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Abstract—In this paper we consider a problem of automatic
labeling of textual data with concepts explicitly defined in an
external knowledge base. We describe our tagging system and
we also present a framework for adaptive learning of associations
between terms or phrases from the texts and the concepts. Those
associations are then utilized by our semantic interpreter, which is
based on the Explicit Semantic Analysis (ESA) method, in order
to label scientific articles indexed by our SONCA platform. Apart
from the description of the learning algorithm, we show a few
practical application examples of our system, in which it was
used for tagging scientific articles with headings from the MeSH
ontology, categories from ACM Computing Classification System
and from OECD Fields of Science and Technology Classification.

Keywords—semantic indexing; Explicit Semantic Analysis;
Adaptive Semantic Analysis; multi-label tagging; adaptive learning;

I. INTRODUCTION

THE MAIN idea of a keyword search is to look for texts
(documents) that contain one or more words specified by

a user. Then, using a dedicated ranking algorithm, relevance of
the matching documents to the user query is predicted and the
results are served as an ordered list [1]. In contrast, semantic
search engines try to improve the search accuracy by under-
standing both, the user’s information need and the contextual
meaning of texts, which are then intelligently associated [2].

From the data processing point of view, the semantic search
engine may be divided into three main components: semantic
text representation module, interpretation and representation
of a user query, and an intelligent matching algorithm [3].
The scope of the first two modules may be categorized as a
semantic data representation [4]. In opposite to the keyword
search, the semantic data representation, and thus the semantic
indexes, cannot be calculated once and then utilized by intel-
ligent matching algorithms. The text representation, as well as
a query interpretation should be assessed with respect to the
type of the users’ group, a context of the words in the query
and many others factors [5].
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The better part of current search engines is based on a
combination of a keyword search and sophisticated document
ranking methods [1]. Only some of them process search
queries, analyzing both, a query and documents’ content with
respect to their meaning, and return the semantically relevant
search results [2]. However, even this approach becomes
insufficient. The process of information retrieval needs to be
made intelligently in order to help users in finding relevant
information. The key role in this process is the recognition of
the users’ information needs and collecting feedback about
the search effectiveness. The gathered information should
be utilized to improve search algorithms and forge better
responses to user requirements. Those challenges are in the
scope of studies on adaptive search engines which interact
with experts (users) and operate in a semantic representation
space [6].

The SONCA (Search based on ONtologies and Com-
pound Analytics) platform [7] is developed at the Faculty of
Mathematics, Informatics and Mechanics of the University of
Warsaw. It is a part of SYNAT project focusing on devel-
opment of Interdisciplinary System for Interactive Scientific
and Scientific-Technical Information (www.synat.pl). SONCA
aims at extending the functionality of search engines by more
efficient search of relevant documents, intelligent extraction
and synthesis of information, as well as a more advanced
interaction between users and knowledge sources.

Within the SYNAT project, some successful methods for
the semantic text representation and indexing have already
been developed [4], [8]. In this paper we discuss an adaptive
learning model of terms-to-concepts associations which can
be treated as an extension of the Explicit Semantic Analysis
(ESA) method [9], [10]. By an analogy, we call it Adaptive
Semantic Analysis (ASA). The main purpose of this model is
to adjust the links between words and well-defined concepts.
Those links are automatically derived from natural language
definitions of the concepts which are stored in an external
knowledge base. The associations are then used for labeling
and indexing scientific articles. The definitions of the concepts
can be extracted from different knowledge sources such as
domain ontologies. In our experiments we show how the model
can be constructed using descriptions of the concepts in a
natural language and how it can be improved by using feedback
from domain experts. We also show how to deal with a lack of
concept descriptions in a case when there is available a suffi-
cient number of training examples of labeled articles. Finally,
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we present our most recent developments and improvements
to the model, which are related to a problem of deciding how
many concepts should be associated with a given document. As
case studies we use a task of tagging biomedical articles from
the PubMed repository with concepts from the MeSH ontology
[11], a task of labeling abstracts of computer-science-related
documents with terms from ACM Computing Classification
System [12] and a problem of assigning the OECD Fields of
Science and Technology Classification categories to articles
from the Infona system (www.infona.pl).

II. EXPLICIT SEMANTIC ANALYSIS

Explicit Semantic Analysis (ESA) proposed in [9] is a
method for automatic tagging of textual data with Wikipedia
concepts. It utilizes natural language texts of Wiki articles
as textual representations of the corresponding concepts. It
is assumed that the Wiki articles contain definitions of the
concepts and describe their semantic. Those representations
are regarded as a regular collection of texts and are matched
against documents to find the best associations [10].

In ESA, the semantic relatedness between concepts and
documents is computed two-fold. First, after the initial process-
ing (tokenization, stemming, stop words removal), the corpus
and the concept definitions are converted to the bag-of-words
representation. Each of the distinct terms in the documents
is given a weight expressing a strength of its association to
the text. Assume that after the initial processing of a corpus
consisting of M documents, D = {D1, . . . , DM}, there have
been identified N distinct terms (e.g. words, stems, n-grams)
t1, . . . , tN . Any text Di in the corpus D can be represented by
a vector Wi = 〈w1,i, . . . , wN,i〉 ∈ R

N
+ , where each coordinate

wj,i expresses a value of some relatedness measure for j-th
term in vocabulary (tj), relative to this document. The most
common measure used to calculate wj,i is the tf-idf (term
frequency-inverse document frequency) index [1], defined as:

wj,i = tfi,j ∗ idfj =
ni,j

∑N

k=1
ni,k

log

(

M

|{i : ni,j 6= 0}|

)

, (1)

where ni,j is the number of occurrences of the term tj in the
document Di.

In the second step, the bag-of-words representation of
the concept definitions is transformed into an inverted index
that maps the terms t1, . . . , tN into lists of K concepts
C1, . . . , CK , described in an external knowledge source. The
inverted index can be used as a semantic interpreter. Given a
document from the corpus D, we may iterate over terms from
the text, retrieve the corresponding entries from the inverted
index and merge them into a vector of concept weights that
represents the analyzed document.

Let Wi = 〈w1,i, . . . , wj,i, . . . , wN,i〉 be a bag-of-words
representation of an input document Di, where wj,i is the tf-
idf index of tj defined by the formula (1). We can analogically
quantify the association between the term tj and the k-th
concept Ck by computing the bag-of-words representations
of the concept descriptions. Those associations constitutes the
inverted index. Let invj,k be the inverted index entry for
the term tj and the concept Ck. For convenience, all the
weights invj,k can be arranged in a sparse matrix structure
with N rows and K columns, denoted by INV , such that

INV [j, k] = invj,k for any pair (j, k), such that j = 1, . . . , N
and k = 1, . . . ,K. The new vector representation of Di will
be denoted by Vi = 〈v1,i, . . . , vK,i〉 where:

vk,i =
∑

j:tj∈Di

wj,i ∗ invj,k. (2)

In other words, the above equation expresses a standard dot
product of the k-th column of the matrix INV and the
vector Wi. This new representation will be called a bag-of-
concepts of a document Di.

For practical reasons it may also be useful to represent
documents only by the most relevant concepts. In such a case,
the association weights can be used to rank the concepts and
to select only the top concepts from the ranked list. One
can also apply some more sophisticated methods that involve
utilization of internal relations in the knowledge base (e.g. for
semantic clustering of concepts and assigning only the most
representative ones to the documents).

The original purpose of Explicit Semantic Analysis was
to provide means for computing semantic relatedness between
texts. However, an intermediate result – weighted assignments
of concepts to documents (induced by the term-concept weight
matrix) may be naturally utilized in document retrieval as a
semantic index [3], [5]. Although originally ESA was meant
to utilize the Wikipedia articles as the external knowledge
source, it seems reasonable that for specialized tasks, such as
indexing articles from a specific branch of science, it is better
to use concepts described in dedicated knowledge bases or
ontologies. A user (an expert) may query a document retrieval
engine for documents matching a given ontology concept. If
the concepts are already assigned to documents, this problem
is conceptually trivial. However such a situation is relatively
rare, since the employment of experts who could manually
labeled documents from a huge repository is expensive. On
the other hand, the utilization of an automatic tagging method,
such as ESA, allows to infer a labeling of previously untagged
documents or at least it can support the experts in that task.

...

...

weightsterm1

term2

term3

term4

termN

term1

term2

termK

Fig. 1. A schema of the inverted index utilized by ESA.

III. THE ADAPTIVE LEARNING ALGORITHM

During our research on the automatic tagging methods we
noticed that the structure of the inverted index used by ESA
resembles a structure of an artificial neural network [13]. This
network consists of a single layer of perceptrons (neurons)
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that correspond to the different concepts and their inputs
correspond to the distinct terms from the concept definitions.
However, unlike in a classical neural network, in the case of
ESA the inputs are not connected with every neuron. In fact,
the net of the connections is rather sparse, since only a small
fraction of terms appears in a single description of a concept.
Each connection has a non-negative weight from the inverted
index, which quantifies the association between the term and
the concept. Such a schema of the inverted index structure is
depicted in Figure 1.

In the classical neural networks, the activation of each
neuron is determined by computing a value of, so called,
an activation function. This function takes as its argument
a weighted sum of input values and returns a real-valued
output. In ESA the activation function corresponds to the
identity function. Nevertheless, it is possible to use other
types of functions, including those which are typically used in
perceptrons (e.g. sigmoid, hyperbolic tangent [13]), in order to
scale the association values into a desired range. We can also
easily modify the network structure from Figure 1 by adding an
additional input, connected to each of the neurons. This input
will be treated as an activation threshold. We will assign a con-
cept Ck to a document Di only if its association vk,i exceeds
the corresponding activation threshold ak, k = 1, . . . ,K.

Since the model resembles a neural network, in our pre-
vious research [8] we proposed to use a simple learning
algorithm for the adaptation of weights from the inverted
index to a feedback regarding the tagging quality, obtained
from domain experts. The algorithm was based on a typical
perceptron learning schema, namely the error backpropagation
approach [14]. It is shown in Figure 2. Here we present an
improved version of this algorithm that does not require a
prior information regarding a number of concepts that should
be assigned to each document. For this purpose, we first need
to discuss the types of errors that can be made in predicting a
set of labels that should be assigned to a given document.

Let us denote by esa(Di, INV,A) a set of concepts
assigned by ESA to a document Di, using the inverted index
INV and the vector of activation thresholds A. This set
consists of those concepts whose associations to Di exceeded
the activation threshold values, i.e., esa(Di, INV,A) = {Ck :
vk,i > ak, k = 1, . . . ,K}. We assume that there is available
a corpus D of training documents, for which we can get the
sets of truly related concepts. Since those sets of reference
labels usually have to be obtained from domain experts, we
will denote them by exp(Di).

Knowing the sets esa(Di, INV,A) and exp(Di) we can
divide their union into three mutually disjoint subsets: TPi =
esa(Di, INV,A) ∩ exp(Di), FPi = esa(Di, INV,A) \
exp(Di) and FNi = exp(Di) \ esa(Di, INV,A). They can
be interpreted as the sets of Truly Positive, Falsely Positive
and Falsely Negative cases in the classical machine learning
theory [13]. The set TPi contains truly relevant concepts
which were assigned by ESA. Since we want to maximized
its cardinality, in every iteration of the learning algorithm we
will increase the weights of the connections between the terms
tj from Di and the concepts from TPi. The update will be
proportional to the association strength between the terms and
Di, which is quantified by the values of wj,i. Analogically,
we will increase the weights of the concepts from FNi and

decrease those of the concepts from FPi. At the same time
we will be updating the activation thresholds in order to
move the concepts from FNi into TPi and to remove the
FPi concepts from the set esa(Di, INV,A). Details of this
procedure are explained by Algorithm 1. We call it Adaptive
Semantic Analysis (ASA) by an analogy to the ESA algorithm.

We impose one constraint on the weight refinement pro-
cedure. Only the available concept descriptions determine the
network structure of the inverted index. During the learning
procedure we do not construct any new connections in the
network, i.e. we restrict the weights invj,k equal zero to remain
zero for a whole learning process. Moreover, the updates
in our algorithm are multiplicative, which guarantees that
invj,k ≥ 0 for every j and k. This restriction is motivated
by an intuition that the original concept descriptions, which
are usually provided by domain experts, contain sufficient
vocabulary to characterize the concepts, thus they define a
good model of the terms-to-concepts relations. Additionally,
by tuning a large number of weights it is possible to fall
into a trap of over-fitting the inverted index to the reference
data. Moreover, the reduced number of connections in the
inverted index makes the learning more efficient, since there
are needed considerably less updates at every iteration of the
ASA algorithm.

In the algorithm, the activation thresholds are tuned along
the concept weights. In practice, however, they do not need to
be updated in every iteration. In order to speed up the learning
process, the line number (31) of Algorithm 1 can be executed
periodically, with the length of the period controlled by an
additional parameter.

IV. EXPERIMENTS

We tested our multi-label tagging system on three different
problems, namely automatic labeling of biomedical articles
from the PubMed Central repository with headings from the
MeSH ontology, assigning categories from ACM Computing
Classification System (ACM CCS) to articles from ACM
Digital Library and labeling research papers from the Infona
repository [6] with the OECD Fields of Science and Tech-
nology Classification (OECD FOS) categories. In all those
experiments we followed the same testing methodology. We
split the available corpus into a training and a test set. We
use the training data for adaptive learning of the associations
between terms and concepts with the proposed ASA algorithm
(see Section III), and then we verify the performance of our
tagging system on the test data. We repeat the whole procedure
several times with different divisions of the data and report
the average results. As the quality measures we use average
values of the F1-score, Precision and Recall, obtained for
all the test documents by comparing the predicted tags to
those which were assigned by experts or authors. This type of
evaluation of a tagging quality is popular for the multi-label
classification problems [15].

A. Experiment on Biomedical Articles

In our first series of experiments we performed the tests
on a corpus from the PubMed Central repository [16], con-
sisting of roughly 38, 000 publicly available articles. As the
external knowledge base we used the MeSH ontology [11],
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Fig. 2. The learning schema for Adaptive Semantic Analysis.

which is also employed by PubMed to index articles and
to facilitate search through its resources. We adapted the
ESA method to enable tagging documents from the corpus
with the MeSH concepts (also known in MeSH terminology
as the headings). In the MeSH ontology, each heading is
accompanied by a descriptor data record prepared by domain
experts. We composed the final natural language description of
the MeSH headings by concatenating the following elements
of the corresponding MeSH record: MESH HEADING (the
name), MESH SCOPE NOTE (a short textual description), EN-
TRY (synonyms), PREVIOUS INDEXING (previous naming)
and PHARMACOLOGICAL ACTION (known pharmacological
activity). We processed those descriptions using text mining
tools in order to determine the initial inverted index structure
of our model (i.e. relations between the terms and concepts)
and the initial values of the weights. In the experiments we
used the edition of MeSH from the year 2012, which contained
records on 26.142 main concepts (the headings).

Additionally, for each document in the corpus we obtained
sets of MeSH headings assigned by experts from the U.S.
National Library of Medicine. The average number of tags
assigned to a single article by the NLM experts was ≈ 13.5.
We treat those tags as a reference and we utilize them for
improving the terms-to-concepts associations with the adaptive
learning algorithm described in Section III. We also used
those tags for the evaluation purpose. In the tests, we run the
adaptation of the inverted index on randomly selected 20, 000
documents and then we use it to tag the remaining part of the
corpus. As the starting activation thresholds we use a vector
with all coordinates equal 5. This value was chosen using a
common sense, based on an observation of a distribution of
the concept associations for several exemplary documents. We
assess the quality of the tagging by computing the average
values of F1-score, Precision and Recall measures. Results
of those tests are shown in Figure 3.

The results of the tests turned out to be very promising.
On the test data we observed a significant improvement of
performance over the regular ESA (the iteration number 0 in
the plots) in terms of the computed statistics. For instance, F1-
score value improved by approximately 160% (from ≈ 0.15
to ≈ 0.39). Even a greater improvement was noticed with

regards to the values of Recall. After the last iteration, its
average value exceeded 0.43 while for the regular ESA the
average Recall was ≈ 0.16. This however, can be partially
explained by the fact that in the initial learning iterations the
resulting tagging model usually returned a lower number of
labels than the experts.

B. Experiment on Papers from ACM Digital Library

This experiment was conducted on a corpus consisting of
publicly available meta-data entries for articles from ACM
Digital Library. The corpus contain information on approxi-
mately 400, 000 research papers from the field of computer
science. The available meta-data included a title, an abstract
and in some cases a list of key phrases assigned by authors. We
concatenated those information for each document into a single
text and we used it to compute its bag-of-words representation.
Additionally, the data contained a list of associated ACM
CCS categories which also were inputted by the authors. On
average, every article was associated with only three out of
1571 possible categories.

The task in this experiment was to label the articles with
the ACM CCS categories based on the remaining meta-data.
Unlike in the previous experiment, however, this time we did
not possess any additional knowledge base with natural lan-
guage descriptions of the concepts. To deal with this problem
we had to slightly modify the procedure of our experiment.
After the initial division of the data into the training and test
sets (in proportion of 1:1), we divided the training data into
two separate sets. For each of the ACM CCS categories we
concatenated into a single text the meta-data of all articles that
were labeled with this category by the authors. In this way we
obtained the textual representation of the categories that could
be used for the computation of the initial term-to-concepts
associations for our tagging system.

In the second step, we used those associations as a starting
point for the ASA algorithm. We performed the adaptive learn-
ing of the associations on the remaining part of the training
data. We initiated the learning process with the activation
thresholds set to 0.30 for all the categories. The starting value
of this parameter was much lower than in the experiments
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Algorithm 1: Computation of a new inverted index matrix INV l+1 and activation thresholds Al+1 in the l-th iteration of
the adaptive learning algorithm (ASA).

Input: A corpus D = {Di : i ∈ 1, . . . ,M}; INV l; activation thresholds Al = 〈a1, . . . , aK〉;
Output: An updated matrix INV l+1; a vector Al+1;

1 begin
2 Initiate ∆INV and CU as empty N ×K matrices;
3 Initiate ∆A as a zero vector of length K;
4 for i = 1 to M do

5 TPi = esa(Di, INV l, Al) ∩ exp(Di);
6 FPi = esa(Di, INV l, Al) \ exp(Di);
7 FNi = exp(Di) \ esa(Di, INV l, Al);
8 foreach Ck ∈ esa(Di, INV l, Al) ∪ exp(Di) do

9 tIds = {j : tj ∈ Di ∧ INV l[j, k] > 0};

10 wSum =
∑

j∈tIds

wj,i;

11 if Ck ∈ FPi then
12 foreach j ∈ tIds do

13 ∆INV [j, k] = ∆INV [j, k]− INV l[j, k] ∗ wj,i

/

wSum;
14 CU [j, k] = CU [j, k] + 1;

15 ∆A[k]=∆A[k]+Al[k]∗
(

1− |TPi|
|TPi∪FPi|

)

;

16 else
17 foreach j ∈ tIds do

18 ∆INV [j, k] = ∆INV [j, k] + INV l[j, k] ∗ wj,i

/

wSum;
19 CU [j, k] = CU [j, k] + 1;

20 ∆A[k]=∆A[k]−Al[k]∗
(

1− |TPi|
|TPi∪FNi|

)

;

21 foreach (j, k) such that CU [j, k] > 0 do

22 ∆INV [j, k] = ∆INV [j, k]
/

CU [j, k];
23 INV l+1 = INV l +∆INV ;
24 Al+1 = Al +∆A

/

M ;

25 return INV l+1 and Al+1

on biomedical articles due to a fact that this time we had to
operate on significantly shorter texts. We measured the quality
of our tagging system by comparing the labels assigned to the
test articles with the labels which were given by the authors.
The results of those comparisons in the consecutive iterations
of the learning algorithm are depicted on Figure 4.

Similarly to the previous experiments, the results clearly
show that the learning algorithm significantly improves the
quality of the tagging system in comparison to the standard
ESA (the iteration number zero on the plots). In the test,
the highest F1-score on the test set was ≈ 0.20. It was
obtained in the last iteration (50-th) of the algorithm, which
suggests that it would be possible to slightly improve the
results by giving the algorithm some more time for learning.
There is also a noticeable difference between the results on the
training and test sets. The highest training F1-score exceeded
0.33, which is over 50% higher than the corresponding test
score. On one hand this difference may be partially explained
by the fact that authors do not follow any strict rules or
guidelines when they assign the categories to their papers. It
makes the assigned labels very subjective. As a consequence,
the prediction of the ACM CCS categories becomes a very
difficult task. On the other hand, the differences in the tagging
quality for the training and test data may be caused by the
way we generated the textual descriptions of the ACM CCS
categories. The concatenation of many article abstracts had to

result in the inclusion of many highly specialized terms into
the descriptions. Such terms often allow to identify individual
papers, thus their presence may lead to the over-fitting of the
learning algorithm to the training data.

C. Experiment on Data from the Infona System

The last series of experiments was conducted on a corpus
obtained from the Infona repository [6]. Infona contains meta-
data of over 1.8 million articles from a wide range of science
fields. However, in our experiments we were restricted to only
a small sample of all the data from this repository, i.e. our cor-
pus contained information from 1000 meta-data entries. Each
entry consisted of an article title in English, author names and
an English abstract. Additionally, for many entries there were
available key phrases assigned by the authors. Similarly as in
the previous experiments, for each article we concatenated the
available meta-data (we skipped the information regarding the
authors) to create their textual representation.

The task in those experiments was to learn how to tag
the documents from Infona with the categories from the
OECD FOS classification. This classification system consists
of 42 main categories grouped into six different upper-level
categories, namely Natural sciences, Engineering and tech-
nology, Medical and Health sciences, Agricultural sciences,
Social sciences and Humanities [17]. In order to construct
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Fig. 3. Results of the adaptive learning algorithm on the PubMed Central corpus (50 iterations). The documents were labeled with the concepts from the MeSH
ontology. For each learning iteration the average F1-score, Precision, Recall and a number of assigned categories is shown. The results in the iteration
number 0 correspond to the standard ESA algorithm. The activation thresholds in those experiments were updated in every fifth iteration of the algorithm.

the textual descriptions for all the 42 categories we manually
selected a number of related English Wikipedia articles and
we concatenated their content.

The size of the corpus for those experiments was limited by
the availability of the expert knowledge. Infona did not provide
us any information about the OECD FOS categories of the
documents. In order to create a reference set of labeled doc-
uments we had to ask volunteers to manually tag the data. In
this way we obtained a total of 1000 labeled meta-data entries
which we could use in the experiments. A single document on
average was assigned to 1.7 categories. Approximately 30% of
the documents were labeled by more than one person. In this
way we could check how difficult this task is and get a good
estimation of a reference quality assessment. It turned our that
the average cross-expert F1-score merely exceeds 0.51, while
the average Precision and Recall values are about 0.55. It
means that on average, two different experts agree only on
about a half of the assigned categories, thus we should not
expect a better result from an automatic tagging method.

In the experiments we used 800 documents as a training
set and the remaining 200 served as a test set. Due to the
small size of the test sets, we repeated the testing procedure
20 times on different divisions of the data in order to get
reliable estimations of the tagging quality. Similarly as in the
case of the ACM Digital Library corpus, we set the initial
values of the activation thresholds to a low value, i.e. they
were all equal 0.25. The average results of those tests for
the consecutive iterations of the ASA algorithm are presented
in Figure 5. In those plots, the values of the cross-expert quality
estimations are marked by the thick black lines.

The experimental results once again clearly demonstrate
usefulness of our learning algorithm. The average F1-score
value obtained using the adapted inverted index was greater
by over 40% than the score of the standard ESA algorithm.
For ASA it was approximately 0.47. It is worth noting that
this improvement was possible, even though the number of
available training documents was very limited. The best F1-
score on the test set was usually achieved around thirtieth
iteration of the algorithm and after that point we noted a
slight decrease in the results. Since the scores obtained on
the training set systematically grew and often exceeded 0.8,
this can be most likely explained by the over-fitting problem.
Nevertheless, the score achieved using ASA was very close to
the cross-expert F1-score which confirms the effectiveness of
the proposed adaptive learning algorithm.

V. CONCLUSIONS

In the paper we discussed an adaptive learning framework,
called Adaptive Semantic Analysis, which can be utilized for
improving the terms-to-concepts associations from the inverted
index of the ESA algorithm. We described in details the
learning procedure and we showed its effectiveness in dealing
with real-life problems. In particular, we presented results of
experiments on three document corpora, in which the ASA
algorithm was used to facilitate the automatic tagging of
documents with concepts from different knowledge bases.

We hope that in a future our automatic tagging module
can become a part of a larger scientific article repository
platform. We are currently trying to integrate our SONCA
platform with the Infona repository. This may enable an
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Fig. 4. Results of the adaptive learning algorithm on the ACM Digital Library corpus (50 iterations). The documents were labeled with the ACM Computing
Classification System categories. For each learning iteration the average F1-score, Precision, Recall and a number of assigned categories is shown. The
results in the iteration number 0 correspond to the standard ESA algorithm. The activation thresholds in those experiments were updated in every fifth iteration
of the algorithm.

efficient and automatic semantic indexing of Infona’s resources
which would allow to better fulfill the information needs of
Infona’s users. Apart from the direct use as an indexing module
of the search engine, the tags returned by our system could be
utilized for, e.g., improving the clustering of search results or
assigning comprehensible names to document clusters.
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