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Abstract—In this paper we outline a transdimensional sequen-
tial Monte Carlo algorithm - SMCVB - for fitting hidden Markov
models. Sequential Monte Carlo (SMC) involves generating a
weighted sample of particles from a sequence of probability
distributions with the aim of converging to the target Bayesian
posterior distribution. SMCVB makes use of variational Bayes
(VB) in combination with SMC principles to create an algorithm
which targets the posterior distribution more efficiently thereby
saving on time and computational storage requirements. Another
key feature of our methodology is that the variational-Bayes-
generated proposals can vary in dimension. We have found in our
simulation studies that we are able to obtain sensible estimates
of the model dimensionality in this one-step procedure. This
introduces very valuable additional flexibility in the modelling
approach and opens up the potential for use of the algorithm
in on-line settings where efficient and reliable estimation of
dimensionality and parameters is required.

I. INTRODUCTION

S
EQUENTIAL Monte Carlo (SMC) approaches for
Bayesian inference were first introduced to meet the

requirement for efficient and tractable methods for analysing
large amounts of data that arose sequentially over time (see
[1] for an overview). In SMC, the procedure begins by
initially proposing a population of samples, which are referred
to as particles, from an initial target posterior distribution,
reweighting these particles through importance sampling and
then resampling from them to approximate the next target
posterior density in the sequence. Subsequently there has also
been a significant amount of research into the application of
SMC to static problems, i.e. the data are treated as if they had
arisen sequentially even though the whole dataset is available
at the start of the analysis. For example, [2] and [3], provide
examples of SMC in a static setting. Another example of a
static SMC algorithm is given in [4]. This is a data-tempering
SMC approach and this will form the basis for our new
proposed algorithm.

Within the context of finite mixture estimation, [5] proposed
a new transdimensional SMC algorithm based on the idea of
using the variational Bayes (VB) approach [6], [7], [8] within
an SMC framework. The resulting hybrid algorithm is called
SMCVB. The SMC algorithm is initialised with particles
drawn from a VB approximation to the posterior distribution
rather than from a prior distribution; the aim of this is to make

the algorithm more efficient. The underlying SMC algorithm
takes the form of the data-tempering algorithm described in
[4] as noted above. A significant advantage of the SMCVB
algorithm is that it is not restricted to fixed-dimensional space.
This is a highly useful feature for practical application since
estimating a suitable dimension for the model is usually an
important part of the analysis. In particular, in applications
where new batches of data arise over time, the dimension
size that achieves the most appropriate fit might change
throughout the analysis as new information becomes available.
Our approach has the advantage over existing schemes that it
is able to adapt to such changes in an automated fashion. This
feature means that there is a lot of potential for application and
extension of the hybrid approach to modern applications where
datasets are ever increasingly large and there is a demand for
fast or even online analysis capabilities.

In this paper we describe how the algorithm proposed in [5]
can be extended to the context of hidden Markov modelling,
and we show that this leads to a novel scheme which is time-
efficient and provides reliable results.

The article is organised as follows. In Section 2 we outline
the model. In section 3, we describe the VB approach for
hidden Markov modelling with Gaussian noise. In Section 4
we present the transdimensional VB-based SMC (SMCVB)
algorithm. In Section 5 we show some results from the analysis
of simulated data, and Section 6 concludes the paper.

II. VARIATIONAL BAYESIAN INFERENCE FOR HIDDEN

MARKOV MODELS WITH GAUSSIAN NOISE

Following the approach that is described in [9], we assume
a Gaussian HMM where the system can be in any one of
K states at any time-point i, but the actual state sequence
is hidden. Our observations correspond to a noisy realisation
of the actual state sequence. We assume a discrete first-order
Markovian dependence structure, therefore the current state
depends only on the state occupied at the last time-point.
We will follow the notation set out in [8] for specifying
the HMM and we will apply the algorithm described in that
article for estimation of the model. Given that the system is
in state j1 at time-point i, the transition matrix π represents
the probability of moving to state j2 at time-point i + 1.
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The transition matrix is defined as π = {πj1j2} where
πj1j2 = p(zi+1 = j2|zi = j1) and zi is the latent variable
representing the state at time i; all transition probabilities are
non-negative and columns of the transition matrix must sum
to 1. No structure is imposed on the transition matrix π, it
will be estimated as part of the analysis. The observed data is
denoted by {yi; i = 1, . . . , n)}, and the emission probabilities,
i.e., the conditional probabilities of state membership at each
time-point, are denoted by p(yi|zi = j) = pj(yi|φj). Since we
are assuming Gaussian noise in the observations, the φ = {φj}
correspond to the parameters of the univariate Gaussian noise
distribution corresponding to the relevant states j = 1, · · · ,K.
Then, the model parameters are given by θ = (π, φ) and we
have

p(y, z, θ) =

n
∏

i=1

K
∏

j=1

(pj(yi|φj))
zij

×
n−1
∏

i=1

K
∏

j1=1

K
∏

j2=1

(πj1j2)
zij1zi+1j2

×
K
∏

j=1

pj(φj)
K
∏

j1=1

p(πj1),

where zij is a latent indicator variable such that zij = 1, if
zi = j, and zij = 0, if zi 6= j. The terms pj(φj) and p(πj1)
correspond to the prior distributions over the parameters of
the univariate Gaussian noise distribution, and the transition
probabilities, for the relevant state j1.

We use the same prior specifications for this model as the
ones used in [8]. For more detail, we refer the reader to that
paper. We follow the notation used in [8] in order to facilitate
comparison with the more detailed descriptions of the corre-
sponding derivations provided therein. The standard conjugate
prior distributions are used for the model parameters. For each
state j1, there is an independent Dirichlet prior distribution
for the transition probabilities {πj1j2 : j2 = 1, . . . ,K},
with hyperparameters {αj1j2

(0)}. The noise model for the
observations is univariate Gaussian with unknown means and
precisions such that for each state j, we have a Gaussian prior
distribution with mean µj and precision τj . Each of the means
µj themselves have independent univariate Gaussian conjugate
prior distributions, conditional on the precisions, with means
and precisions given by m

(0)
j and βj

(0)τj , respectively. The
precisions τj have independent Gamma prior distributions
with shape and scale parameters given by 1

2ηj
(0) and 1

2δj
(0),

respectively.

III. VARIATIONAL BAYESIAN INFERENCE FOR HIDDEN

MARKOV MODELS WITH GAUSSIAN NOISE

In the variational Bayesian inferential approach, we do not
sample from the posterior distribution, as we would in a
Markov chain Monte Carlo (MCMC) based approach, instead
we find a close approximation to it; this approximation to the
posterior is referred to as the variational posterior distribution.
The fact that the VB estimate of the posterior does not

require iterative sampling makes it a very useful approach
in terms of time efficiency, which is of course an important
consideration when working with large datasets. We will
briefly outline the key concepts of the variational approach
in this section. As we have stated, our aim is to find the VB
approximation to our desired posterior distribution, i.e. p(θ|y).
This posterior can be obtained as the marginal distribution of
p(θ, z|y); this distribution is typically a complex expression
and it has to be approximated in this method. In the VB
approach, we approximate p(θ, z|y) by another distribution
which we call the variational approximating distribution. The
variational approximating distribution is denoted by q(θ, z),
and the idea is to take this distribution as being the minimiser
of the the Kullback-Leibler(KL) divergence between q(θ, z)
and p(θ, z|y). To make the minimisation of the KL divergence
between these quantities tractable, the standard assumption
made is that q(θ, z) can be factorised as q(θ, z) = qθ(θ)qz(z).
Derivation of the variational function leads to a set of coupled
equations for qθ(θ) and qz(z) for updating the estimates of
the parameters and latent variables in the mode. Note that
another way to view the motivation for this approach, is that
the variational approximation to the posterior provides a tight
lower bound on the observed-data log-likelihood. The vari-
ational Bayesian algorithm proceeds by iteratively updating
these coupled expressions for the model parameters and the
latent variables until they converge, at least locally, in the
sense that subsequent updates no longer improve estimates.
The values in the converged algorithm are then the estimates of
the model parameters in the variational posterior distribution.

The Forms of the Variational Posterior Estimated Distributions

over Model Parameters and Latent Variables

After applying the standard VB approximation to the
Bayesian posterior of the HMM we find the following forms
for the variational posterior distributions over the model pa-
rameters [8].

qj1(πj1) = Dir(πj1 |{αj1j2}),

q(µj |τj) = N(µj |mj , (βjτj)
−1

),

q(τj) = Ga

(

τj |
1

2
ηj ,

1

2
δj

)

.

The parameters of these distributions can be computed by
iteratively solving the set of coupled equations outlined in
Algorithm 1. The well-known forward-backward algorithm
[10] has to be used to make computation of the required
marginal probabilities possible [11]. The forward-backward
algorithm gives us estimates of the forward and backward
variables, fvari(j) and bvari(j), respectively, for each i and j.
In the forward-backward algorithm the a∗j1j2 are estimates of
the probabilities of transition from states j1 to state j2, and the
b∗ij’s are estimates of the emission probabilities given that the
system is in state j at time point i. These are then used in the
update equation for qij = qz(zi = j) = p(zi = j1|y1, . . . , yn)
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Algorithm 1 VB Algorithm for Fitting a Hidden Markov
Model with Gaussian Noise

Set initial values for parameters
αj1j2

(0),m
(0)
j , β

(0)
j , η

(0)
j , δ

(0)
j ,K, qz(zi = j1, zi+1 = j2)

and qij , for j, j1, j2 ∈ 1, · · · ,K, i ∈ 1, · · · , n
while not converged do

Update the VB posterior parameter estimates (Ψ denotes
the digamma function)

αj1j2 = αj1j2
(0) +

n−1
∑

i=1

qz(zi = j1, zi+1 = j2)

βj = βj
(0) +

n
∑

i=1

qij

ηj = η(0) +

n
∑

i=1

qij

δj = δ(0) +
n
∑

i=1

qijyi
2 + βj

(0)mj
(0)2

−βjm
2
j

mj =
βj

(0)mj
(0) +

∑n

i=1 qijyi
βj

a∗j1j2 = exp



Ψ(αj1j2)−Ψ
(

K
∑

j=1

αj1j

)





= p(zi+1 = j2|zi = j1)

b∗ij = exp

(

1

2
Ψ
(1

2
ηj

)

−
1

2
log
(δj
2

)

−
1

2βj

−
1

2

(ηj
δj

)

(yi −mj)
2

)

= p(yi+1|zi+1 = j2)

qz(zi = j) =
fvari(j1)bvari(j1)

∑

j2
fvari(j2)bvari(j2)

qij = qz(zi = j1, zi+1 = j2)

=
fvari(j1)a

∗

j1j2
b∗i+1j2

bvari+1(j2)
∑

j1

∑

j2
fvari(j1)a∗j1j2b

∗

i+1j2
bvari+1(j2)

.

If any state has a weighting approaching zero then elimi-
nate this state and reduce model dimension to K = K−1

end while

and qz(zi = j1, zi+1 = j2). The
∑n

i=1 qij is the VB estimate
of the number of observations expected to belong to state j,
and the qz(zi = j1, zi+1 = j2) are the VB estimates of the
transition probabilities.

We would like to draw the readers attention to the automatic
state elimination feature that is an intrinsic part of the VB
approach when estimating mixture models and HMMs. As
a result of this property, given the initially chosen value
for model dimension, K, the final estimated solution in the

VB posterior will have dimension less than or equal to K.
Provided that K is chosen sufficiently large, we expect that a
suitable dimension for the model is estimated as part of the
VB procedure. Note that model selection criteria could also
be computed to provide an alternative way to select the most
appropriate dimension size.

IV. TRANSDIMENSIONAL VARIATIONAL BAYES

SEQUENTIAL MONTE CARLO ALGORITHM (SMCVB)

The SMC framework which underpins the algorithm is a
modification of the SMC algorithm described in [4]. The
algorithm described in [4] is initialised with a small batch
of data and then proceeds to incorporate data in sequential
batches of increasing size which is what is meant by data
tempering. What distinguishes our SMCVB approach from
other SMC algorithms is that we use a VB posterior mean
estimate of the model parameters in order to generate proposal
particles rather than generating them from the prior. This is an
intuitively logical and sensible hybrid modification of the data-
tempering SMC algorithm. The complete-data target posterior
distribution that we ultimately wish to estimate is

π(θ) = π(θ|y1, · · · , yn),

and the target posterior at each subsequent iteration t (t =
1, · · · , T ) is

πt(θ) = πt(θ|y1, · · · , ynt
),

where n1 ≤ n2 ≤ · · · ≤ nT = n is an increasing set
of sample sizes. This separation of the whole dataset into
smaller sub-batches leads to the formation of a sequence of
target posteriors which on average smoothly converge to the
final complete data target posterior. Our proposed SMCVB
algorithm for HMMs is outlined in Algorithm 2.

Due to the VB algorithm intrinsic state elimination property,
VB solutions obtained for each batch, which are in turn used to
generate new proposed sets of particles, can vary in dimension.
This allows us to explore a range of models with various
numbers of states at various points in the analysis. We suggest
that the distribution of particles over the various dimension
sizes might be used as a guide for deciding on the most
appropriate number of states to include in the final model. In
our analyses of simulated datasets we found that this strategy
led to reliable estimates of the most appropriate number of
states to include in the fitted model.

V. SOME RESULTS FROM APPLICATION OF THE SMCVB
ALGORITHM FOR HMMS TO SIMULATED DATA

For illustration we present here results obtained from using
our hybrid algorithm to analyse synthetic data generated from
a three-state hidden Markov model. The parameter settings
used to simulate the data are outlined in table I, note that this
corresponds to a considerably noisy set of data. We generated
1000 datapoints from this model and the data were read in in
batches of 100 points. We used vague priors in the analysis.
The transition matrix was given by
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Algorithm 2 SMCVB Algorithm
Initialise: estimate the VB partial posterior
πt0(θ) = πV B(θ|y1, · · · , yn0

) using Algorithm 1
Particle set: generate a set of R particles
(θ

(0)
r ,W

(0)
r )r=1,··· ,R with associated weights {W

(0)
r }

which target the initial posterior πt0(θ).
Draw: draw R particles from these estimated poste-
riors, which results in vectors of the form {θ

(0)
R =

(µ
(0)
r , τ

(0)
r , ρ

(0)
r )}, with weights given by

W (0)
r ∝

p(y1, · · · , yn0
|θ

(0)
r )p(θ

(0)
r )

πV B(θ
(0)
r |y1, · · · , yn0

)

Normalise the weights to obtain W
(0)
r .

while nt < n do

Reweight: update the weights at iteration t using the ntth
batch of data to give

W (t)
r ∝ W (t−1)

r × p(ynt−1+1, · · · , ynt
|θ(t−1)

r ),

where r = 1, · · · , R.
if Effective sample size < n

2 then

Resample R values from the current set of
particles using multinomial sampling. i.e. we
resample the {(θ

(t−1)
r ,W

(t−1)
r )}r=1,··· ,R to get

{(θ
′(t)
r , 1/R)r=1,··· ,R}.

end if

Move: move to a new set of particles, these become the
{θ

(t)
r } to be carried forward. Propose these from distri-

butions from the VB posterior mean of the parameters
based on the current batch of data and use a standard
Metropolis–Hastings update to choose the new particles.

end while

π =





0.15 0.80 0.05
0.50 0.10 0.40
0.30 0.40 0.30





The estimated posterior parameter values for the noise
model are displayed in table II and table III. We compare the
fits we obtained with our hybrid SMCVB algorithm to those
obtained from a standard MCMC analysis and a standard VB
analysis. Plots of the posterior distributions corresponding to
the fitted parameters are shown in Figures 1 and 2.

Using our approach, we estimated the most suitable number
of states by calculating the proportions of particles correspond-
ing to the different model sizes. The majority of particles in

TABLE I
PARAMETERS OF THE GAUSSIAN NOISE DISTRIBUTIONS FOR EACH STATE

IN THE MODEL USED TO SIMULATE THE EXAMPLE DATA.

State Mean Standard Deviation
1 1.00 0.50
2 2.00 0.15
3 2.50 0.30

TABLE II
POSTERIOR MEANS OF THE MEAN PARAMETERS OF THE GAUSSIAN NOISE

DISTRIBUTIONS FOR EACH STATE ESTIMATED USING THE DIFFERENT
APPROACHES

SMCVB VB MCMC
1.01 1.01 1.01
2.00 2.00 2.00
2.56 2.56 2.55

TABLE III
POSTERIOR MEANS OF THE STANDARD DEVIATION PARAMETERS OF THE
GAUSSIAN NOISE DISTRIBUTIONS FOR EACH OF THE STATES ESTIMATED

USING THE DIFFERENT APPROACHES

SMCVB VB MCMC
0.53 0.53 0.53
0.15 0.15 0.15
0.26 0.26 0.27

the final set corresponded to a three-state model, which we
know accurately reflects the true underlying model in this
case. Further work is required to better explore the reliability
and justification for the general use of the distribution of the
number of states in the final particles for estimating the most
appropriate number of states for the fitted model. However,
our explorations of some different simulated datasets suggest
good potential for this strategy. Model selection criteria could
also be checked to assess the most appropriate dimension.

The results shown demonstrate that this approach leads
to reliable estimates of model parameters. This new hybrid
SMCVB scheme produces posterior estimates which are even
closer to MCMC estimates for the same model than the
VB approximation is. Note then that another way to view
this scheme is as a way to further improve on the VB
approximation to the Bayesian posterior distribution.

SMCVB is efficient in terms of computing time and due
to the nature of the SMC structure, it is ideally suited to
applications where new batches of data continually become
available. That feature, combined with the improved time
efficiency that is achieved through the use of the targeted
VB guided proposals, has created an algorithm which has
much potential to be of practical use in modern applications
where large volumes of sequentially occurring data have to be
processed and the traditional MCMC-based approaches may
not be feasible due to computational limitations.

VI. CONCLUSION

We have extended the recently proposed transdimensional
SMC algorithm, SMCVB, to the setting of estimating param-
eters and dimension of hidden Markov models. The algorithm
allows us to explore the dimension of the posterior distribution
and achieves increased computational efficiency over other
SMC approaches by using a VB algorithm to generate the
independent proposals at each iteration of the procedure.

Current work involves applying this algorithm to analysing
large time series data with the aim of performing climate
regime shift detection.
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Fig. 1. Comparison of the posterior distributions for the mean parameter of the Gaussian noise distribution for the three states fitted using the different
methods. The solid black line marks the true mean for the corresonding state in the model the data were simulated from.
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Fig. 2. Comparison of the posterior distributions for the standard deviation parameter of the Gaussian noise distribution for the three states fitted using the
different methods. The solid black line marks the true standard deviation for the corresponding state in the model the data were simulated from.
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Fig. 3. Posterior probability associated with the correct number of hidden states for the model as estimated based on the proportion of particles having that
dimension in the final set of particles. The plot shows results from four replicate runs of the SMCVB algorithm and for different numbers of particles.
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