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Abstract—I will analyze Pawlak’s rough sets and extend the
usual setting of characterization via an equivalence relation to
any arbitrary relation, or a full relation. I extract the specification
of rough sets by two operators: probable operator and sure
operator. This would provide a general framework to analyze
full rough sets and to compare them with Pawlak’s rough sets. It
also facilitates all the computation and further expansion. This
paper extends Pawlak’s approximation approach to any arbitrary
relations and explicitly defines several computational operators to
study the closeness regarding the characterization of operations
on sets.

I. INTRODUCTION

IN PAWLAK’S paper “Rough Sets”, he studied the prop-

erties of an approximation space A = (U,R), where U
is a universe and R is an equivalence relation. He then in

Section 2.3 (pp. 344-345), listed 30 identities of the properties

of the approximation space and these become a foundation

of his theory. These identities specify the properties of set

operations and best upper approximation Apr and best lower

approximation Apr. These identities also have some practical

applications. For example, to calculate the best upper and

lower approximation of the X ∪ Y ⊆ U , one only needs to

calculate the respective best approximations of X and Y . This

would save some resources and calculations if it is put into

practical applications. When I read Pawlak’s “Rough Sets”,

the first question comes to my mind is: Could I extend this

equivalent relation to any arbitrary relation? Then the second

question follows: if I extend it to any arbitrary relation, would

these identities hold? Then it goes to the third question: under

which circumstances could these identities hold? And then

the last question: is there any relationship between different

set operations under these approximations?

Such extension is also briefly mentioned in several occa-

sions, for example, a chapter written by Hung Son Nguyen and

Andrzej Skowron [7]. Indeed, there are some authors trying to

generalize and extend R, in particular, Y.Y.Yao ([3][4],[5],[6]).

In Yao’s papers, he specifically defines an extended R, say R∗

(a non-equivalence relation), and then studies the properties of

best approximations and these generalized rough sets.

Unlike Yao’s papers, my intention is not to specify or study

any particular extended relation. My intention is to study any

arbitrary relations. Another main difference is my research

will focus on answering my last two questions, which are

rarely mentioned in any other papers, not even in Pawlak’s

original paper. The results will be presented in Section VI.

Another characteristic of my paper is to automate full rough

sets approximation, in the sense that a machine or a computer

can easily implement the calculations. In order to achieve this,

in Section III,I introduce several operators and a characteristic

matrix to facilitate the whole computation. Throughout the

whole paper, I also compare the differences between Pawlak’s

rough sets and full rough sets, in particular, Example 18.

II. BACKGROUND

In the typical characterization of a crisp target set, an

equivalence relation is used to partition the universe and

then the partition is served as a classifier for the target sets.

However, in the real world, one needs to develop a much more

complicated classifier for the target sets. To begin with, let

me show some cases that would involve some complicated

relations to form granule knowledge. In reality, there might

exist more than one equivalence relation and no favorite

is made or the interpretation of data needs some tolerance

or other reasons. Then one has to contrive a much more

complicated classifier.

Example 1 (tolerant classifier). An experimenter observed

some viruses’ infection rates of cows and recorded them as

the following table:

Viruses Infection Rate (%) Viruses Infection Rate (%)
a 8.22 g 40.19
b 50.21 h 11.37
c 32.49 i 20.01
d 18.41 j 10.73
e 29.83 k 19.89
f 1.24 l 9.86

TABLE I
VIRUS INFECTION RATE

Considering some degree of tolerance for the measurements

in the endpoints, a biologist forms his granule knowledge

of these viruses as follows: a type one (or T 1) virus is a

virus whose infection rate lies between 0 and 10.25; a type

two (or T 2), 9.75 and 20.25; a type three (or T 3), 19.75
and 30.25; a type four (or T 4), 29.75 and 40.25 and a type

five (or T 5), 39.75 and 50.25. He then forms the classifier

{{a, f, l}, {d, h, i, j, k, l}, {e, i, k}, {c, e, g}, {b, g}}.

This classifier will be his granule knowledge to characterize

target sets. Furthermore, some granule knowledge might be

formed subjectively or randomly.
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Example 2 (Relational Tree). Suppose the universe

U = {x1, x2, x3, x4} and the following relation or its directed

diagram:

R := {(x1, x1), (x1, x4), (x2, x1), (x2, x2), (x2, x3), (x3, x1),
(x3, x2), (x3, x3), (x4, x2))}.

x1

x2

x3

x4

If the granule knowledge is formed via this relation, then the

classifier would be {{x1, x4}, {x1, x2, x3}, {x1, x2}, {x2}}.

This generalized relation is also studied in Section 2.1 of

Yao’s paper [3] “On Generalizing Rough Set Theory ”.

In addition, there are many other cases that would involve

non-equivalence relations. For example, some data is missing

in forming an equivalent relation. In Section III, full rough sets

will be introduced. In Section VI, I will study the properties

of full rough sets.

III. PRELIMINARY

First of all, let us recall how Pawlak defines his rough

sets. Let A = (U,R) be an approximation space. He then

defines the R−lower approximation of X ⊆ U , AprA(X) :=
∪

x∈U
{R(x) : R(x) ⊆ X} and the R−upper approximation of

X ⊆ U , AprA(X) := ∪
x∈U

{R(x) : R(x) ∩ X 6= ∅}, where

R ⊆ U × U is an indiscernibility relation and R(x) is the

equivalence class of R determined by the element x ∈ U .

In order to name it, we call the partition (or equivalence

classes) U/R a classifier in the sense that any subset X ⊆ U
is classified by a pair of rough sets via this partition. Now

the first step for me to extract this definition and generalize

it to any arbitrary relation is to use a functional classifier.

Let U be a finite universe. In this paper, I will assume there

exists a bijective function to specify the elements in U . Let

|U |↓ ≡ {1, 2, ..., |U |}.

Definition 1. For any function from U to P(U), which is

chosen as a classifier, is called a functional classifier. Let K :
U → P(U) be a functional classifier.

It is worth mentioning that this definition also appears in

Y.Y.Yao’s paper [3] in the name of a successor neighborhood

Rs(x) = {y|y ∈ U, xRy}, where R ⊆ is any arbitrary binary

relation. But we differ in the way forming upper and lower best

approximation. Here I reiterate his definitions: aprR(A) =
{x|Rs(x) ⊆ A} and aprR(A) = {x|Rs(x) ∩ A 6= ∅}. Now I

introduce some definitions and notations.

Inspired by Lotfi A. Zadeh’s approach (in [8]) using char-

acteristic functions to represent fuzzy sets, I introduce charac-

teristic matrix to represent a functional classifier to facilitate

the computations. Each functional classifier K can then be

represented by a matrix K∗ in 2U×U via its characteristic

values. We name K∗ a characteristic classifier.

Example 3. Suppose U = {u1, u2, u3} and K(u1) =
{u1, u2, u3}, K(u2) = {u1, u3} and K(u3) = {u2}. Then

one has the following matrix-operation form:

K =





K(u1)
K(u2)
K(u3)



 =





1 1 1
1 0 1
0 1 0









u1

u2

u3



 .

Thus K can be represented by its characteristic matrix

K∗ =





K∗(1)
K∗(2)
K∗(3)



 =





1 1 1
1 0 1
0 1 0



 ,

where K∗(j) is the characteristic function of K(uj).

By reading at each row vector, one knows immediately

the member of that class. This representation would facilitate

our computation largely and it could also be programmed to

automate the approximation process. In addition, each subset

X ⊆ U is also represented by its characteristic function

ρ ∈ 2U , for example, a subset X = {u1, u4} in a universe

U , with |U | = 5 would be represented by its characteristic

function [10010]. Since we restrict K to be a characteristic

classifier, and thus K∗ is always a square matrix with a

dimension |U |. Of course, one can further lift such restriction

and extend K to a relational classifier, i.e., for some element

u ∈ U , there associate more than two granule classes K1(u)
and K2(u). In this paper, we will not go into such extension.

Definition 2. For any arbitrary subset ρ ∈ 2U , define ρ(n)
to be the n’th element of U ; for any arbitrary characteristic

classifier T ∈ 2U×U , define T (n) be the n’th row of T and

T (m,n) be the element in m’th row and n’th column.

Let K∗(|U |↓) = {K∗(j) : j ∈ |U |↓}, the set of all

the granule knowledge (classes). Take Example 3 for exam-

ple. Then one has K∗(|U |↓) = {K∗(1),K∗(2),K∗(3)} =
{
[

1 1 1
]

,
[

1 0 1
]

,
[

0 1 0
]

.}. We can further define

some set union and intersection operations in the form of

characteristic functions.

Definition 3. Define ∪∗ : 2U × 2U → 2U by (ρ ∪∗ τ)(n) :=
sup{ρ(n), τ(n)}.

Example 4.
[

1 0 0 1 1
]

∪∗
[

0 1 0 1 0
]

=
[

1 1 0 1 1
]

.

Definition 4. Define ∩∗ : 2U × 2U → 2U by (ρ ∩∗ τ)(n) :=
inf{ρ(n), τ(n)}.

Example 5.
[

1 0 0 1 1
]

∩∗
[

0 1 0 1 0
]

=
[

0 0 0 1 0
]

.

4 POSITION PAPERS OF THE FEDCSIS. WARSAW, 2014



This kind of definitions is common for defining the set oper-

ation, for example, in Zadeh’s paper [8]. We can further define

the subset operation in the form of characteristic functions.

Definition 5. For all ρ, τ ∈ 2U , define ρ ⊆∗ τ iff ∀n ∈
|U |↓[ρ(n) ≤ τ(n)].

We also use the notations ~0 : |U |↓ → {0, 1} with ~0(n) = 0
for ∀n ∈ |U |↓ and ~1 : |U |↓ → {0, 1} with ~1(n) = 1 for

∀n ∈ |U |↓. Let ρ ∈ 2U be a target set. Now we start to define

upper and lower best approximations. In correspondence to

our setting, here I name them full upper bound and full

lower bound, respectively. The definition of these bounds will

be presented in the form of operations over a characteristic

classifier. Now we can define the full rough sets as follows:

Definition 6 (Full Upper Bound). Define the full upper bound

of ρ as ρ+ = ∪∗{τ ∈ K∗(|U |↓) : τ ∩∗ ρ 6= ~0}.

Definition 7 (Full Lower Bound). Define the full lower bound

of ρ as ρ− = ∪∗{τ ∈ K∗(|U |↓) : τ ∩∗ ρ 6= ~0, τ ⊆∗ ρ}.

∪∗S denotes the ∪∗ operation over all the elements in set

S. (ρ−, ρ+) are called full rough sets of the characteristic

target set ρ via the characteristic classifier K∗. These full

rough sets will be further characterized in Lemma 1. These

definitions indeed are the characteristic version of the fol-

lowing usual rough set definitions (except now we consider

arbitrary relation). Let U be an arbitrary universe. Let X ⊆ U
be a target set. Let R ⊆ U × U be an arbitrary relation.

Let R(x) = {y ∈ U : xRy}. Let the functional classifier

K = {R(x) : x ∈ U}.

Definition 8 (Full Upper Bound). Define the full upper bound

of X as X+ = ∪
x∈U

{R(x) : R(x) ∩X 6= ∅}.

Definition 9 (Full Lower Bound). Define the full lower bound

of X as X− = ∪
x∈U

{R(x) : R(x) ∩X 6= ∅, R(x) ⊆ X}.

Here I change the usual setting of best lower approximation

a bit by adding a clause R(x) ∩X 6= ∅. This change has no

impact on the current theory. It is just a condition for set

specification when one intends for further extension. We use

the notation ρ−1{1} = {n ∈ |U |↓ : ρ(n) = 1}, for all ρ ∈ 2U .

ρ−1{1} shows the elements in ρ. Now I define the difference

of two sets in the form of characteristic functions.

Definition 10. Define −∗ : 2U × 2U → 2U by (ρ−∗ τ)(n) =
inf{ρ(n), 1− inf{ρ(n), τ(n)}}.

Example 6.
[

1 0 0 1 0
]

−∗
[

0 1 0 1 1
]

=
[

1 0 0 0 0
]

.

There are many ways to define a characteristic-function

version of a difference set operation. For any set X ∈ P(U),
let X∗ ∈ 2U denote its characteristic function. In order to

construct a computational approach for upper or lower best

approximations, I extract the definitions and redefine them

in the form of characteristic functions. To test whether two

sets (characteristic functions) intersects or not, I define the

following intersection indicator •.

Definition 11 (Intersection Indicator:•). Define • : 2U×2U →
{0, 1} by ρ • τ := sup{τ(n) : n ∈ ρ−1{1}}.

The computational idea for this definition is: to see whether

τ and ρ has common elements or not, one finds the order

numbers of ρ and then checks whether these numbers are

shared by τ . If yes, then they intersects with each other; if

not, there is no intersection between them, i.e., the intersection

is ~0 (the characteristic function for the empty set). In sum, if

ρ• τ = 1, it means ρ intersects τ ; if ρ• τ = 0, it means ρ and

τ are disjointed.

Example 7.
[

1 1 0 1 1
]

•
[

0 1 1 1 0
]

= 1.

Now we almost go into the main body of my approach.

Recall a usual setting of a best approximation, for example,

AprA(X) := ∪
x∈U

{R(x) : R(x) ⊆ X}. In order to put it into

a computational content, I separate it into two parts: specifi-

cation test and value assigned. In this case, the specification

to be tested is: R(x) ⊆ X . So one tests whether R(x) ⊆ X or

not. If yes, then one assigns one value for the AprA(X) and

if no, one assigns the other value. There are two main reasons

for such approach: firstly, to automate the computation and

secondly, to leave a room for further definition of the usual ∪
approximation-indeed one would be given much more freedom

to assign the approximation values.

In the next claim, I will convert the usual specification

of rough sets into the context of characteristic functions and

classifiers.

Claim 1. Let Y ∈ P(U) be arbitrary. Let K be an arbitrary

classifier. Then

1) Y ∩K(uj) 6= ∅ iff Y ∗ ∩∗ K∗(j) 6= ~0 iff Y ∗ • K∗(j) = 1.

2) K(uj) ⊆ Y iff K∗(j) ⊆∗ Y ∗ iff (~1 −∗ Y ∗) • K∗(j) = 0.

3) Y ∩ K(uj) 6= ∅ and K(uj) ⊆ Y iff Y ∗ ∩∗ K∗(j) 6= ~0
and K∗(j) ⊆∗ Y ∗ iff inf{Y ∗ • K∗(j), 1 − (~1 −∗ Y ∗) •
K∗(j)} = 1 iff Y ∗ • K∗(j)− (~1−∗ Y ∗) • K∗(j) = 1

Proof. (1) and (2) follow immediately from the definitions.

Here I show (3): inf{Y ∗ •K∗(j), 1− (~1−∗ Y ∗)•K∗(j)} = 1
iff Y ∗•K∗(j) = 1−(~1−∗Y ∗)•K∗(j)} = 1 iff Y ∗•K∗(j) = 1
and (~1−∗Y ∗)•K∗(j) = 0 iff Y ∗∩∗K∗(j) 6= ~0 and K∗(j) ⊆∗

Y ∗.

This claim indeed forms a cornerstone which converts the

usual rough sets formation into a computational characteristic

target sets and characteristic classifier. From this claim, we

characterize the set specification Y ∩ K(uj) 6= ∅ with a

probable operator po defined in Definition 13. We can also

characterize the set specification Y ∩K(uj) 6= ∅ and K(uj) ⊆
Y with a sure operator so defined in Definition 14. Since we

have already defined an intersection indicator, we could now

further define an intersection operator ⊙ to compute and test

the intersection between a target set (a characteristic function)

and a functional classifier (a characteristic classifier).

Definition 12 (Intersection Operator ⊙). Define ⊙ : 2U ×
2U×U → 2U by (ρ⊙ T )(n) := ρ • T (n).
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Example 8.
[

1 0 1 0 0
]

⊙













1 0 1 0 0
0 1 1 0 0
0 0 0 0 1
0 1 0 0 0
1 1 1 0 1













=

[

1 1 0 0 1
]

.

This operator shows whether the target set intersects with

the classifier or not. With this operator, one can now easily

visualize the intersection between target sets and its classifier.

Now we separate the set specifications from the set compre-

hension via two operators: specification operators and value

operators. Specification operators consist of two operators:

probable operator (po) and sure operator (so).

Definition 13. Define po : 2U × 2U×U → 2U by po(ρ, T ) :=
ρ⊙ T

Definition 14. so : 2U ×2U×U → 2U by so(ρ, T ) = ρ⊙T−∗

(~1−∗ ρ)⊙ T .

Example 9. so(
[

1 0 0 1 1
]

,













1 0 0 0 1
0 1 1 0 0
1 0 0 1 0
0 1 1 1 0
1 0 1 0 1













) =

[

1 0 1 1 1
]

−∗
[

0 1 0 1 1
]

=
[

1 0 1 0 0
]

.

Definition 15. We say (ρ, T ) is a crisp specification iff

po(ρ, T ) = so(ρ, T ) and (ρ, T ) is a rough specification iff

po(ρ, T ) 6= so(ρ, T ).

Though I separate specification and value assignment, in

this paper, I will not change the usual setting of ∪-value

assignment. The following definitions maintain the usual ∪-

value assignment in the computational context. In the follow-

ing definition, we start to specify the form of a classifier.

Definition 16. Define sup∗ : 2U×U → 2U by

(sup∗(T ))(n) := sup{T (n,m) : m ∈ |U |↓}.

Example 10. sup∗(









0 0 1 1
0 1 0 0
0 0 1 0
0 1 1 1









) =
[

1 1 1 1
]

.

Example 11. sup∗(









0 0 0 0
0 1 0 1
1 0 1 1
0 0 0 0









) =
[

0 1 1 0
]

.

We say that a characteristic classifier T is degenerated if

and only if there exists an element 0 in sup∗(T ) and non-

degenerated iff all the elements are 1 in sup∗(T ). For example,

T in Example 10 is non-degenerated, while in Example 11 is

degenerated. For a general setting, one would like to specify

the exact form of T , for example, T is formed via equivalence

relation or other relations. However, I study a more general

relation, i.e., a non-generated T .

In most of the settings and derivations, the universe U itself

is taken as closed under set operations. In order to study the

detailed properties, I generalize it to study any subsets of U
that are closed under set operations. On the one hand, it helps

us to understand that some properties not only belong to the

universe per se, but it also applies to its subsets; on the other

hand, it also helps us classify a set of target sets that are closed

under set operations.

Definition 17. S ⊆ 2U is ∪∗-closed iff for all ρ, τ ∈ S, one

has ρ ∪∗ τ ∈ S.

Definition 18. S ⊆ 2U is ∩∗-closed iff for all ρ, τ ∈ S, one

has ρ ∩∗ τ ∈ S.

Definition 19. S ⊆ 2U is c∗-closed iff for all ρ ∈ S, one has
~1−∗ ρ ∈ S.

Example 12. S = {
[

1 0 1
]

,
[

1 0 0
]

,
[

1 1 1
]

} is

∪∗-closed and ∩∗-closed, but not c∗-closed.

IV. BASIC IDENTITY

Let ρ, τ, η, θ ∈ 2U be arbitrary. Then we have the following

basic identities of set operations in the form of characteristic

functions. These identities will be applied in Section VI

without an explicit mention.

Claim 2. 1) ρ ∪∗ (τ −∗ η) = (ρ ∪∗ τ) −∗ (η −∗ ρ).

2) ρ−∗ (τ −∗ η) = (ρ ∩∗ η) ∪∗ (ρ−∗ τ).

3) (ρ−∗ τ)−∗ η = ρ−∗ (τ ∪∗ η).

4) ρ ∩∗ (τ −∗ η) = (ρ ∩∗ τ)−∗ η = τ ∩∗ (ρ−∗ η).

5) ρ−∗ (τ ∪∗ η) = (ρ−∗ τ) ∩∗ (ρ−∗ η).

6) ρ−∗ (τ ∩∗ η) = (ρ−∗ τ) ∪∗ (ρ−∗ η).

7) (ρ ∪∗ τ) −∗ η = (ρ−∗ η) ∪∗ (τ −∗ η).

8) (ρ−∗ τ) ∪∗ η = (ρ ∪∗ η)−∗ (τ −∗ η).

Proof. All these identities follow immediately from the basic

set operations in terms of characteristic functions. Take (6) for

example. It comes directly from the identity: A− (B ∩C) =
(A−B) ∪ (A− C) for any arbitrary sets A,B and C.

V. PROPERTY

First of all, a computational characterization of a target

set is derived. Secondly, the properties of all the operators

defined will be studied. In the next lemma, I will show how

to characterize full rough sets defined in Definition 6 and 7

by the following lemma.

Lemma 1. Given a target set ρ ∈ 2U and a characteristic

classifier T ∈ 2U×U , one gets its full upper bound (i.e., best

upper approximation) ρ+ = po(ρ, T ) ⊙ T t and its full lower

bound (i.e., best lower approximation) as ρ− = so(ρ, T )⊙T t,

where T t denotes the transpose of the matrix T .
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Proof. Suppose po(ρ, T ) = f . Then the full upper bound

ρ+ = ∪∗{T (n) : n ∈ f−1{1}} = f ⊙ T t. Similarly, let

so(ρ, T ) = g. Then the full lower bound ρ− = ∪∗{T (n) :
n ∈ g−1{1}} = g ⊙ T t.

This lemma shows directly how to compute best upper

approximation and best lower approximation. Indeed one only

needs to find out the po(ρ, T ) for each target set ρ to get the

final result. Henceforth, in this paper, I will focus on the study

of the properties of specification operators po and so.

Definition 20 (Full Upper Bound). Define ub : 2U ×2U×U →
2U to be ub(ρ, T ) := po(ρ, T ) ⊙ T t, where T t denotes the

transpose of the matrix of T .

Definition 21 (Full Lower Bound). Define lb : 2U × 2U×U →
2U to be lb(ρ, T ) := so(ρ, T ) ⊙ T t, where T t denotes the

transpose of the matrix of T .

Example 13. Let the target set be X = {x2, x3}. Let T
be the characteristic classifier induced by the classifier in

Example 2. Let us use this formalism to compute its full rough

sets. To begin with, let me compute the usual setting first

via Definition 8 and 9. Then one has the best lower bound

X− = {x2} and the best upper bound X+ = {x1, x2, x3}.

Now let us look into the characteristic version. The R-

induced characteristic classifier is T =









1 0 0 1
1 1 1 0
1 1 0 0
0 1 0 0









and the

characteristic target set is X∗ =
[

0 1 1 0
]

. so(X∗, T ) =

X∗⊙T−∗(~1−∗X∗)⊙T =
[

0 1 1 1
]

−∗
[

1 1 1 0
]

=
[

0 0 0 1
]

. Now we have lb(X∗, T ) = so(X∗, T )⊙T t =

[

0 0 0 1
]

⊙









1 1 1 0
0 1 1 1
0 1 0 0
1 0 0 0









=
[

0 1 0 0
]

; similarly,

one has po(X∗, T ) =
[

0 1 1 1
]

and thus ub(X∗, T ) =
po(X∗, T )⊙ T t =

[

1 1 1 0
]

.

Image that the size of the universe is two million and

the size of the target set is one million. Are we still using

our naked eyes to classify this target set? Basically, this

characteristic version provides a systematic way to assign full

rough sets to a target set and it also provides a theoretical

framework for better understanding of full rough sets.

Once one gets the values of po(ρ, T ) and so(ρ, T ), he gets

the values of upper bound and lower bound straightaway.

Henceforth, we will focus on studying the properties of po and

so in this paper. To further understand the above-mentioned

operators, I derive some of their properties here. Some of

the properties would be applied later. There operators also

play vital roles in gaining our main results in Section VI. Let

ρ, ρ′, τ, τ ′, η ∈ 2U and T ∈ 2U×U be arbitrary.

A. Operator •

Claim 3. If ρ ⊆∗ τ and ρ′ ⊆∗ τ ′, then ρ • ρ′ ≤ τ • τ ′.

Proof. ρ • ρ′ = sup{ρ′(n) : n ∈ ρ−1{1}} ≤ sup{ρ′(n) : n ∈
τ−1{1}} ≤ sup{τ ′(n) : n ∈ τ−1{1}} = τ • τ ′.

Claim 4. ρ • τ = τ • ρ

Proof. ρ • τ = 1 iff there exists n ∈ |U |↓ such that ρ(n) =
τ(n) = 1.

Claim 5. (ρ ∪∗ τ) • η = sup{ρ • η, τ • η}.

Proof. (ρ ∪∗ τ) • η = sup{η(n) : n ∈ (ρ ∪∗ τ)−1{1} =
sup{η(n) : n ∈ ρ−1{1} ∪ τ−1{1}} = sup{sup{η(n) : n ∈
ρ−1{1}}, sup{η(n) : n ∈ τ−1{1}}}.

B. Operator ⊙

Let ρ, ρ′, τ ∈ 2U and T ∈ 2U×U be arbitrary.

Claim 6. (ρ∪∗τ)⊙T = (ρ⊙T )∪∗(τ⊙T ), i.e., po(ρ∪∗τ, T ) =
po(ρ, T ) ∪∗ po(τ, T ).

Proof. ((ρ∪∗ τ)⊙T )(n) = (ρ∪∗τ)•T (n) = sup{ρ•T (n), τ •
T (n)}, by Claim 5.

We can then apply this identity to show other special cases.

Example 14. Property (6) and (15) at Section 2.3 in Pawlak’s

paper [1] are the direct instances of this claim (via Lemma 1).

Take property (6) for example: ub(X∗∪∗ Y ∗, T ) = po(X∗∪∗

Y ∗, T )⊙T t = (po(X∗, T )∪∗po(Y ∗, T ))⊙T t = (po(X∗, T )⊙
T t) ∪∗ (po(X∗, T )⊙)T t = ub(X∗, T ) ∪∗ ub(Y ∗, T ), where

T is the characteristic classifier induced by the equivalence

relation.

Remark 1. Generally speaking, (ρ ∩∗ τ) ⊙ T 6= (ρ ⊙
T ) ∩∗ (τ ⊙ T ), for example, ρ =

[

0 1 0 0
]

, τ =

[

1 0 0 1
]

, T =









1 1 0 1
0 1 0 0
0 1 1 1
0 0 1 1









. Then (ρ ∩∗ τ) ⊙ T =

~0 6= ρ⊙ T ∩∗ τ ⊙ T =
[

1 0 1 0
]

.

In the following, I will show what kind of T is eligible to

keep hold of ρ⊙ T ∩∗ τ ⊙ T = (ρ ∩∗ τ)⊙ T .

Definition 22. Define sum∗ : 2U×U → (|U |↓)U by

(sum∗(T ))(n) :=
∑

j∈|U|↓
T (n, j).

Example 15. sum∗(





1 1 0
0 1 0
1 1 1



) =
[

2 1 3
]

.

Claim 7. sum∗(T ) ⊆∗ ~1 iff for all ρ, τ ∈ 2U [ρ⊙T∩∗τ⊙T =
(ρ ∩∗ τ) ⊙ T ].

Proof. Let ρ ∩∗ τ = η. Then ρ⊙ T ∩∗ τ ⊙ T = [(η ∪∗ (ρ−∗

η)) ⊙ T ] ∩∗ [(η ∪∗ (τ −∗ η)) ⊙ T ] = η ⊙ T ∪∗ [(ρ −∗ η) ⊙
T ∩∗ (τ −∗ η) ⊙ T ] = η ⊙ T. On the other hand, suppose

sum∗(T ) *∗ ~1, i.e., there exist i, j, n ∈ |U |↓ such that i 6= j
and T (n, i) = T (n, j) = 1. Now define ρ(k) = 1 if k =
i and ρ(k) = 0, otherwise and define τ(k) = 1 if k = j
and τ(k) = 0, otherwise for all k ∈ |U |↓. Then one has

ρ⊙ T ∩∗ τ ⊙ T 6= (ρ ∩∗ τ) ⊙ T = ~0.
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Corollary 1. ∀ρ, τ ∈ 2U [ρ⊙ T ∩∗ τ ⊙ T = (ρ ∩∗ τ)⊙ T ] iff

∀ρ ∈ 2U [ρ⊙ T ∩∗ (~1−∗ ρ)⊙ T = ~0].

Proof. Since sum∗(T ) ⊆∗ ~1 iff ∀ρ ∈ 2U [ρ⊙ T ∩∗ (~1−∗ ρ)⊙
T = ~0], by Claim 7, the result follows.

Claim 8. If ρ ⊆∗ τ , then ρ⊙ T ⊆∗ τ ⊙ T .

Proof. It follows immediately from the definition and Claim

3.

Example 16. Property (10) at Section 2.3 in Pawlak’s paper

[1] is a direct instance of this claim (via Lemma 1).

C. Operator −∗

Claim 9. (ρ−∗ τ)−1{1} = ρ−1{1} − τ−1{1}.

Proof. n ∈ (ρ −∗ τ)−1{1} iff ρ(n) = 1 and τ(n) = 0 iff

n ∈ ρ−1{1} − τ−1{1}.

D. Specification operators: po and so

Let ρ, ρ′, τ ∈ 2U , T ∈ 2U×U and S ⊆ 2U be arbitrary.

Claim 10. (ρ, T ) is a crisp specification (defined at Definition

15) iff (ρ⊙ T ) ∩∗ ((~1−∗ ρ)⊙ T ) = ~0.

Proof. ρ⊙T = ρ⊙T−∗(~1−∗ρ)⊙T iff ρ⊙T∩∗(~1−∗ρ)⊙T =
~0.

Claim 11. so(ρ, T )∩∗ so(ρ′, T ) = (ρ⊙T ∩∗ ρ′⊙T )−∗ (~1−∗

ρ ∩∗ ρ′)⊙ T.

Proof. so(ρ, T ) ∩∗ so(ρ′, T )[ρ⊙ T −∗ (~1−∗ ρ)⊙ T ] ∩∗ ρ′ ⊙
T −∗ (~1−∗ ρ′)⊙T ] = [ρ⊙T ∩∗ (ρ′⊙T −∗ (~1−∗ ρ′)⊙T )]−∗

(~1−∗ ρ)⊙T = [(ρ⊙T ∩∗ ρ′ ⊙T −∗ (~1−∗ ρ′)⊙T )]−∗ (~1−∗

ρ)⊙T = ρ⊙T ∩∗ ρ′⊙T −∗ [(~1−∗ ρ)⊙T ∪∗ (~1−∗ ρ′)⊙T ] =
ρ⊙T ∩∗ ρ′⊙T −∗ [((~1−∗ ρ)∪∗ (~1−∗ ρ′))⊙T ], by Claim 6 =
ρ⊙ T ∩∗ ρ′ ⊙ T −∗ (~1−∗ ρ ∩∗ ρ′)⊙ T.

Claim 12. po, so are all ⊆∗-non-decreasing functions.

Proof. Let ρ, τ be arbitrary such that ρ ⊆∗ τ . Then one has

ρ • T (x) = sup{T (x)(j) : j ∈ ρ−1(1) ≤ sup{T (x)(j) : j ∈
τ−1(1)} = τ • T (x); on the other hand,so(ρ, T ) = ρ⊙ T −∗

(~1−∗ρ)⊙T ⊆∗ ρ⊙T−∗(~1−∗τ)⊙T ⊆∗ τ⊙T−∗(~1−∗τ)⊙T =
so(τ, T )

Corollary 2. (Monotonicity of Full Upper/Lower Bound) If

ρ ⊆∗ τ , then lb(ρ, T ) ⊆∗ lb(τ, T ) and ub(ρ, T ) ⊆∗ ub(τ, T ).

Proof. The results follow immediately from Definition 6 and

7, Claim 12, Lemma 1 and Claim 8.

Example 17. Property (10) and (11) in Pawlak’s paper are

such instances.

VI. MAIN RESULTS

From Lemma 1, we know it is sufficient to study po and

so in order to have best upper and lower approximations.

In this section, I will present my main results in order to

answer my last two questions in the section Introduction, i.e.,

the relations between upper and lower best approximation

and the closeness of different set operations under various

characteristic classifiers. We also try to find out what kind of

imposition is needed to preserve all these properties. Before

we go further, let us define some notions first.

Definition 23. {po(ρ, T ) : ρ ∈ S} is c∗-closed iff ∀ρ ∈
S, ∃η ∈ S such that ~1−∗ po(ρ, T ) = po(η, T ).

Definition 24. {po(ρ, T ) : ρ ∈ S} is isomorphically c∗-closed

iff ∀ρ ∈ S,~1−∗ po(ρ, T ) = po(~1−∗ ρ, T ).

Isomorphically c∗-closed is a strong relation for the com-

plement operation. It is more informative than c∗-closed. For

example, if this property holds, then one only needs to com-

pute po(ρ, T ) to in order to have a result for po(~1−∗ρ, T ). This

would save a lot of resources in the process of computation

and classification. It is the same for the operation so as well.

Definition 25. {so(ρ, T ) : ρ ∈ S} is c∗-closed iff ∀ρ ∈
S, ∃η ∈ S such that ~1−∗ so(ρ, T ) = so(η, T ).

Definition 26. {so(ρ, T ) : ρ ∈ S} is isomorphically c∗-closed

iff ∀ρ ∈ S,~1−∗ so(ρ, T ) = so(~1−∗ ρ, T )

Now let us define some weak relations and strong relations

of the set operations ∪∗ and ∩∗ for both po and so. Again,

the strong relations, i.e., isomorphically-closed operations are

more informative than the weak ones.

Definition 27. {po(ρ, T ) : ρ ∈ S} is ∪∗-closed iff ∀ρ, τ ∈
S, ∃η ∈ S such that po(ρ, T ) ∪∗ po(τ, T ) = po(η, T )

Definition 28. {po(ρ, T ) : ρ ∈ S} is isomorphically ∪∗-closed

iff ∀ρ, τ ∈ S, po(ρ, T ) ∪∗ po(τ, T ) = po(ρ ∪∗ τ, T )

When isomorphically ∪∗-closed holds, one only needs to

compute po(ρ, T ) and po(τ, T ) in order to compute po(ρ ∪∗

τ, T ). In the real computation and classification, this would

save a lot of resources and time. The whole argument holds

for so too.

Definition 29. {so(ρ, T ) : ρ ∈ S} is ∩∗-closed iff ∀ρ, τ ∈
S, ∃η ∈ S such that so(ρ, T ) ∩∗ so(τ, T ) = so(η, T )

Definition 30. {so(ρ, T ) : ρ ∈ S} is isomorphically ∩∗-closed

iff ∀ρ, τ ∈ S, so(ρ, T ) ∩∗ so(τ, T ) = so(ρ ∩∗ τ, T )

Definition 31. {po(ρ, T ) : ρ ∈ S} is ∩∗-closed iff ∀ρ, τ ∈
S, ∃η ∈ S such that po(ρ, T ) ∩∗ po(τ, T ) = po(η, T )

Definition 32. {po(ρ, T ) : ρ ∈ S} is isomorphically ∩∗-closed

iff ∀ρ, τ ∈ S, po(ρ, T ) ∩∗ po(τ, T ) = po(ρ ∩∗ τ, T )

Definition 33. {so(ρ, T ) : ρ ∈ S} is ∪∗-closed iff ∀ρ, τ ∈
S, ∃η ∈ S such that so(ρ, T ) ∪∗ so(τ, T ) = so(η, T )
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Definition 34. {so(ρ, T ) : ρ ∈ S} is isomorphically ∪∗-closed

iff ∀ρ, τ ∈ S, so(ρ, T ) ∪∗ so(τ, T ) = so(ρ ∪∗ τ, T ).

Now let us start the derivations. Let T ∈ 2U×U be arbitrary.

Recall that sup∗ is already defined in Definition 16.

A. Properties of unrestricted T

The following result is the most general condition for a char-

acteristic classifier T as there is no special restriction imposed

on T , i.e., T could be degenerated or non-degenerated.

Theorem 1 (∪∗-Closeness of {po(ρ, T ) : ρ ∈ S}). If S ⊆ 2U

is ∪∗−closed, then {po(τ, T ) : τ ∈ S} is also ∪∗−closed.

Proof. Let ρ, τ ∈ S be arbitrary. Then, by Claim 6, ρ⊙ T ∪∗

τ ⊙ T = (ρ ∪∗ τ)⊙ T .

This specifies a sufficient condition that as long as a universe

is closed under ∪∗ operation, po will be always closed under

∪∗ operation. An application is when one intends to design a

classifying system via full rough sets and expects it is closed

under union operation, then the universe that guarantees this

is a universe that is closed under ∪∗ operation too.

B. Properties of T with sup∗(T ) = ~1

Now we look into the non-degenerated characteristic classi-

fier T . A non-degenerated characteristic classifier T is a very

weak requirement of T that every element in the universe U
has some relation with others (at least itself). In other words,

T (n) 6= ~0 for all n ∈ |U |↓. Let ρ, τ ∈ 2U be arbitrary. Let

T ∈ 2U×U be arbitrary such that sup∗(T ) = ~1.

Claim 13. ~1 = po(ρ, T ) ∪∗ po(~1 −∗ ρ, T ) iff sup∗(T ) = ~1.

Proof. By Claim 6, po(ρ, T )∪∗ po(~1−∗ ρ, T ) = ~1⊙T . Hence
~1 = ~1⊙ T iff ∀n ∈ |U |↓(T (n) 6= ~0), i.e., sup∗(T ) = ~1.

Claim 14. If sup∗(T ) = ~1, then ~1−∗po(ρ, T ) = so(~1−∗ρ, T ).

Proof. By Claim 13, it follows ~1−∗ po(ρ, T ) = [po(ρ, T ) ∪∗

po(~1−∗ ρ, T )]−∗ po(ρ, T ) = po(~1 −∗ ρ, T )−∗ po(ρ, T ).

This is an important result as it specifies the relation

between operators po and so. One can even apply it to all

the special cases.

Example 18. Property (2), (3), (8) and (9) at Section 2.3 in

Pawlak’s paper [1] are the direct instances of this claim. With

the help of other claims, property (14), (15) and (16) could

also be demonstrated (via Lemma 1, Claim 14, Claim 6, Claim

13). Take property (14) for example: ub(X∗, T ) ∪∗ lb(~1 −∗

X∗, T ) = po(X∗, T )⊙T t∪∗so(~1−∗X∗)⊙T t = po(X∗, T )⊙
T t∪∗po(~1−∗X∗, T )⊙T t = po(~1, T )⊙T t = ~1, where T is the

characteristic classifier induced by the equivalence relation.

Though the main purpose for this paper is to find out the

closeness of various set operations under the specification

operators po and so, it is worth mentioning that some of

the identities in Pawlak’s paper would fail in full rough sets.

For example, Property (18) holds if T is the equivalence-

relation-induced classifier by the fact that T t = T and

(ρ ⊙ T ) ⊙ T t = (ρ ⊙ T ) ⊙ T = ρ ⊙ T : (by Claim 14)

ub(X∗, T ) ∩∗ lb(~1−∗ X∗, T )
= (X∗ ⊙ T )⊙ T t ∩∗ (~1−∗ X∗ ⊙ T )⊙ T t

= (X∗ ⊙ T )⊙ T ∩∗ (~1−∗ X∗ ⊙ T )⊙ T
= (X∗ ⊙ T ) ∩∗ (~1 −∗ X∗ ⊙ T ) = ~0.

Incidentally, the first part of Property (4): Apr(Apr(X)) =
Apr(X) is also an instance of the fact T t = T and

(ρ⊙T )⊙T t = (ρ⊙T )⊙T = ρ⊙T when T is the equivalence-

relation-induced classifier. However, in a full relation (i.e.,

no restriction on the relation), this identity might fail. For

example X∗ =
[

1 0 1 0
]

and T =









1 0 1 0
0 0 0 1
1 0 0 1
0 1 0 1









.

Then ub(X∗, T ) =
[

1 0 1 1
]

and lb(~1 −∗ X∗, T ) =
[

0 1 0 1
]

. Hence ub(X∗, T ) ∩∗ lb(~1−∗ X∗, T ) 6= ~0.

If T is induced by a full relation, generally speaking, (~1−∗

po(ρ, T ))⊙T t 6= ~1−∗ po(ρ, T ). However, if it is restricted to

an equivalence relation, (~1−∗ po(ρ, T ))⊙T t = ~1−∗po(ρ, T ))
and this , together with Claim 14 (which yiels so(ρ, T )⊙T =
so(ρ, T ), if T is an equivalence-relation-induced classifier),

directly leads to validity of Property (20) and (21) in Pawlak’s

paper. Moreover, generally speaking, (ρ⊙ T )⊙ T t 6= ρ⊙ T ;

but, imposing a restriction with an equivalence relation leads

(ρ ⊙ T )⊙ T t = ρ ⊙ T . Hence Property (5), (7), and the De

Morgan’s laws: (22)-(29) in Pawlak’s paper are such instances.

Take (5) for example:

lb(lb(X∗, T ), T ) = so(so(X∗, T )⊙ T t, T )⊙ T t

= so(so(X∗, T ), T ) = so(~1−∗ po(~1−∗ X∗, T ), T )
= ~1−∗ po(po(~1−∗ X∗, T ), T ) = ~1−∗ po(~1−∗ X∗, T )
= so(X∗, T ) = so(X∗, T )⊙ T t = lb(X∗, T ).
Take (7) for example:

lb(X∗∩∗Y ∗, T ) = so(X∗∩∗ Y ∗, T )⊙T t = so(X∗∩∗Y ∗, T )
= ~1−∗ po(~1−∗ (X∗ ∩∗ Y ∗), T )
= ~1−∗ po((~1−∗ X∗) ∪∗ (~1 −∗ Y ∗), T )
= ~1−∗ [po(~1−∗ X∗, T ) ∪∗ po(~1−∗ Y ∗, T )]
= [~1−∗ po(~1−∗ X∗, T )] ∩∗ [~1−∗ po(~1 −∗ Y ∗, T )]
= so(X∗, T ) ∩∗ so(Y ∗, T )
= so(X∗, T )⊙ T t ∩∗ so(Y ∗, T )⊙ T t

= lb(X∗, T ) ∩∗ lb(Y ∗, T ).

Theorem 2 (Closeness: ({po(ρ, T ) : ρ ∈ S}, c∗) and

({so(ρ, T ) : ρ ∈ S}, c∗)). If sup∗(T ) = ~1 and S ⊆ 2U

is c∗−closed, then {po(ρ, T ) : ρ ∈ S} is c∗− closed iff

{so(ρ, T ) : ρ ∈ S} is c∗− closed.

Proof. Let ρ ∈ S be arbitrary. By Claim 14, we have ~1 −∗

ρ ⊙ T = so(~1 −∗ ρ, T ) = ~1 −∗ [~1 −∗ so(~1 −∗ ρ, T )] = ~1 −∗

so(η, T ) = (~1 −∗ η) ⊙ T for some η ∈ S; similarly, ~1 −∗

so(ρ, T ) = ~1 −∗ [~1 −∗ po(~1 −∗ ρ, T )] = ~1 −∗ po(δ, T ) =
so(~1−∗ δ, T ) for some δ ∈ S.

This theorem says that for any non-degenerated characteris-

tic classifier and a c∗-closed universe (or subset), the operators

po and so behaves identically with respect to the closeness of

c∗ operation. This is a good feature, since it simplifies some

derivations when one tries to find out the c∗-closeness. He

then only need to check one of the two operators.
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Theorem 3. If sup∗(T ) = ~1 and S ⊆ 2U is c∗-closed, then

{so(ρ, T ) : ρ ∈ S} is isomorphically c∗-closed iff {po(ρ, T ) :
ρ ∈ S} is isomorphically c∗-closed.

Proof. Let ρ ∈ S be arbitrary. By Claim 14, ~1−∗ po(ρ, T ) =
so(~1 −∗ ρ, T ) = ~1 −∗ so(ρ, T ) = po(~1 −∗ ρ, T ); similarly,
~1 −∗ so(ρ, T ) = po(~1 −∗ ρ, T ) = ~1 −∗ po(ρ, T ) = so(~1 −∗

ρ, T ).

Theorem 4 (Closeness:({so(ρ, T ) : ρ ∈ S},∩∗) and

({po(ρ, T : ρ ∈ S)},∪∗)). If sup∗(T ) = ~1 and S ⊆ 2U

is c∗−closed, then {so(τ, T ) : τ ∈ S} is ∩∗−close iff

{po(τ, T ) : τ ∈ S} is ∪∗-closed.

Proof. Let ρ, τ ∈ S be arbitrary. By Claim 14, po(ρ, T ) ∪∗

po(τ, T ) = ~1 −∗ [so(~1 −∗ ρ, T ) ∩∗ so(~1 −∗ τ, T )] = ~1 −∗

so(η, T ) = po(~1 −∗ η, T ) for some η ∈ S. Similarly,

so(ρ, T )∩∗ so(τ, T ) = ~1−∗ [po(~1−∗ ρ, T )∪∗ po(~1−∗ τ, T )] =
~1−∗ po(δ, T ) = so(~1−∗ δ, T ) for some δ ∈ S.

Theorem 5. If sup∗(T ) = ~1 and S ⊆ 2U is c∗-closed, then

{so(ρ, T ) : ρ ∈ S} is isomorphically ∩∗-closed iff {po(ρ, T ) :
ρ ∈ S} is isomorphically ∪∗-closed.

Proof. Let ρ, τ ∈ S be arbitrary. By Claim 14, po(ρ, T ) ∪∗

po(τ, T ) = ~1−∗[so(~1−∗ρ, T )∩∗so(~1−∗τ, T )] = ~1−∗so((~1−∗

ρ)∩∗ (~1−∗ τ), T ) = ~1−∗ so(~1−∗ ρ∪∗ τ, T ) = po(ρ∪∗ τ, T ).
Similarly, so(ρ, T )∩∗so(τ, T ) = ~1−∗ [po(~1−∗ρ, T )∪∗po(~1−∗

τ, T )] = ~1−∗ po(~1−∗ ρ ∩∗ τ, T ) = so(ρ ∩∗ τ, T ).

Corollary 3. If sup∗(T ) = ~1 and S ⊆ 2U is ∪∗−closed,

∩∗−closed and c∗−closed, then {so(ρ, T ) : ρ ∈ S} is

isomorphically ∩∗−closed.

Proof. From Claim 6, {po(ρ, T ) : ρ ∈ S} is isomorphically

∪∗-closed and thus by this theorem, the result follows.

Theorem 4 and 5 show the relation between ({po(ρ, T ) :
ρ ∈ S},∪∗) and ({so(ρ, T ) : ρ ∈ S},∩∗). This again

simplifies our derivations or computations since we only have

to check or compute either one of the two operators. It is also

useful when one tries to find a universe that will keep the

relations hold, he only needs to consider one operator.

Claim 15. so(ρ, T ) ∪∗ so(τ, T ) = ~1 −∗ [po(~1 −∗ ρ, T ) ∩∗

po(~1−∗ τ, T )].

Proof. By Claim 14, it follows so(ρ, T )∪∗ so(τ, T ) = so(~1−
(~1−ρ), T )∪∗so(~1−(~1−τ), T ) = [~1−∗po(~1−∗ρ, T )]∪∗ [~1−∗

po(~1−∗ τ, T )] = ~1−∗ [po(~1−∗ ρ, T ) ∩∗ po(~1−∗ τ, T )].

Example 19. Property (22) at Section 2.3 in Pawlak’s paper

[1] is a direct instance of this claim (via Lemma 1).

Claim 16. po(ρ, T ) ∩∗ po(τ, T ) = ~1 −∗ [so(~1 −∗ ρ, T ) ∪∗

so(~1−∗ τ, T )].

Proof. By Claim 14, it follows po(ρ, T ) ∩∗ po(τ, T ) = [~1−∗

so(~1−∗ ρ, T )]∩∗ [~1−∗ so(~1−∗ τ, T )] = ~1−∗ [so(~1−∗ ρ, T )∪∗

so(~1−∗ τ, T )].

Theorem 6 (Closeness:({so(ρ, T ) : ρ ∈ S},∪∗) and

({po(ρ, T ) : ρ ∈ S},∩∗)). If sup∗(T ) = ~1 and S ⊆ 2U

is c∗−closed, then {so(ρ, T ) : ρ ∈ S} is ∪∗−closed iff

{po(ρ, T ) : ρ ∈ S} is ∩∗-closed.

Proof. Let ρ, τ ∈ S be arbitrary. By Claim 16, po(ρ, T ) ∩∗

po(τ, T ) = ~1 −∗ [so(~1 −∗ ρ, T ) ∪∗ so(~1 −∗ τ, T )] = ~1 −∗

so(η, T ) = po(~1 −∗ η, T ) for some η ∈ S , by Claim 14;

similarly, by Claim 15, so(ρ, T )∪∗ so(τ, T ) = ~1−∗ [po(~1−∗

ρ, T ) ∩∗ po(~1 −∗ τ, T )] = ~1 −∗ po(δ, T ) = so(~1 −∗ δ, T ) for

some δ ∈ S, by Claim 14.

Theorem 6 and the following 7 show the relation between

({po(ρ, T ) : ρ ∈ S},∩∗) and ({so(ρ, T ) : ρ ∈ S},∪∗). As

analyzed previously, this again simplifies our computations

since we only have to check one of the two operators p0 and

so. It is also useful when one tries to construct or design a

universe that will keep these relations hold, he only has to

consider one operator instead.

Theorem 7. If sup∗(T ) = ~1 and S ⊆ 2U is c∗-closed, then

{so(ρ, T ) : ρ ∈ S} is isomorphically ∪∗-closed iff {po(ρ, T ) :
ρ ∈ S} is isomorphically ∩∗-closed.

Proof. Let ρ, τ ∈ S be arbitrary. By Claim 14, 15 and 16, it

follows po(ρ, T )∩∗ po(τ, T ) = ~1−∗ [so(~1−∗ ρ, T )∪∗ so(~1−∗

τ, T )] = ~1 −∗ so((~1 −∗ ρ) ∪∗ (~1 −∗ τ), T ) = ~1 −∗ so(~1 −∗

ρ ∩∗ τ, T ) = po(ρ ∩∗ τ, T ). Similarly, so(ρ, T ) ∪∗ so(τ, T ) =
~1−∗ [po(~1−∗ρ, T )∩∗po(~1−∗τ, T )] = ~1−∗po(~1−∗ρ∪∗τ, T ) =
so(ρ ∪∗ τ, T ).

VII. CONCLUSIONS AND FUTURE WORK

I provide an approach to analyze full rough sets, i.e., the

usual rough sets, but with an arbitrary binary relation. The

framework for this generalization offers a different perspec-

tive to look into Pawlak’s rough sets. In this paper, I have

analyzed and extended Pawlak’s approach for characterization

and defined several operators to accommodate such extension.

I define the set specifications by two operators: probable

operator and sure operator. These operators serve as logi-

cal conditions. I then study the properties of these logical

operations. These operators also offer some computational

advantages. I also study the properties of the closeness of

set operations regarding full rough sets and compare their

differences with Pawlak’s rough sets. With this approach, one

would be able to construct more complicated classifiers based

on arbitrary relations. This could also enable one to define

a classifier based on his own design or comprehension. For

further research, one can extend the usual ∪-operation when

defining a rough set. Since we have already separated the set

specifications from such operation and known the properties

of these set specifications, the introduction of other alternative

of ∪-operation becomes feasible.
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