
High quality, low latency in-home streaming of

multimedia applications for mobile devices

Daniel Pohl∗, Stefan Nickels†, Ram Nalla∗, Oliver Grau∗

∗ Intel Labs

Intel Corporation

Email: {Daniel.Pohl|Ram.Nalla|Oliver.Grau}@intel.com
† Intel Visual Computing Institute

Saarland University

Saarbrücken

Email: nickels@intel-vci.uni-saarland.de

Abstract—Today, mobile devices like smartphones and tablets

are becoming more powerful and exhibit enhanced 3D graphics

performance. However, the overall computing power of these

devices is still limited regarding usage scenarios like photo-

realistic gaming, enabling an immersive virtual reality experience

or real-time processing and visualization of big data. To overcome

these limitations application streaming solutions are constantly

gaining focus. The idea is to transfer the graphics output of

an application running on a server or even a cluster to a

mobile device, conveying the impression that the application

is running locally. User inputs on the mobile client side are

processed and sent back to the server. The main criteria for

successful application streaming are low latency, since users

want to interact with the scene in near real-time, as well

as high image quality. Here, we present a novel application

framework suitable for streaming applications from high-end

machines to mobile devices. Using real-time ETC1 compression

in combination with a distributed rendering architecture we

fully leverage recent progress in wireless computer networking

standards (IEEE 802.11ac) for mobile devices, achieving much

higher image quality at half the latency compared to other in-

home streaming solutions.

I. INTRODUCTION

T
HE ADVENT of powerful handheld devices like smart-

phones and tablets offers the ability for users to access

and consume media content almost everywhere without the

need for wired connections. Video and audio streaming tech-

nologies have dramatically evolved and have become common

technologies. However, in scenarios where users need to be

able to interact with the displayed content and where high

image quality is desired, video streaming derived technolo-

gies are typically not suitable since they introduce latency

and image artifacts due to high video compression. Remote

desktop applications fail when it comes to using 3D graphics

applications like computer games or real-time visualization

of big data in scientific HPC applications. Enabling these

applications over Internet connections suffers significantly

due to restrictions induced by the limits of today’s Internet

bandwidth and latency. Streaming those in local networks,

commonly referred to as in-home streaming, still remains a

very challenging task in particular when targeted at small

devices like tablets or smartphones that rely on Wi-Fi con-

nections.

In this paper, we present a novel lightweight framework

for in-home streaming of interactive applications to small

devices, utilizing the latest developments in wireless computer

networking standards (IEEE 802.11ac [1]) for mobile devices.

Further, we use a distributed rendering architecture [2] in

combination with a high-quality, hardware-accelerated decom-

pression scheme utilizing the capabilities of modern handheld

devices, resulting in much higher image quality and half the

latency compared to other streaming solutions.

The setup is shown in Figure 1. The main application

is running on a server or even a group of servers. Via

network connection, the graphical output of the server ap-

plication is streamed to a client application running on a

mobile device. In addition, a back channel connection is

present that collects user input events on the client and

sends it back to the server. The server reacts to this in-

put and produces an updated image, which is then trans-

ferred back and displayed at the client. The Quality of

Experience is determined mainly by two factors: firstly, the

delay between a user input issued on the client and the

server-provided graphics refresh displayed at the client should

be as low as possible. Secondly, the graphics quality of the

streamed application on the client side should be as high as

possible, even during scenarios with high motion.

II. RELATED WORK

In this section we give an overview of known streaming

technologies and applications, which we separate into three

classes.

Classical desktop sharing and terminal applications: Ex-

amples are Microsoft’s Remote Desktop Connection [3] or

VNC (Virtual Network Computing) [4]. These are optimized

for typical 2D applications like text processing or spreadsheet

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 687–694

DOI: 10.15439/2014F42

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 687

Fig. 1. Distributed rendering, in-home streaming setup targeted at mobile

devices. The four servers are rendering an image. Over Gigabit-Ethernet they

transport it to a router with support for IEEE 802.11ac. The router sends the

image data wirelessly to the client device (smartphone) which displays it.

calculations. 3D support is typically very limited and, if

supported, not capable to cope with the demands of real-time

3D games and visualizations.

Cloud gaming: The second class of streaming technologies

has emerged from the field of computer gaming. Popular

commercial solutions like Gaikai [5] or OnLive [6] aim at

streaming applications, mainly games, via Internet connection

from a cloud gaming server to a user’s desktop. There are

also open source approaches like Gaming Anywhere [7]. All

of these are specifically optimized for usage with Internet

connections and typically rely on the H.264/MPEG-4 AVC [8]

video codec for streaming graphics. Gaikai and OnLive require

a 3-5 Mbps internet connection at minimum and end-to-end

latency values are at best 150 ms under optimal conditions

(c.f. [7]). OnLive uses a proprietary hardware compression

chip in dedicated gaming servers hosted by OnLive. Gaikai’s

approach has meanwhile been integrated into the PlayStation 4

console [9] after Sony aquired the company and has been

renamed to "PlayStation Now" [10]. The service is limited

on both the client and server side to dedicated hardware.

In general, cloud gaming approaches are not optimized for

in-home streaming, sacrificing image quality for lowering

network traffic and reducing processing latency.

Dedicated in-home streaming: The third category are ap-

proaches designed for delivering applications to other devices

in a local network using wired or wireless connections. Re-

cently, Valve’s game distribution platform Steam [11] intro-

duced in-home streaming support in a beta version. Nvidia

released a portable game console named Shield [12] in 2013,

based on current mobile device hardware running an Android

operating system. From a PC a game can be streamed to

the console. Both approaches rely again on the H.264 codec

and are exclusively capable of streaming games. In addition,

Nvidia Shield is bound to Nvidia graphics cards and mobile

platform architectures. A further streaming approach, which

also handles in-home usage is Splashtop [13]. It can stream

any application, game or the complete desktop from a single

machine using H.264 compression.

We are not considering solutions like Miracast [14], Intel’s

WiDi [15] or Display as a Service [16] as these are aimed

at replicating pixels to another display, not at streaming

interactive applications. Further we exclude approaches like

Games@Large [17] that stream hardware-specific 3D function

calls that are usually not compatible with mobile devices.

III. SYSTEM

In the following, we will propose a new framework for

streaming applications from one or many high-end machines

to a mobile device. Using a hardware-enabled decompression

scheme in combination with a distributed rendering approach,

we fully utilize the potential of recent progress in wireless

computer networking standards on mobile devices. With this

setup we achieve higher image quality and significantly lower

latency than other established in-home streaming approaches.

We first give an overview of the hardware setup used in our

approach. Then we explain our decision on the compression

scheme we used and after that we talk about the details of our

software framework and application setup.

Our general system setup is depicted in Figure 1. The

graphical output of a server application is streamed to a mobile

device, in this case a smartphone, running the client mobile

app. The server side consists of four machines in a distributed

rendering setup. All devices operate in the same LAN. The

server machines are connected by wire to a router which

additionally spans a Wi-Fi cell to which the smartphone is

connected.

A. Hardware Setup

Here, we describe the hardware specifics of our servers, the

client and the network devices.

Our distributed rendering setup consists of four dual-socket

workstations using the Intel Xeon X5690 CPUs (6 cores, 12

threads, 3.46 GHz) and the Intel 82575EB Gigabit Ethernet

NIC. The client is a LG Nexus 5 smartphone which uses the

Snapdragon 800 CPU (4 cores, 2.3 GHz) and the Broadcom

BCM4339 802.11ac wireless chip. The devices are connected

together through a Netgear R6300 WLAN Gigabit Router.

The servers use wired Gigabit Ethernet to connect to the

four Ethernet ports of the router. The smartphone connects

wirelessly over 802.11ac (1-antenna setup).

B. Compression Setup

In this section we explain why we have chosen the Er-

icsson Texture Compression format (ETC1) [18] over other

commonly used methods.

688 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

First we have a look at how displaying of streamed content

is usually handled on the client side. Using the popular video

library FFmpeg [19] and the H.264 codec an arriving stream at

the client needs to be decoded. Using a CPU-based pipeline the

decoding result is an image in the YUV420 [20] color space.

As this format is usually not natively supported for displaying,

the data is converted into the RGB or RGBA format. From

there, the uncompressed image data will be uploaded to the

graphics chip to be displayed.

If a hardware H.264 decoder is available then the arriving

stream needs to be converted into packets, suited for that

hardware unit and uploaded to it. The decoding process is

started over a proprietary API and usually acts as a black

box. Some decoders only handle parts of the decompression

procedure; others do the full work and offer an option for

either directly displaying the content or sending it back into

CPU memory. Hardware H.264 decoders are usually optimized

to enable good video playback, but not specifically for low-

latency.

Next we have a look at our approach on displaying streamed

content. An important feature of modern mobile device GPUs

(supporting OpenGL ES 1.0 or higher) is that they have

native support for displaying ETC1 textures. Therefore once an

ETC1 compressed image arrives at the client we can directly

upload it to the graphics chip where decoding to RGB values

happens. Given the fixed compression ratio of ETC1 of 1:6 for

RGB data the required transfer to the graphics chip is lower

compared to uploading uncompressed RGB or RGBA data as

described in the CPU-based pipeline for H.264.

ETC1 does an image by image (intra-frame) compression

instead of using information across multiple frames (inter-

frame). Therefore even if there is a lot of motion between

frames a robust image quality is guaranteed. The video

codec MJPEG [21] also has this characteristic, but as it

lacks hardware decompression support on mobile devices it is

not suited as it still requires non-accelerated decompression

and the more bandwidth-intensive upload of uncompressed

RGB/RGBA pixels to the GPU. Nevertheless, when compar-

ing the image quality of an intra-frame with an inter-frame

approach (like H.264) at the same bit rate, the latter will

usually be of higher quality. However, codecs with inter-frame

compression usually have higher latency.

C. Software Setup

Here, we describe the software setup and the communication

between the client and server to enable streamed, distributed

rendering.

The Microsoft Windows 7, 64-bit servers are running our

custom written HPC ray tracing software, partly accelerated

by Intel Embree [22] and multi-threaded through Intel Cilk

Plus [23]. The ray tracer can be given the task to only

render certain regions of the complete image. The ray tracer

hands over the image section to the streaming module of our

Fig. 2. Tasks of the client and server architecture.

framework. This module can compress image data into the

ETC1 format by using the etcpak library [24] which we multi-

threaded using Intel Cilk Plus. Compressed data can be sent

to the client using TCP/IP, supported by libSDL_net 2.0 [25].

Further, the server listens on a socket for updates that the client

sends.

The client runs Android 4.4.2 and executes an app that we

wrote using libSDL 2.0 [25], libSDL_net 2.0 and OpenGL

ES 2.0. All relevant logic has been implemented using the

Android Native SDK (NDK r9b).

In the initialization phase the client informs the servers

about the rendering resolution and which parts the render

server should handle, parameters for loading content, and

initial camera settings for rendering. Then the client will

receive an image (or part of it) from the server. After the

initialization steps the following procedure as described in

Figure 2 will be processed every frame. The client checks

for user input (like touch) and interprets this into changes in

the camera setup (this step can also be done on the server

side to stay application-independent). Those new settings, an

unique time stamp and other application relevant data (total of

192 bytes) are then sent to the server. The server receives this

DANIEL POHL ET AL.: HIGH QUALITY, LOW LATENCY IN-HOME STREAMING 689

over the network and updates its internal states. An image (or

part of it) is rendered, then compressed to ETC1 and sent to

the client. There, the compressed image data is uploaded as an

OpenGL ES texture. Next, a quad is drawn on the screen using

that texture at the representing areas that have been assigned

earlier to the rendering server.

Our used rendering algorithm, ray tracing, is known as an

"embarrassingly parallel" problem [26] with very high scala-

bility across the number of cores, CPUs and servers, because

rendering the image can be split into smaller, independent

tasks without extra effort. Therefore for the multi-server setup

we naïvely split the image into four parts (one for each server),

dividing the horizontal resolution by 4 and keeping the full

vertical resolution. In order to achieve good scaling for a high

number of servers we recommend instead using smaller tiles

and to smartly schedule them over e.g. task stealing [27]. In

addition to Figure 2 the client will now send one packet (192

bytes) to each server regarding the updates. The client will

await the first part of the image from the first server, then

upload it as OpenGL ES texture, then receive the second part

of the image and so on.

As exemplary rendering content the "island" map from the

game Enemy Territory: Quake Wars1 is used.

It is our goal to make a very smooth experience by fully

utilizing the display refresh rate of the smartphone (60 Hz).

Given the properties of our hardware setup we choose to

render at 1280×720 pixels instead of the full physical display

resolution of the Nexus 5 (1920×1080 pixels) as it was in the

current set-up not possible to transit higher resolutions with 60

Hz due to limitations of the data rate of a 1-antenna 802.11ac

setup in current smartphones.

IV. EVALUATION

Here, we evaluate our and other in-home streaming ap-

proaches in terms of data rate, latency, image quality and

power consumption. We compare our implementation with

Nvidia Shield2 and Splashtop3. Steam’s in-home streaming is

currently still in beta and we encountered a high amount of

frame drops during our tests, so we will not further compare

it here.

A. Data Rate

We discuss the available data rate and the implications of it.

The wireless networking standard 802.11ac allows a maximum

data rate of 433 Mbit/s (for a 1-antenna setup). Hardware tests

show an effective throughput of 310 Mbit/s (38.75 MB/s) for

our router [28]. As our rendering resolution is 1280 × 720

pixels and has 8 bit per color channel this makes about 2.64

MB per image for uncompressed RGB data. Using ETC1 with

the fixed compression ratio of 1:6 leads to 0.44 MB per image.

1id Software and Splash Damage
2Android 4.3, System Update 68
3Splashtop Personal 2.4.5.8 and Splashtop Streamer 2.5.0.1 on the Nexus

5

Assuming the effective throughput this results in a maximum

of about 88 frames per second (fps).

B. Latency

We have a detailed look at the latency of our and other

streaming approaches.

The total latency from an user input to an update on the

screen (motion-to-photons time) can have various causes of lag

in an interactive streaming setup. The user input takes time to

get recognized by the operating system of the client. Next, the

client application needs to react on it. However, especially in a

single-threaded application, the program might be busy doing

other tasks like receiving image data. Afterwards, it takes time

to transfer that input (or its interpretation) to the rendering

server over network. There, the server can process the new

data and start calculating the new image. Then compression

takes place and the data is sent to the client, which might

be delayed if the client is still busy drawing the previous

frame. Once the image data is received, it will be uploaded

to the GPU for displaying. Fixed refresh rates through VSync

might add another delay before the frame can be shown. Some

displays have input lag, which describes the time difference

between sending the signal to the screen and seeing the actual

content there. Additional delay happens when the client or

server use multiple buffers for graphics. 3D application use

double buffering, sometimes even triple buffering, to smooth

the average frame rate. In our setup we are keeping the number

of buffers as low as possible.

For the following measurements of our implementation we

took the setup with four servers. As the distributed rendering

approach does not work with the solutions we are comparing

to, we modified the setup to use only one server and a very

simple scene that achieves the same frame rate on a single

machine as our four servers in the more complex rendering

scenario. That way we have a fair comparison of the latency

across the approaches. To get accurate motion-to-photons time

we captured videos of user input and waiting for the update on

the screen. Those videos are sampled at 480 frames per second

using the Casio Exilim EX-ZR100 camera. In a video editing

tool we analyzed the sequence of frames to calculate the

total latency. Using our approach led to a motion-to-photons

latency of 60 to 80 ms. On Nvidia Shield, which uses H.264

video streaming, we measured 120 to 140 ms. The Splashtop

streaming solution, also relying on H.264, shows 330 to 360

ms of lag.

C. Image Quality

In this section we compare the image quality of our method

with Splashtop, Nvidia Shield and with creating our own

H.264 stream with different bit rate settings.

To analyze the difference in image quality we chose one

image of a sequence in which a lot of camera movement is

happening as shown in Figure 3. We quantify the image quality

using the metrics of Peak Signal-to-Noise Ratio (PSNR) [29]

690 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 3. Left: Previous frame. Right: Frame for analysis with marked red area.

and Structural Similarity (SSIM) [30] index, which takes

human visual perception into account. For Nvidia Shield and

Splashtop we were not able to test the distributed rendering

setup, so we precalculated the ray traced frames offline and

played them back from a single machine at the same speed

that they would have been generated using four servers. That

way a fair comparison of the image quality happens across

all approaches. In Table I one can see that our approach has

better image quality compared to Nvidia Shield, Splashtop and

H.264 encoding at 5 Mbit/s. As expected, higher bit rate inter-

frame encoding offers even higher image quality: going to 50

MBit/s using H.264 succeeds the quality delivered by ETC1.

Using an even higher bit rate than 50 MBit/s during H.264

encoding does practically result in the same image quality for

our setup.

D. Performance

Here, we report the rendering performance of our approach,

the effective throughput and which tasks consume how much

time.

We are able to achieve 60 frames per second at 1280× 720

pixels. Given the ETC1 compression ratio of 1:6, this cor-

responds to an effective throughput of 210.93 Mbit/s (26.36

MB/s). The relevant components on the server side are ren-

dering of the image region (∼7 ms), network transfer (∼3 ms)

and ETC1 compression (∼2 ms). On the client side network

transfer (∼12 ms) and OpenGL ES commands including

swapping the display buffer and waiting on VSync (∼4 ms)

are the most time consuming tasks.

E. Battery Drain

Here we compare the battery drain of our approach, Splash-

top and a locally rendered 3D application on the same smart-

phone and Nvidia Shield.

For the Nexus 5 we use the "CurrentWidget" app [31]. In our

approach we observed an average battery usage of 850 mA,

605 mA for Splashtop and 874 mA for the locally rendered

3D game "Dead Trigger 2" [32] . The higher battery usage of

our approach compared to Splashtop can be explained by the

fact that we are handling much more data. The Nvidia Shield

console uses different hardware; therefore the architectural

difference has impact on the result and cannot be compared

directly. Nevertheless, we report the number for completeness.

The "CurrentWidget" app does not work on Nvidia Shield, so

we measured the drop in percentage of the available battery

power for an hour and by knowing the total battery capacity

we got a value of 880 mA.

V. ENHANCED APPLICATIONS

In this section we have a look on various application

scenarios that are enhanced by our high-quality, low latency in-

home streaming solution. These can vary widely as the content

of the displayed image is independent of the internals of the

used compression, transportation and displaying method.

High-quality Gaming As there are already products evolving

for in-home streaming for games, like Nvidia Shield and

Steam’s in-home streaming, this could potentially be an area

of growth. The benefits are e.g. to play on the couch instead

of sitting in front of a monitor or to play in another room

where an older device is located that would not be able to

render the game in the desired high quality. In fast-paced

action games like first person shooters it is important to be able

to react as fast as possible, therefore our reduced latency setup

enriches the gaming experience. The commercially available

solutions for in-home streaming of games are typically limited

to using the rendering power of only one machine. Through

the distributed rendering approach we potentially enable closer

to photo-realism games by combining the rendering power of

multiple machines.

Virtual Reality for Smartphones For virtual reality there

are projects like FOV2GO [33] and Durovis Dive [34] (see

Figure 4) that developed cases for smartphones with wide-

angle lenses attached to it. Once this is strapped on the head

of a user, mobile virtual reality can be experienced. For a good

Quality of Experience high-quality stereo images need to be

rendered that have pre-warped optical distortion compensation

to cancel out spatial and chromatic distortions of the lenses.

While this works good on desktop PCs [35], the performance

DANIEL POHL ET AL.: HIGH QUALITY, LOW LATENCY IN-HOME STREAMING 691

Original H.264

211 Mbit/s

H.264

50 Mbit/s

ETC1 H.264 5 Mbit/s Splashtop Nvidia Shield

PSNR - 47.0 46.9 37.3 32.9 31.0 29.8

SSIM 1.0 0.997 0.997 0.978 0.877 0.861 0.779

TABLE I
PSNR and SSIM values for different codecs and platforms, exemplified by respective image sections as marked in Figure 3. Higher values are better. While

with a high bit rate the image quality of H.264 surpasses ETC1, the later approach has significantly lower latency, which we show in section IV-B.

and quality that smartphones can achieve today is not very

compelling for virtual reality. To achieve higher image quality,

these applications have to switch from a local to a server-based

rendering approach. As latency is an even more important

issue in virtual reality, our latency-optimized approach is in

particular suitable for this scenario. Solutions with a latency

of 120 to 140 ms (Nvidia Shield) would lead to much more

motion sickness compared to a latency of 60 to 80 ms.

Nevertheless, optimizing virtual reality streaming applications

for even lower latency might become more relevant in the

future.

Fig. 4. A mobile virtual reality platform that can be strapped on the head.

In front of the case a smartphone is plugged in. Lenses bring the image into

focus for the viewer. To compensate for optical distortions a high-quality, pre-

warped stereoscopic image is used and streamed with low latency using our

framework.

Wearables: One of the emerging trends in the space of

wearables are smartwatches. E.g. the Neptune Pine [36] is

a fully independent Android device, equipped with its own

CPU and GPU, 802.11n Wi-Fi and a 320x240 resolution

display. Size, battery life and cost are limiting factors, so these

devices are usually equipped with less capable processing units

compared to other mobile devices. There is a chance that

ETC1 streaming could unlock the full power of smartwatches

- independent of their weak internal components. Further

one could consider having the more powerful smartphone or

tablet acting as a rendering server to feed the low-resolution

smartwatch.

HPC and Big Data: A scenario where our streaming solu-

tion is also well suited for is real-time visualization of data-

intensive computations like in the big data and HPC domain.

Here, specialized applications either run analyses on huge

amounts of data or computationally intensive calculations,

typically relying on powerful back ends with a high amount

of system memory. Typical application domains are health

sciences, simulations in engineering, geographic information

systems or marketing and business research. Being able to

control, monitor and visualize these computations running

on big server farms from small handheld devices is a very

convenient benefit. Our solution, in comparison to other in-

home streaming approaches, enhances graphics streaming for

HPC applications as it supports a distributed scheme for

rendering natively at high-quality and low latency. A testbed

where we are currently integrating our streaming solution

into is the molecular modeling and visualization toolkit

BALL/BALLView [37], [38], see Figure 5. In BALLView,

692 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

running computationally demanding molecular dynamics sim-

ulations in combination with real-time ray tracing visualization

on complex molecular data sets [39] requires a powerful

compute server. Operating these experiments from a handheld

device like a tablet is considered highly preferable.

Fig. 5. Molecular visualization from BALLView displayed on a mobile device.

VI. CONCLUSION AND OUTLOOK

We conclude what we have demonstrated in this paper and

give an outlook on future work.

We have shown a new approach to in-home streaming that

fully leverages the latest development in wireless network

standards and utilizes a hardware-accelerated intra-frame de-

compression scheme supported by modern mobile devices.

The approach is well suited for streaming of interactive real-

time applications and offers significantly higher image quality

and half the latency in comparison to other recent solutions

targeting this space.

Further optimizations like hardware encoders for ETC,

switching to ETC2 [40] compression and using a 2×2 antenna

network connection setup, as supported by IEEE 802.11ac,

will lead to even higher image quality, faster performance and

will enable 1080p at 60 fps.

ACKNOWLEDGEMENTS

Thanks to Timo Bolkart (MMCI, Saarland University) for

his continued support during the writing of this paper. Thanks

to Sven Woop for his support with Intel Embree. We thank

Bradley Jackson for his feedback. Furthermore, the authors

acknowledge financial support through the Intel Visual Com-

puting Institute (IVCI) of Saarland University.

REFERENCES

[1] “IEEE Standard 802.11ac-2013 (Amendment to IEEE Std 802.11-
2012),” 12 2013.

[2] A. Chalmers and E. Reinhard, “Parallel and distributed photo-realistic
rendering,” in Philosophy of Mind: Classical and Contemporary Read-

ings. Oxford and. University Press, 1998, pp. 608–633.
[3] Microsoft Corporation, “Remote Desktop Connec-

tion,” http://windows.microsoft.com/en-us/windows/

connect-using-remote-desktop-connection.
[4] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual

network computing,” IEEE Internet Computing, vol. 2, no. 1, pp. 33–
38, 1998. doi: 10.1109/4236.656066

[5] Gaikai Inc., “Gaikai,” http://www.gaikai.com.

[6] OnLive Inc., “Onlive,” http://www.onlive.com.

[7] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen,
“GamingAnywhere: An open cloud gaming system,” 2013. doi:

10.1145/2483977.2483981 pp. 36–47.

[8] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

doi: 10.1109/TCSVT.2003.815165
[9] Sony, “PlayStation 4,” http://us.playstation.com.

[10] ——, “PlayStation Now,” http://us.playstation.com/playstationnow.

[11] Valve Corporation, “Steam,” http://store.steampowered.com.

[12] Nvidia Corporation, “Nvidia Shield,” http://shield.nvidia.com.

[13] Splashtop Inc., “Splashtop personal,” http://www.splashtop.com.
[14] Wi-Fi Alliance, “Miracast,” http://www.wi-fi.org/

wi-fi-certified-miracast\%E2\%84\%A2.
[15] Intel Corporation, “Intel wireless display,” https://www-ssl.intel.com/

content/www/us/en/architecture-and-technology/intel-wireless-display.
html.

[16] A. Löffler, L. Pica, H. Hoffmann, and P. Slusallek, “Networked displays

for VR applications: Display as a Service (DaaS),” in Virtual Environ-

ments 2012: Proceedings of Joint Virtual Reality Conference of ICAT,

EuroVR and EGVE (JVRC), 10 2012. doi: 10.2312/EGVE/JVRC12/037-

044
[17] I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisen, and

P. Fechteler, “Games@Large graphics streaming architecture,” 2008. doi:
10.1109/ISCE.2008.4559473

[18] J. Ström and T. Akenine-Möller, “ipackman: High-quality, low-
complexity texture compression for mobile phones,” vol. 2005, 2005.
doi: 10.1145/1071866.1071877 pp. 63–70.

[19] FFmpeg project, “FFmpeg,” http://www.ffmpeg.org.
[20] “YUV420,” http://www.fourcc.org/yuv.php\%23IYUV.

[21] D. Vo and T. Nguyen, “Quality enhancement for motion JPEG us-

ing temporal redundancies,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 18, no. 5, pp. 609–619, 2008. doi:
10.1109/TCSVT.2008.918807

[22] Woop, S. and Benthin, C. and Wald, I., “Embree ray tracing kernels for

the Intel Xeon and Intel Xeon Phi architectures,” http://embree.github.

io/data/embree-siggraph-2013-final.pdf.
[23] Madhusood, A., “Best practices for using Intel Cilk Plus,” Intel Corpo-

ration, White Paper, 7 2013, http://software.intel.com/sites/default/files/

article/402486/intel-cilk-plus-white-paper.pdf.
[24] Taudul, B., “etcpak 0.2.1: The fastest ETC compressor on the planet,”

https://bitbucket.org/wolfpld/etcpak.

[25] “Simple DirectMedia Layer,” http://libsdl.org.

[26] G. Fox, R. Williams, and G. Messina, Parallel Computing works!, 1st ed.
Morgan Kaufmann, 1994.

[27] J. Singh, A. Gupta, and M. Levoy, “Parallel visualization algorithms:

performance and architectural implications,” Computer, vol. 27, no. 7,
pp. 45–55, 1994. doi: 10.1109/2.299410

[28] E. Ahlers, “Rasante Datenjongleure,” c’t Magazin, vol. 1, pp. 80–89,

2014.
[29] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Commu-

nications. Prentice Hall, 2002, p. 29.
[30] Z. Wang, L. Lu, and A. Bovik, “Video quality assessment based on

structural distortion measurement,” Signal Processing: Image Com-

munication, vol. 19, no. 2, pp. 121–132, 2004. doi: 10.1016/S0923-

5965(03)00076-6

[31] RmDroider, “CurrentWidget: Battery Monitor,” http://code.google.com/

p/currentwidget/.
[32] MADFINGER Games, “Dead Trigger 2,” https://play.google.com/store/

apps/details?id=com.madfingergames.deadtrigger2.
[33] “FOV2GO,” http://projects.ict.usc.edu/mxr/diy/fov2go/.

[34] Shoogee GmbH & Co KG, “Durovis Dive,” http://www.durovis.com/
index.html.

[35] D. Pohl, G. Johnson, and T. Bolkart, “Improved Pre-Warping for Wide

Angle, Head Mounted Displays,” 2013. doi: 10.1145/2503713.2503752
pp. 259–262.

[36] Neptune Computer Inc., “Neptune Pine,” http://www.neptunepine.com.

DANIEL POHL ET AL.: HIGH QUALITY, LOW LATENCY IN-HOME STREAMING 693

[37] A. Hildebrandt, A. Dehof, A. Rurainski, A. Bertsch, M. Schumann,
N. Toussaint, A. Moll, D. Stockel, S. Nickels, S. Mueller, and O. Lenhof,

H.-P.and Kohlbacher, “BALL - Biochemical Algorithms Library 1.3,”
BMC Bioinformatics, vol. 11, no. 1, p. 531, 2010. doi: 10.1186/1471-

2105-11-531

[38] A. Moll, A. Hildebrandt, H.-P. Lenhof, and K. O., “BALLView: a tool for
research and education in molecular modeling.” Bioinformatics, vol. 22,

no. 3, pp. 365–366, 2006. doi: 10.1093/bioinformatics/bti818

[39] L. Marsalek, A. Dehof, I. Georgiev, H.-P. Lenhof, P. Slusallek, and

A. Hildebrandt, “Real-time ray tracing of complex molecular scenes,”
in Information Visualisation (IV), 2010 14th International Conference.

IEEE, 2010. doi: 10.1109/IV.2010.43 pp. 239–245.

[40] Ericsson Labs, “Ericsson texture compression tool etcpack v2.60:
ETC2,” https://labs.ericsson.com/research-topics/media-coding.

694 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

