as Sicstus or SWI),

it shows a menu which includes options for loading/compiling,

parsing, listing and saving fuzzy programs, as well as for ex-

ecuting/debugging goals and managing multi-adjoint lattices.

All these actions are based in the compilation of the fuzzy

code into standard PROLOG code. The key point is to extend

each atom with an extra argument, called truth variable of the

form “_TVi”, which is intended to contain the truth degree

obtained after the subsequent evaluation of the atom. For

instance, the first rule in our target program is translated into
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⊤

α β

⊥

member(bottom). member(alpha).

member(beta). member(top).

bot(bottom). top(top).

leq(bottom,X). leq(alpha,alpha).

leq(alpha,top). leq(beta,beta).

leq(beta,top). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom) :- !.

pri_inf(alpha,X,alpha) :- leq(alpha,X),!.

pri_inf(beta,X,beta) :- leq(beta,X),!.

pri_inf(top,X,X) :- !.

pri_inf(X,Y,bottom).

Figure 1. A finite, partially ordered multi-adjoint lattice modeled in PROLOG

sse(c, d) with ℜ(c, d)
sse(c(x1, .., xn), d(y1, .., yn)) ←G sse(x1, y1) &G . . .&G sse(xn, yn) with ℜ(c, d)

Figure 2. MALP Rules defining “Similarity-based Strict Equality”

the clause:

p(X,_TV0) :- q(X,Y,_TV1), r(Y,_TV2),

and_godel(_TV1,_TV2,_TV3),

and_prod(0.8,_TV3, _TV0).
Moreover, the remaining rules in our fuzzy program, becomes

the pure PROLOG facts “q(a,Y,0.9)” and “r(b,0.7)”,

whereas the corresponding lattice is expressed by these

clauses (the meaning of the mandatory predicates member,

top, bot and leq is obvious):

member(X) :- number(X),0=<X,X=<1.

bot(0). top(1).

leq(X,Y) :- X=<Y.

and_godel(X,Y,Z):- pri_min(X,Y,Z).

pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).

and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

pri_prod(X,Y,Z) :- Z is X * Y

Finally, a fuzzy goal like “p(X)”, is obviously translated

into the pure PROLOG goal: “p(X, Truth_degree)”

(note that the last truth degree variable is not anonymous

now) for which, after choosing option “run”, the PRO-

LOG interpreter returns the desired fuzzy computed answer

[Truth_degree = 0.56, X = a]. Note that all internal compu-

tations (including compiling and executing) are pure PROLOG

derivations, whereas inputs (fuzzy programs and goals) and

outputs (fuzzy computed answers) have always a fuzzy taste,

thus producing the illusion on the final user of being working

with a purely fuzzy logic programming tool.
Moreover, it is also possible to select into the menu

of FLOPER , options “tree” and “depth”, which are

useful for tracing execution trees and fixing the maximum

length allowed for their branches (initially 3), respectively.

To finish this block, in Figure 1 we show the PROLOG

clauses modeling a lattice which will be used afterwards in

Section IV. Here, apart for dealing with a partially ordered

lattice, we use the conjunction of the Gödel logic described

in this non numeric case as: &G(x, y) , inf(x, y). From

http://dectau.uclm.es/floper/ it is possible can

download our last version of the FLOPER tool, which

incorporates a graphical interface as shown in Figures 3 and

4.

C. SSE, MALP and FLOPER

Now, we are ready to illustrate and prove the properties of

our MALP-based model of SSE which is defined according

to [20] in Figure 2, where we assume that both c and d are

constants (i.e., constructor symbols with arity 0) in the first

rule, or both are functions with the same arity n in the second

rule and then, ℜ(c, d) represents the similarity degree between

such pair of symbols with the same arity. In order to illustrate

our technique, assume that we plan to compare data terms built

with constants “mary” and “maria”, which have a similarity

degree of 80% and function symbols (with arity one) “brother”

and “sibling” which are similar at 90%. According to our
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MALP-based definition of SSE we generate a set of MALP

rules using the “min” operator (based on Gödel logic, as usual

in LIKELOG and BOUSI∼PROLOG) to propagate similarity

degrees. Instead, in the following MALP program loaded into

FLOPER we have used a version inspired on “product logic’

(in the following section we describe an application which

allows to select the desired conjunction operator or t-norm for

composing similarity degrees):

sse(maria,maria) with 1.

sse(mary,mary) with 1.

sse(mary,maria) with 0.8.

sse(maria,mary) with 0.8.

sse(sibling(X),sibling(Y)) <prod

sse(X,Y) with 1.

sse(brother(X),brother(Y)) <prod

sse(X,Y) with 1.

sse(sibling(X),brother(Y)) <prod

sse(X,Y) with 0.9.

sse(brother(X),sibling(Y)) <prod

sse(X,Y) with 0.9.

Now, for a goal like “sse(brother(mary),

sibling(maria))”, our technique tests that both

parameters are similar terms (with degree 0.9 ∗ 0.8 = 0.72)

in the same way than LIKELOG and BOUSI∼PROLOG.

Anyway, these last languages only would report just one

solution for goals “sse(brother(mary),X)” and

“sse(X,Y)” (the answers computed by LIKELOG and

BOUSI∼PROLOG for those queries would include the

bindings “{X/ brother(mary)}” and “{ X/ Y }”,

respectively, both ones with similarity degree 1), whereas our

system is able to provide the corresponding four answer for

the first query shown in Figure 3, as well as infinite solutions

for the second goal (some of them displayed in Figure 4),

including the following ones:

[Truth_degree=1,X=mary,Y=mary]

[Truth_degree=0.8,X=mary,Y=maria]

[Truth_degree=0.9, X=brother(maria),

Y=sibling(maria)]

[Truth_degree=0.72,X=brother(mary),

Y=sibling(maria)]

In order to formally prove the properties we have just illus-

trated, it is mandatory to introduce the following auxiliary

definition:

Definition 3.1 (Similar terms): Let t and t′ be two ground

terms, ℜ a similarity relation and L = 〈L,�,←,&〉 a multi-

adjoint lattice. We say that t and t′ are similar terms according

ℜ and & with similarity degree s ∈ L, if the evaluation

of function Φ(t, t′) returns s 6= ⊥, where function Φ is

recursively defined as follows:

Φ(t, t′) =











ℜ(t, t′), if t and t′ are constants

ℜ(c, c′)&Φ(t1, t
′
1
)& if t = c(t1, . . . , tn) and

. . .&Φ(tn, t
′
n) t′ = c′(t′

1
, . . . , t′n)

The following result reveals the ability of our technique for

testing similar terms.

Theorem 3.2: Let t and t′ be two ground terms, L = 〈L,�
,←,&〉 a multi-adjoint lattice, ℜ a similarity relation and Pℜ

sse

the set of MALP rules defining predicate sse w.r.t. ℜ. Then,

t and t′ are similar terms according ℜ and & with similarity

degree s ∈ L, iff 〈s, id〉 is a fuzzy computed answer for goal

sse(t, t′) in Pℜ
sse.

Proof: We prove this claim by structural induction on the

shape of t and t′.
• Base case. We assume here that t and t′ are similar

constants, and then, ℜ(t, t′) = s 6= ⊥ whereas rule [R :
sse(t, t′) with s] belongs to Pℜ

sse. Then, it is easy to see

that Φ(t, t′) = ℜ(t, t′) = s as well as to perform with rule R

the following admissible step 〈sse(t, t′), id〉
AS
 

R

〈s, id〉.
• Induction step. Now we have that t = c(t1, . . . , tn)

and t′ = c′(t′
1
, . . . , t′n). Assuming that ℜ(c, c′) = s0 6= ⊥

and Φ(ti, t
′
i) = si 6= ⊥, 1 ≤ i ≤ n, then Φ(t, t′) =

s0&s1& . . .&sn 6= ⊥. Moreover, since our technique gen-

erates the rule (which belongs to Pℜ
sse):

R : sse(c(x1, . . . , xn), c(x
′
1
, . . . , x′

n))←
sse(x1, x

′
1
)& . . .&sse(xn, x

′
n) with s0

and by the inductive hypothesis we can assume that 〈si, id〉 is

a fuzzy computed answer for goal sse(ti, t
′
i), 1 ≤ i ≤ n, then

it is possible to generate the following sequence of admissible

steps (for readability reasons, we omit in the substitution

component of each state the bindings associated to variables

not belonging to the initial goal):

〈sse(c(t1, . . . , tn), c
′(t′

1
, . . . , t′n)); id〉

AS
 

R

〈s0 & sse(t1, t
′
1
) & . . .& sse(tn, t

′
n); id〉

AS
 . . .

AS
 

〈s0 & s1 & . . .& sse(tn, t
′
n); id〉

AS
 . . .

AS
 

〈s0 & s1 & . . .& sn; id〉

which concludes our proof.

Next theorem reinforces the previous one by establishing the

capability of our technique for generating (not only for testing)

pairs of similar ground terms.

Theorem 3.3: Let t and t′ be two ground terms, x a variable,

L = 〈L,�,←,&〉 a multi-adjoint lattice, ℜ a similarity

relation and Pℜ
sse the set of MALP rules defining predicate

sse w.r.t. ℜ. Then, t and t′ are similar terms according ℜ
and & with similarity degree s ∈ L, iff 〈s, {x/t′}〉 is a fuzzy

computed answer for goal sse(t, x) in Pℜ
sse.

Proof: Our proof is based again on structural induction

on the shape of t, and it clearly resembles the one built for

Theorem 3.2 but pointing out now the effects on the variables

of the original goal.

• Base case. We assume here that t and t′ are similar

constants, and then, ℜ(t, t′) = s 6= ⊥ whereas rule [R :
sse(t, t′) with s] belongs to Pℜ

sse. Then, obviously φ(t, t′) =
ℜ(t, t′) = s whereas it is possible too to perform with rule R

the following admissible step 〈sse(t, x), id〉
AS
 

R

〈s, {x/t′}〉.
• Induction step. Now we have that t = c(t1, . . . , tn)

and t′ = c′(t′
1
, . . . , t′n). Assuming that ℜ(c, c′) = s0 6= ⊥
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Figure 3. Screen-shot of a work session with FLOPER

and Φ(ti, t
′
i) = si 6= ⊥, 1 ≤ i ≤ n, then Φ(t, t′) =

s0&s1& . . .&sn 6= ⊥. Moreover, since our technique gen-

erates the rule (which belongs to Pℜ
sse):

R : sse(c(x1, . . . , xn), c(x
′
1
, . . . , x′

n))←
sse(x1, x

′
1
)& . . .&sse(xn, x

′
n) with s0

and by the inductive hypothesis we can assume that

〈si, {x
′
i/t

′
i}〉 is a fuzzy computed answer for goal sse(ti, x

′
i),

1 ≤ i ≤ n, then it is possible to generate the derivation shown

in Figure 5 (for simplifying, we only include in the substitution

component of each state those bindings which are relevant for

our purposes) which concludes our proof.

The repeated application of the previous theorem implies the

following result which, in essence, confirms the power of our

method for producing all pairs of similar data terms.

Corollary 3.1: Let t and t′ be two ground terms, x and

x′ two variables, L = 〈L,�,←,&〉 a multi-adjoint lattice,

ℜ a similarity relation and Pℜ
sse the set of MALP rules

defining predicate sse w.r.t. ℜ. Then, t and t′ are similar

terms according ℜ and & with similarity degree s ∈ L,

iff 〈s, {x/t, x′/t′}〉 is a fuzzy computed answer for goal

sse(x, x′) in Pℜ
sse.

IV. IMPLEMENTATION ISSUES

We start this section by firstly describing in sub-

section IV-A how users can introduce into the new

SSE tool (written in PROLOG and freely accessible from

http://dectau.uclm.es/sse/) a small set of similar-

ity equations with a natural and very easy syntax. After that,

the tool performs the reflexive-symmetric-transitive closure of

that specification in order to obtain a similarity relation ℜ
which is translated into a PROLOG program, as explained in

sub-section IV-B. Finally, the application uses ℜ to generate

a MALP program defining SSE, as described in sub-section

IV-C.

A. Syntax for Similarity Files

To specify a similarity relation, it is mandatory to load

a file with extension ‘.sim’ into the tool. This file is in-

tended to contain a set of similarity equations, where each

equation is expressed by separating two literals (the ones to

be considered similar) with the ‘∼’ symbol, and adding a

truth value to the similarity (usually, a number of the real

interval [0,1], but our tool also admits an element from any

multi-adjoint lattice, in contrast with other fuzzy languages

such as BOUSI∼PROLOG or LIKELOG) after the ‘=’ symbol.

So, for instance, brother ∼ sibling = 0.9, is a valid

similarity equation. Our syntax also allows to specify the arity

of each symbol after a suffixed slash (i.e. ‘brother/1’).

Thus, it is possible to discriminate between functors with

the same name but different arities. When the user does not

include arity information, it is simple assumed to be zero.

To relate literals without arity specification (i.e., with no arity
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Figure 4. FLOPER showing three levels of an infinite evaluation tree

〈sse(c(t1, . . . , tn), x)); id〉
AS
 

R

〈s0 & sse(t1, x
′
1
) & . . .& sse(tn, x

′
n); {x/c

′(x′
1
, . . . , x′

n), x1/t1, . . . , xn/tn}〉
AS
 

. . .
AS
 . . .

AS
 

〈s0 & s1 & . . .& sse(tn, x
′
n); {x/c

′(t′
1
, . . . , x′

n), x1/t1, . . . , xn/tn, x
′
1
/t′

1
}〉

AS
 

. . .
AS
 . . .

AS
 

〈s0 & s1 & . . .& sn); {x/c
′(t′

1
, . . . , t′n), x1/t1, . . . , xn/tn, x

′
1
/t′

1
, . . . , x′

n/t
′
n}〉

Figure 5. Proof of Theorem 3.3

discrimination), we need to write an underscore after the slash

symbol (i.e., ‘brother/_’).

Example 4.1: Consider now the following specification of

a similarity relation:

mary ∼ maria = 0.8.

sibling/1 ∼ brother/1 = 0.9.

It is not necessary to add all similarity equations (for instance,

the reflexive equation relating mary with mary), since the

tool is able to “complete” the relation by performing the

reflexive, symmetric and transitive closure of the given set

of equations, as we will see in sub-section IV-B.

Note again that since our tool can work with different multi-

adjoint lattices, similarity equations can be also described

beyond the real interval [0, 1]: the only required condition is

that the similarity degrees of equations have to be members of

the multi-adjoint lattice associated to the program or, in other

words, with the lattice currently loaded into the system (see

Figure IV-A).

B. Closure and Translation to PROLOG

Each similarity equation from the “.sim” file is translated

into a PROLOG clause holding all its information. So, a

similarity equation A/nA ∼ B/nB = V is coded as fact

r((A,nA),(B,nB),V), thus including the arity of each

literal. The previous Example 4.1 (based on real numbers in

the unit interval) should then be translated into:
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Figure 6. Main menu of the SSE application implemented with PROLOG

Algorithm 1

Require: An adjacency matrix M = [mij ], representing a

fuzzy binary relation R on a set A, whose elements

preserve transitivity and with all the elements of the

superior triangular matrix set to ⊥.

Ensure: The adjacency matrix M≡ corresponding to the

reflexive, symmetric, transitive closure of R.

for all 〈i, i〉 in M do {Build the reflexive closure}

2: mii := ⊤;

end for

4: for all 〈i, j〉 in M , such that mij 6= ⊥ do {Build the

symmetric closure}

mji := mij ;

6: end for

for all column k and entry 〈i, j〉 in M do {Build the

transitive closure}

8: mij := mij ∨ (mik ∧ mkj); where “∨” and “∧” are,

respectively, the supremum and infimum operators;

end for

10: M≡ := M

r((mary, 0), (maria, 0), 0.8).

r((sibling, 1), (brother, 1), 0.9).

All these facts are saved in their own PROLOG module “sim”,

in order to avoid collision of names. Also, the system saves the

translated code into a file with the same name but extension

“sim.pl”.

Once this process has finished, the tool completes the

intended similarity relation by performing the reflexive-

symmetric-transitive closure according to Algorithm 1 (that

we have just implemented in PROLOG) which is inspired by

the one described in [29], [12], but generalizing it in order to

deal with (multi-adjoint) lattices beyond the [0, 1] case2:

As a result of performing this algorithm, the intended simi-

larity relation is completed, and then, all similarity equations

are successfully stored into module “sim” as PROLOG facts.

The next step is to write these similarity equations into a file

with the same name of that of the specification but extension

“sim.pl”, thus pointing out that the new file includes the same

information, but using PROLOG syntax.

For instance, the closure of the similarity specification from

Example 4.1 should return the relation of the following table,

where a cell 〈i, j〉 gives the corresponding similarity degree

between two symbols.
maria mary brother sibling

maria 1 0.8 0 0

mary 0.8 1 0 0

brother 0 0 1 0.9

sibling 0 0 0.9 1
This table is modeled by means of the following set of

PROLOG facts resulting from the translation process previously

described:

sim((maria,0),(maria,0),1).

sim((maria,0),(mary,0),0.8).

sim((mary,0),(maria,0),0.8).

sim((mary,0),(mary,0),1).

sim((brother,1),(brother,1),1).

sim((brother,1),(sibling,1),0.9).

sim((sibling,1),(brother,1),0.9).

sim((sibling,1),(sibling,1),1).

Example 4.2: For the following two similarity equations

using degrees of the partially ordered lattice in Figure 1 (see

again sub-section III-B), we show its corresponding table and

associated PROLOG facts below (note that the ‘top’ element is

the truth degree for all reflexive equations):

c ∼ d = alpha.
f/2 ∼ g/2 = beta.

c d f g

c top alpha bot bot

d alpha top bot bot

f bot bot top beta

g bot bot beta top

sim((c,0),(c,0),top).

sim((c,0),(d,0),alpha).

sim((d,0),(c,0),alpha).

sim((d,0),(d,0),top).

2Note that the algorithm can work with any particular multi-adjoint lattice:
since any complete lattice (with supremum, infimum and a concrete ordering
relation) is valid, then any multi-adjoint lattice is valid too.
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Algorithm 2

Require: A set of similarity equations S = {Si, i ∈
{0, . . . , N}} of the form Si = {A/nA ∼ B/nB = V },
where A and B are function symbols (possibly constants),

nA and nB are their respective arities and V is the

corresponding similarity degree.

Ensure: A set of MALP rules R = {Ri, i ∈ {0, . . . , N}}.
for all Si = {A/nA ∼ B/nB = V } in S do

2: body := “with′′ + V ;

for all j ∈ {nA, . . . , 1} do

4: body := “, sse(Xj, Yj)
′′ + body;

end for

6: if nA > 0 then

body := “ < − sse(X1, Y1)
′′ + body;

8: end if

Ri := “sse(A(X1, . . . , XnA
), B(Y1, . . . , YnB

))′′;
10: Ri := Ri + body;

end for

sim((f,2),(f,2),top).

sim((f,2),(g,2),beta).

sim((g,2),(f,2),beta).

sim((g,2),(g,2),top).

C. From similarities to MALP rules modeling SSE

The last step consists on translating the similarity relation

from its PROLOG syntax to the MALP syntax. Algorithm 2

performs such process, where the input is the set of PROLOG

facts obtained after performing the closure, and the output is

the intended MALP program:

Since R = {Ri, i ∈ {0, . . . , N}} is a set of MALP rules, it

is also a valid fuzzy program, so it is located in a file with

the same name of the original specification, and extension

“sse.fpl”, thus implementing the notion of “Similarity-based

Strict Equality SSE” as a MALP program. The resulting file

can be naturally loaded into the FLOPER tool in order to

run and debug goals, depicting evaluation trees, etc.
In order to illustrate this proccess, consider again the

specification given in Example 4.1. Once we have the closure

of the specification given in Section IV-A (expressed by means

of PROLOG facts), the final MALP program has the following

form:

sse(maria,maria) with 1.

sse(maria,mary) with 0.8.

sse(mary,maria) with 0.8.

sse(mary,mary) with 1.

sse(brother(X0),brother(Y0)) <- sse(X0,Y0)

with 1.

sse(brother(X0),sibling(Y0)) <- sse(X0,Y0)

with 0.9.

sse(sibling(X0),brother(Y0)) <- sse(X0,Y0)

with 0.9.

sse(sibling(X0),sibling(Y0)) <- sse(X0,Y0)

with 1.

Figure 7. An on-line session via internet with the SSE application

Moreover, regarding the similarity relation recasted from Ex-

ample 4.2, we obtain the following set of MALP rules:

sse(c,c) with top.

sse(c,d) with alpha.

sse(d,c) with alpha.

sse(d,d) with top.

sse(f(X0,X1),f(Y0,Y1)) <- sse(X0,Y0) &

sse(X1,Y1) with top.

sse(f(X0,X1),g(Y0,Y1)) <- sse(X0,Y0) &

sse(X1,Y1) with beta.

sse(g(X0,X1),f(Y0,Y1)) <- sse(X0,Y0) &

sse(X1,Y1) with beta.

sse(g(X0,X1),g(Y0,Y1)) <- sse(X0,Y0) &

sse(X1,Y1) with top.

In addition to our desktop tool, we have developed too a com-

fortable on-line version of the application (so it is not neces-

sary to download any file, but only work through the internet)

which is located at the web page dectau.uclm.es/sse.

We provide a link to download the PROLOG-based implemen-

tation of the tool but also, and more importantly, this URL

enables the possibility of performing on-line work sessions,

as illustrated in the screen-shot displayed in Figure 7.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have recasted from [20] a static preprocess

for improving the expressive power of a fuzzy declarative

language in order to easily cope with similarity relations.
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More exactly, we have adapted to the MALP framework our

preliminary notion of SSE presented in [17], thus dealing with

similarity relations by means of a simple but powerful method

(somehow inspired by the -non fuzzy- functional paradigm)

which surpass in some cases the effects obtained in other

fuzzy languages which are not based on the simpler syntactic

unification method of PROLOG. The main goal of this paper

focused on proving some important formal properties of

our technique for which we have shown some experimental

results obtained by using our FLOPER platform as well

as a preliminary PROLOG-based implementation of the

technique (please, visit http://dectau.uclm.es/sse/

for testing it on-line), which is nowadays being introduced

inside the core of our system.
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[25] G. Moreno and C. Vůzquez, “Fuzzy logic programming in
action with floper,” Journal of Software Engineering and
Applications, vol. 7, pp. 237–298, 2014. [Online]. Available:
http://dx.doi.org/10.4236/jsea.2014.74028

[26] P. Morcillo, G. Moreno, J. Penabad, and C. Vázquez, “A Practical
Management of Fuzzy Truth Degrees using FLOPER,” in Proc. of

4nd Int. Symposium on Rule Interchange and Applications, RuleML’10,
M. D. et al., Ed. Springer Verlag, LNCS 6403, 2010, pp. 20–34.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1929574.1929580

[27] ——, “Fuzzy Computed Answers Collecting Proof Information,” in
Advances in Computational Intelligence - Proc of the 11th Int. Work-

Conference on Artificial Neural Networks, IWANN’11, J. C. et al., Ed.
Springer Verlag, LNCS 6692, 2011, pp. 445–452.

[28] P. Morcillo and G. Moreno, “Programming with Fuzzy Logic Rules
by using the FLOPER Tool,” in Proc of the 2nd. Rule Representation,

Interchange and Reasoning on the Web, Int. Symposium, RuleML’08,
N. B. et al., Ed. Springer Verlag, LNCS 3521, 2008, pp. 119–126.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-88808-614

[29] P. Julián, “A procedure for the construction of a similarity relation,” in
Proc. of 12th Information Processing and Management of Uncertainty,

IPMU’08,June 22-27, Málaga, Spain, M. Ojeda, Ed. Springer CCIS
80 (Part I), 2008, pp. 489–ń496.
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