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Abstract—The explosive growth of big data poses a processing
challenge for predictive systems in terms of both data size and
its dimensionality. Generating features from text often leads to
many thousands of sparse features rarely taking non-zero values.
In this work we propose a very fast and robust feature selection
method that is optimised with the Naive Bayes classifier. The
method takes advantage of the sparse feature representation and
uses diversified backward-forward greedy search to arrive with
the highly competitive solution at the minimum processing time.
It promotes the paradigm of shifting the complexity of predictive
systems away from the model algorithm, but towards careful data
preprocessing and filtering that allows to accomplish predictive
big data tasks on a single processor despite billions of data
examples nominally exposed for processing. This method was
applied to the AAIA Data Mining Competition 2014 concerned
with predicting human injuries as a result of fire incidents based
on nearly 12000 risk factors extracted from thousands of fire
incident reports and scored the second place with the predictive
accuracy of 96%.

I. INTRODUCTION

The unmanageable scale of big data comes in many forms
symbolically paraphrased by 5Vs: Volume, Velocity, Variety,
Veracity and Value [1]. Huge volume defined by both the size
or dimensionality of big data is one such "V" that particularly
adversely affects computational complexity of the process of
learning from data. The hype about big data may be therefore
elusive while its possible value very difficult to extract. There
are many examples reported in the literature that demonstrate
both very powerful and very ineffective exploitations of large
data sets for predictive tasks [4], [1], [1], [3].

Inspired by the pioneering work in [4], however, there
is a widespread belief that the more data the better and the
inability of exploiting it all is just a reflection of the predictor’s
weakness [3]. We argue, however, that a blind admission of
all big data into the predictive modelling may be wrong or at
least inefficient approach for some class of problems. Although
certain cognitive tasks may indeed require billions of data
points to reveal the full explanative power of the data [4], [5],
our experience indicates that the majority of data problems can
be explained by the relatively small data sample, which might
be buried under the masses of big data. For these problems
the availability of big data for predictive analytics widens the
choice and the opportunity for both novel data exploitations
and the improvement of predictive performance of the existing
models.

As a result, the emerging paradigm of working with big

data appears to be centred around careful data filtering, pre-
processing, features generation and selection. Very often these
procedures eliminate most of the original data leaving only
essential evidence that retains almost complete explanative
power [3]. What is more, the evidence reported in the machine
learning literature indicates that given a typical supervised
learning problem the key drivers for performance lie predom-
inantly in the discriminative power and the choice of the data
features rather than in the complexity of the predictive model
[6], [7], [8], [9], [10]. All these points lead to a conclusion
that when faced with the problem of learning from big data the
main challenge and effort should be directed towards extracting
or generating the key explanative data features while the actual
learning and predictive performance could be delivered with
relatively simple and robust learning model [10].

In line with this approach we have entered AAIA’2014
data mining competition with the intend to demonstrate how
effective could be feature selection for supervised learning
problems with very high dimensional data. We proposed
a relatively easy and fast, greedy feature selection method
that works particularly well with the large number of sparse
features. In the competitive environment we will demonstrate
that it delivers very high performance with a very simple
predictor like Naive Bayes. We also propose much faster yet
nearly equally robust feature selection method that eliminates
completely the need of predictor application, and for that as we
argue it is a very strong contender for real-time applications
of predictive analytics on big data.

II. TASK DESCRIPTION

AAIA Data Mining Competition 2014 was concerned with
extracting the risk factors and attributes of fire incidents that
would allow the most accurate prediction of human injuries
or casualties as a result of these incidents. The total of
11852 features extracted from 50000 fire incident reports were
presented as input data and the objective of the competition
was to select a subset of features that would achieve the best
predictive accuracy of detecting simultaneously the following
3 binary class target outputs with the Naive Bayes model:

• serious injury or death of one of the firefighters or
members of the rescue team

• children were among injured people

• civilians were among hurt/injured people
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Additional constraint enforced by the competition was the
format of the solution and its assessment. The format of the
solution was enforced to be organised within 10 feature subsets
of at least 3 features each and the performance metric was set
to be the area under the curve (AUC) of the receiver-operator
curve (ROC) obtained from averaging the outputs from Naive
Bayes classifier ensembles across all 3 target variables. The
performance metric additionally incudes the penalty term that
penalises for using many features in the solution as in the
following:

score(s) = max

{

0,
1

3

3
∑

i=1

AUCi(s)−

(

|s| − 30

1000

)2
}

(1)

Note that the size penalty term reduces to 0 when all 10
selected feature subsets have exactly 3 features. The problem
is challenging due to the fact that the input data is huge, high
dimensional and sparse in nature, while the class target values
are highly imbalanced. Further difficulty is that the evaluation
considers the average performance of de-facto 3 distinct clas-
sification problems sharing the same features. A successful
feature selection method needs to find the compromise in
maximising the average performance of all the 3 models at
the same time.

III. FEATURE ELIMINATION

Given the very large feature dimensionality and the sparse
nature of the input data the first natural step is to eliminate
redundant features that have no chance of contributing to the
performance of the target prediction. The approach taken was
that given the feature sparsity and huge imbalance of the target
class variables, the features which have all non-zero values
occurring only at negative class outputs have completely zero
predictive power in isolation or in combination with other
features. Denoting by X [N×M ] the matrix of input data and
by Y [N×3] the matrix of corresponding class outputs we can
safely eliminate redundant features by applying the following
simple filtering expressed in Matlab formulation:

F = find(sum(X(any(Y, 2), :))>0); (2)

This simple filtering resulted in elimination of 1931
(16.3%) redundant features. An interesting observation is that
if the three target class variables were to be predicted and
assessed separately, the above filtering would have resulted
in much deeper reductions of: 6418 (54.1%), 6174 (52.1%),
and 2146 (18.1%), respectively. What is more, separating
predictive tasks would further allow to identify feature redun-
dancy through containment. Namely, we can further eliminate
a feature A whose non-zero intersection with the positive target
class (true positives) is fully contained by other feature B,
while its non-zero intersection with the negative class (false
positives) fully contains feature B. What it means is that
prediction with feature A would always be less accurate than
with feature B which is guaranteed to make more positive
predictions (true positives) at a lower costs (false positives).
Such further elimination through feature containment would
achieve the reductions of 9754 (82.3%), 9313 (78.6%), and
5005 (42.2%) respectively. It suggests that it might be much
more efficient to model all three predictive tasks independently
rather than force them to share the same feature subset of input
data.

Constrained by the evaluation criterion defined by eq. 1 the
feature set to work with had to be left with the only lightly
reduced size - down to 9921 features, to avoid the loss of
information.

IV. NAIVE BAYES CLASSIFIER

Naive Bayes (NB) is a simple yet very effective and fast
probabilistic classification method that naively assumes that
features are conditionally independent given the class value
[11]. Given a binary classification problem with n features Fi

the NB model tries to give the estimate of the posterior class
probability given feature observations: p(C,F1, ..., Fn). From
the chain rule applied to conditional probability definition the
searched likelihood becomes:

p(C,F1, ..., Fn) = p(C)p(F1|C)p(F2|C,F1)...

...p(Fn|C,F1, F2, ..., Fn−1) (3)

which after applying the naive assumption of conditional
feature independence simplifies to:

p(C,F1, ..., Fn) =
1

Z
p(C)

n
∏

i=1

p(Fi|C) (4)

where Z is a constant scaling factor that is fixed for known
feature variables.

Since most of the features are binary or categorical we are
dealing with the multinomial distribution here, and construct-
ing a posterior class likelihood is just a matter of calculating
a product of class conditional probabilities of specific feature
values observed for every input data instance. This process is
critical and most often repeated when evaluating classification
performance hence it is reasonable to speed it up by precal-
culating the class conditional likelihoods of all feature values
empirically from the training data. Calculating the posterior
would be then reduced to taking the relevant class conditional
feature probabilities from the lookup table and multiplying
them together or adding log likelihoods in odder to avoid the
precision loss for small numbers.

Since the competition performance metric was an AUC of
the ROC curve, the class posteriors are all that is required for
the score calculation.

V. SPARSE FEATURE SELECTION STRATEGIES

Given the training input data of 50000 examples composed
of nearly 10000 sparse features (after filtering) and a well
defined and fast predictive performance metric defined in eq.
1 the objective was to extract 10 subsets of features that
would maximise the expected predictive performance on the
unseen testing set. Our preliminary investigations revealed that
separating a validation set out of training data appears to be
a good method for comparing the generalisation robustness of
the strategies. On the other hand setting any data aside for the
validation reduces the evidence that the predictive model is
learnt on and hence may not give the best performance on the
testing set. The approach that was finally taken was to use the
actual performance feedback to decide whether a validation set
improves the predictive performance on the testing set.
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Fig. 1. Random subset method performance curve

A. Random Feature Subsets (RFS)

Random feature subset method appears very naive for large
feature space problems, however it was quickly developed to
provide some intuition around the predictive value of the data
and to set some baseline predictive performance levels. It was
also useful for establishing the impact of the performance
metric penalty term provided by eq. 1 and through some
experiments draw an estimate of what might be the optimal
size of the feature set that would maximise the competition
performance criterion.

The performance of random feature subset selection
method was evaluated using random features set sizes increas-
ing from 10 to 500 at a step of 10 and obtaining corresponding
performance measure inline with eq. 1. It has been repeated
50 times and the results averaged to build stable performance
estimates for increasing number of random features included
in the model. The resulting performance curve is presented in
fig. 1.

As it can be seen from the figure, the performance of the
random feature subset method is expectedly quite poor and
peaks for roughly 200 features included in the model.

B. Incremental Single Best (ISB)

The random feature subset method performs quite poorly
but it does not require any computation effort related to
feature selection. Incremental single best method presented
here goes a step further and shifts the balance towards im-
proving the predictive performance at the relatively small
prior computational cost of evaluating all individual features
performance. Since each feature is evaluated in isolation,
no conditional feature dependencies are considered, and the
model build simply follows the greedy strategy of sequentially
adding individually best available features until their combined
predictive performance stops increasing. Fig. 2 illustrates the
performance curve of such incremental single best selection
strategy for the feature set sizes set from 1 to 500. Clearly
the performance curve very quickly climbs to a much higher
levels above 0.88 comparing to the random subset method and

Fig. 2. Incremental single best performance curve

Fig. 3. Greedy forward search performance curve

it peaks for about 90 individually best features included in the
model.

C. Greedy Forward Search (GFS)

The next feature selection strategy to consider is a tradi-
tional greedy forward search. This method would start from the
same individually best feature. At each round it then checks the
performance change of adding all remaining features one at the
time to finally add a feature that results in maximum possible
improvement of predictive performance. This search already
introduces a significant processing cost as its computational
complexity based in the number of performance evaluations is
O(N × n) where N is the total number of available features
and n stands for the number of features selected for the model.

The performance curve of the GFS is presented in fig. 4.

It might be surprising that it beats the performance of
all previously presented selection methods with just 4 first
features. The performance curve peaks with 49 features. The
reported validation performance in excess of 0.96 was com-
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parable to the training performance and on its own climbs
to a competitive level. The advantage of GFS method is a
rapid performance growth with just a few features yet the
computational complexity heading towards quadratic order
becomes a real issue here and caused the complete search to
take few days on the standard PC. Further drawback of this
method is that beyond few features the risk of falling into
local shallow maxima grows really fast and affects the method
ability to find robust solutions.

D. Diversified Greedy Backward-Forward Search (DGBFS)

Greedy forward search introduced in the previous section
demonstrated really good potential for high predictive per-
formance that is however hindered by the problem of local
maxima trap. The proposed diversified DGBFS method tries
to exploit the strengths of the forward search method while
improving its flexibility to get out of local maxima traps,
increasing the exposure to the diversity of the whole feature
set and significantly improving the speed of the search.

The method starts from the same greedy forward search
but rather than adding only the single feature that maximally
improves the performance for every feature set scanning round
it keeps adding all the features that improve the currently best
performance. As a result a single forward scanning round could
add hundreds of features instead of just one. What happens
then is a backward search, in a sense that all features selected
so far are attempted to be removed from the set and such
removal is granted if it causes the performance improvement.
Such backward search adds vital ability of the method to refine
its earlier greedy choices by exploring latter additions that do
not maximise the performance gain but lead to better longer
term solutions.

The forward and backward scanning rounds follow each
other in a sequence until for both not a single addition
or removal is able to improve the performance. Since this
method is dependent on the order of features presented for the
scanning, feature indices are randomly permutated before each
scanning round such that the whole feature space is equally
exposed to the chances of being selected.

The complete performance curve across many rounds of
additions and removals is visualised in fig. 4.

Forward moving sections represent the performance pro-
gression during forward search and backward sections reflect
the corresponding performance gains during backward search.
Notable is a big overshoot of the size of the selected feature
set during the first forward search. This was the effect of the
initial ease of improving the performance through additions.
In fact most of the newly added features were later removed
in the subsequent backward search since they were added not
because they were very robust but because they were just better
than random features initially populating the selected feature
set.

The presented DGBFS feature selection method achieved
the top expected performance of over 0.97 and was selected to
generate solutions for the AAIA’14 Data Mining Competition.
Both the initial feedback and the final assessment positioned
its solution on a second place in the competition trailing just
a fraction of a per cent behind the top wining solution.

Fig. 4. Diversified greedy backward forward search performance curve

E. Fast Cumulative Sparse Feature Count Search (FCSFCS)

The greedy feature selection method presented in the
previous section results in the best predictive performance as
defined by eq. 1 that uses optimised Naive Bayes classifier
to generate posterior class likelihoods. However, even such
simple classifier additionally optimised for processing speed
still absorbs non-negligible processing time and, due to the
nature of Naive Bayes implementation, may require temporary
expansion from the sparse to full representation making it
impossible to evaluate the predictive performance with very
many features. These issues significantly adversely affect the
model scalability and might render its application impossible
for larger scale problems, especially in the real-time operation.

To address this issue a further significant simplification is
introduced which models the Naive Bayes posterior by just
a simple sum of binarised features. We assumed that all the
sparse features can be converted into a binary representation
that indicate simply a presence of non-zero value. In case of
the opposite enumeration of the features, binarisation should be
preceded by the value conversion such that binarised "1/true"
is always assigned to the sparse class i.e. unlikely set of feature
values that has the highest joint probability with the positive
target class. Once such binarisation is completed the posterior
probability of the positive target class given the features can
be simply modelled by the sum of positive binarised feature
values which is equivalent to the voting count of true features
for each input example. Such sum on binary features is
extremely fast to calculate, is fully compliant with sparse
feature representation and can swiftly evaluate the models with
extremely large feature subsets. What is more it is actually
performing very well as a classification method just slightly
trailing the Naive Bayes classifier.

The performance of such method has been explored due
to its very attractive properties of scalability and speed crucial
for applications of huge high-dimensional data for predictive
analytics purposes. Using this method allowed to explore nor-
mally prohibitive search strategies of greedy backward search
(starting from the whole set) and multiple greedy ensemble
search that now we managed to carry out in a matter of minutes
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Fig. 5. Fast cumulative sparse feature count performance curve

on a standard PC.

Fig. 5 presents the performance curve achieved by the
FCSFCS method using the same penalised AUC of ROC
performance measure defined in eq. 1. Although it is just over
1% behind the top DGBFS method, given its simplicity and
swift processing taking just minutes it really is a very good and
fast feature selection proposition method or in fact a complete
very shallow yet robust predictor.

F. Individual vs Ensemble Models

For the evaluation purposes a clarification is required as
to the way feature subsets were evaluated. The competition
performance criterion defined in eq. 1 clearly enforces the
construction of the ensemble of 10 feature subsets with at
least 3 features in each subset. The question of whether to
construct the ensemble of the subsets of features or use just a
single flat subset in fact reflects a long standing dilemma of
individual vs ensemble learning. One motivation for ensemble
learning is that it is much more efficient and faster to build
multiple models with different parts of the feature subset if
the computational complexity of the learning process exceeds
linear order. This is however not the case for Naive Bayes
classifier that given N examples of M -dimensional features
is linearly complex in both O(NM). There are also many
examples reported in the literature, how a combination of weak
learners each built on a small subset of evidence outperforms
the single predictor trained on the complete evidence [12].
This effect of ensemble robustness through synergic comple-
mentarity is well known and reported on in ensemble learning
methods like boosting [13], [12], where the performance gain
through combination of weak learners is probably the most
exposed.

What we have seen in the context of predominantly greedy
feature selection methods is that building the ensemble of
feature subsets is much more prone to overfitting. In fact we
have built the ensemble versions of the DGBFS and FCSFCS
methods where greedy additions or removals were done in
turns for all ensemble subsets and the methods terminated
when it was not possible to improve the performance for

neither addition nor removal from any of the ensemble fea-
ture subsets. For all such experiments we have observed a
consistent pattern of training performance improved by more
than 1% but the validation and testing consistently down by
almost 2%. We have also observed a pattern of about 10% to
20% increase in the total number of features selected with
the ensemble evaluation method. A possible explanation is
that with 10 different feature subsets the ensemble search has
many more degrees of freedom and appears to find many
new ways to better fit the training data with more features
despite the penalty term. In the validation or testing phase,
those many unstable coincidences of feature values turn out to
be just random noise while the penalty term hits back with the
guaranteed decrease of predictive performance.

Therefore throughout the competition the single flat feature
subset representation was used and then to meet the solution
requirement of being represented in a form of exactly 10
feature subsets a simple yet robust feature distribution method
was used. This method exploited the property of the greedy
search models which tend to provide the solution in a form of
items ordered inline with their quality or contribution to the
group performance. What it means is that the features added
first and "surviving" in the solution subset tend to be the best
while items added last are likely to be individually the worst.
To distribute the predictive power of features evenly among
the ensemble subsets taking from the top (best) to bottom
(worst) the ensemble subsets were appended in turns until all
selected features were distributed. As a result the ensemble
was composed of different feature subsets that shared similar
predictive power and the size difference between the least and
most populous subset was at most 1 feature.

VI. SUMMARY OF EXPERIMENTS

The experiments followed the typical competition journey
of trying initially simple models, reflecting on the results, and
gradually adding more and more complexity in a search for
performance improvement. There were many more feature se-
lection methods tested beyond the one reported above. Among
the most significant were feature selection with decision trees
reported in [10] and the acclaimed fast binary feature selection
with conditional mutual information reported in [8]. None of
these alternatives came close to the performance achieved by
our top DGBFS method.

Fig. 6 illustrates the comparison of performance curves cor-
responding to different feature selection methods investigated
in the paper.

What is striking is how efficient greedy forward search
initially was. With just a few features it achieved really
impressive performance. However this effect is achieved at
the price of really slow processing and in the longer run
suboptimal performance caused by the traps of falling into
local maximum. The sparse feature voting method was by
far the fastest as it effectively eliminated the Naive Bayes
classifier, yet still managed to deliver very high predictive
performance. The diversified greedy backward forward method
performed relatively fast as it absorbed many suboptimal but
good features and stabilised with a very robust solution after
just few forward and backward rounds. It had reported the
best predictive performance and was submitted as proposed
solution to the AAIA’14 data mining competition.
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Fig. 6. Feature selection performance curves comparisons

VII. CONCLUSIONS

In this work we illustrated relatively simple yet very
robust and generic feature selection method that appears to
be particularly suitable for handling very large data sets of
high-dimensional sparse features. The method employs highly
diversified backward-forward search that is relatively fast yet
allows to achieve deep features complementarity and very high
and stable predictive performance. We have drafted the journey
leading to the development of the top model and included
informative and comparative examples of other feature se-
lection models some of which could be good candidates for
specific predictive requirements. Specifically we have shown
that greedy forward search could be a very good model
for a very limited number of features, while the binarised
features voting method due to its extremely high speed looks
to be particularly suitable for live, dynamic predictive system
applications with the real-time requirement.

All of the presented feature selection models were consid-
ered for an entry in the AAIA’2014 Data Mining competition.
Since the predictive performance is the only metric for the
competition, the top performing model of diversified greedy
backward-forward search has been applied to the data and
its solution submitted as our entry in the competition. This
solution scored the second place with the tested predictive
performance in excess of 96%, just a quarter of the per cent

behind the top scored solution. This achievement proves how
important is the feature selection step and how much it can
reduce the useful input data to provide huge improvements
in predictive performance. In the end the model selected
only 79 features from the total pool of nearly 12000 thereby
elimination more than 99% of data.

The presented model could be used to better understand and
prevent various accidents and complex hazardous situations. It
really is a good example of how predictive analytics turned
big data into small data to potentially save many lives.
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