
An adaptive branching scheme for
the Branch & Prune algorithm
applied to Distance Geometry

Douglas Gonçalves∗, Antonio Mucherino∗, Carlile Lavor†

∗IRISA, University of Rennes 1, Rennes, France.

{douglas.goncalves,antonio.mucherino}@irisa.fr

†IMECC-UNICAMP, Campinas-SP, Brazil.

clavor@ime.unicamp.br

Abstract—The Molecular Distance Geometry Problem
(MDGP) is the one of finding molecular conformations
that satisfy a set of distance constraints obtained through
experimental techniques such as Nuclear Magnetic Resonance
(NMR). We consider a subclass of MDGP instances that can be
discretized, where the search domain has the structure of a tree,
which can be explored by using an interval Branch & Prune
(iBP) algorithm. When all available distances are exact, all
candidate positions for a given molecular conformation can be
enumerated. This is however not possible in presence of interval
distances, because a continuous subset of positions can actually
be computed for some atoms. The focus of this work is on a
new scheme for an adaptive generation of a discrete subset of
candidate positions from this continuous subset. Our generated
candidate positions do not only satisfy the distances employed
in the discretization process, but also additional distances that
might be available (the so-called pruning distances). Therefore,
this new scheme is able to guide more efficiently the search
in the feasible regions of the search domain. In this work,
we motivate the development and formally introduce this new
adaptive scheme. Presented computational experiments show
that iBP, integrated with our new scheme, outperforms the
standard iBP on a set of NMR-like instances.

I. INTRODUCTION

LET G = (V,E,d) be a simple weighted undirected graph

where the vertices V represent the points of a Euclidean

space and where d : E → R+ assigns positive weights duv to

edges (u,v) when the distance between u and v is available.

The Distance Geometry Problem (DGP) [9] asks to find an

embedding x : V → R
3 satisfying constraints based on the

available edge weights, i.e. to find a conformation x in the

Euclidean space such that:

duv ≤ ‖x(u)− x(v)‖ ≤ duv, ∀(u,v) ∈ E, (1)

where duv and duv denote, respectively, the lower and upper

bounds for the distance duv (duv = duv if duv is an exact

distance).

One of the most interesting applications of the DGP arises

in biology, where vertices of G represent atoms of a given

molecule, and weighted edges provide the relative distances

between some atom pairs. When molecules are concerned,

the DGP is generally referred to as the Molecular DGP

(MDGP) [3], [5]. The interested reader can make reference to

a recent survey [9] and to an edited book [13] for additional

information about the MDGP and methods for its solution.

The MDGP is generally formulated as a continuous opti-

mization problem where the objective function is a penalty

function capable of measuring the violation of the constraints.

Under certain assumptions, the domain of this optimization

problem can be discretized, so that it becomes combinatorial

[7], [12]. The discrete search domain has the structure of a

tree, where the candidate positions for a given atom of the

molecule belong to the same layer of the tree. We employ

an interval Branch & Prune (iBP) algorithm [8] for exploring

such a tree with the aim of finding solutions to discretizable

MDGPs. The reader is referred to Section II for more details

about the discretization.

The basic idea behind the iBP algorithm is to construct the

search domain of the optimization problem branch by branch

(branching phase), and to verify, every time a new branch is

added, whether it is feasible or not (pruning phase). Atomic

positions are generated by intersecting 3 Euclidean objects

(spheres and spherical shells), which we can define on each

layer of the tree because of the discretization assumptions.

When discovered, infeasible positions are pruned away, so that

the search can be focused on the parts of the tree where there

are feasible solutions. Only a subset of available distances

is employed in the discretization process (the discretization

distances), while others can be exploited for pruning purposes

(the pruning distances).

In the discretization process, if all considered distances are

exact, there can be at most two feasible positions for the cur-

rent atom [7]. If some distances are represented by intervals,

the feasible positions belong to a continuous Euclidean object,

that can be discretized by sampling D candidate positions [8].

In this phase, the number D of chosen sample positions plays

a very important role.

Experiments reported in previous publications (see for ex-

ample [2], [8]) show in fact that the obtained results can be

strongly influenced by the choice of D. If D is too small, only

Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems pp. 457–463

DOI: 10.15439/2014F92

ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 457

infeasible branches may be generated, so that the whole tree is

pruned and no solutions are found. On the other hand, if D is

too large, the consequent combinatorial explosion might make

the experiments too expensive. Finding a trade-off D value is

not an easy task in general.

This paper presents a new scheme for an adaptive branching

during the execution of the iBP algorithm, which is based on

the idea of including, during the intersection of the Euclidean

objects related to the known discretization distances, other

objects, related to pruning distances, that might be available at

the current layer. This way, it is possible to generate branches

that are feasible, with respect to the pruning distances, up to

the current layer.

The rest of the paper is organized as follows. In Section II,

we will briefly discuss the discretization assumptions, present

the iBP algorithm, and give some details about the generation

of the coordinates of candidate positions at each iteration

of iBP. In Section III, we will propose a new scheme,

based on the intersection of several Euclidean objects, for

the computation of candidate positions that are all feasible

at the current layer. Section IV will show some experiments

on artificially generated instances, while conclusions will be

drawn in Section V.

II. THE iBP ALGORITHM

Let G = (V,E,d) be an MDGP instance. The subclass of

MDGP instances that we consider in this paper is defined as

follows. Let E ′ ⊂ E be the subset of edges for which their

weights d are exact distances.

The interval Discretizable DGP in dimension 3 (iDDGP3).

Given a simple weighted undirected graph G = (V,E,d), we

say that G represents an instance of the iDDGP3 if and only

if there exists an order on the vertices of V verifying the

following conditions:

(a) GC = (VC,EC)≡ G[{1,2,3}] is a clique and EC ⊂ E ′;

(b) ∀i ∈ {4, . . . , |V |}, there exists {i′, i′′, i′′′} such that

1) i′′′ < i, i′′ < i, i′ < i;

2) {(i′′, i),(i′, i)} ⊂ E ′ and (i′′′, i) ∈ E;

3) di′,i′′′ < di′,i′′ + di′′,i′′′ .

Orders satisfying (a) and (b) are named “Discretization

Orders”. We refer to {i′′′, i′′, i′} as reference atoms, and to

di′′′,i, di′′,i and di′,i as reference distances.

Notice that assumption (a) allows us to place the first 3

atoms uniquely, avoiding to consider congruent solutions that

can be obtained by rotations and translations [7]. Assump-

tion (b1) ensures the existence of three reference atoms for

every i > 3, and assumption (b2) ensures that at most one of

the three reference distances may be represented by an interval

[12]. Finally, assumption (b3) avoids the reference atoms to

be collinear. We remark that assumption (b3) cannot always

be verified before the solution of an instance, because some

of the necessary distances may not be available (the corre-

sponding edges may not be in E). However, this assumption

can fail to be satisfied with probability 0, and therefore we

Algorithm 1 The iBP algorithm.

1: iBP(i,n,d,D)
2: if (i > n) then

3: // one solution is found

4: print current conformation;

5: else

6: // coordinate computation

7: if (di′′′,i is an interval) then

8: compute the two candidate arcs;

9: add them to the list L;

10: else

11: compute the two candidate positions;

12: add them to the list L;

13: end if

14: for h = 1, . . . , |L| do

15: if (L(h) is an arc) then

16: take D samples from the arc; set N = D;

17: else

18: set N = 1;

19: end if

20: // verifying the feasibility of the computed positions

21: for k = 1, . . . ,N do

22: if (x
h,k
i is feasible) then

23: iBP(i+ 1,n,d,D);
24: end if

25: end for

26: end for

27: end if

do not really need to verify it in advance [6]. Under these

assumptions, the MDGP can be discretized, i.e. the instance

at hand belongs to the iDDGP3 class. In this case, the search

domain becomes a tree, where nodes contain candidate atomic

positions, organized layer by layer.

We employ an interval Branch & Prune (iBP) algorithm [8]

for the solution of discretizable instances. Alg. 1 is a sketch

of this algorithm. The iBP algorithm performs a recursive

search on the tree which represents the search domain. At

each recursive call, candidate positions for the current atom

are computed by exploiting the coordinates of previously

placed atoms and the distance information ensured by the

discretization assumptions. When all reference distances are

exact, then two candidate positions are computed. When one

of the references is an interval, two feasible arcs are rather

identified (see Fig. 1).

In the algorithm call, i is the current atom for which can-

didate positions are currently searched, n is the total number

of atoms forming the considered molecule, d is the list of

available distances (exact and interval distances), and D is the

discretization factor, i.e. the number of sample points that are

taken from the arcs when the distance di′′′,i is represented by

an interval (see assumption (b2)). In the algorithm (see lines 9

and 12), we make use of a list L of positions and arcs, from

which candidate positions are extracted.

458 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

θ

di′′′ ,i

di′′′ ,i

i′′

i′

i+

i−

di′′′ ,i

di′′′ ,i

C

i′′′

ω+

ω−

Fig. 1. The two feasible arcs (in bold, black) obtained by intersecting two
spheres and one spherical shell.

When working on the atom i, feasible positions for its three

reference atoms {i′′′, i′′, i′}, on the current tree branch, are

already available. These reference atoms define a local co-

ordinate system centered at i′ [4], [14]. The possible positions

for the atom i verifying di′,i and di′′,i can be described by two

angles θi and ωi. Using di′′,i′ and the cosine law, we can obtain

a value for θi ∈ [0,π]. Thus, the circle C of possible positions

for atom i (see Fig. 1) can be described in terms of ωi:

xi(ωi) = xi′ +Ui′wi, (2)

where

wi =





−di′,i cosθi

di′,i sinθi cosωi

di′,i sinθi sinωi



 ,

ωi ∈ [0,2π], and Ui′ is the rotation (change of basis) matrix

from the local system at i′ to the canonical system of coordi-

nates [4].

If di′′′,i is exact, at most two values for ωi, say
{

ω
+
i ,ω

−
i

}

,

can be computed. Two possible positions x+i and x−i can

be therefore identified for the atom i. These positions are

symmetric with respect to the plane defined by the reference

atoms. If di′′′,i is instead an interval, then two disjoint and

symmetric candidate arcs are obtained, as shown in Fig. 1.

They correspond to two intervals, [ω+
i ,ω

+
i] and [ω−

i ,ω
−
i], for

the angle ωi. By selecting D equidistant angles in [ω+
i ,ω

+
i] and

other D equidistant angles in [ω−
i ,ω

−
i], 2×D atomic positions

for the current atom i can be computed.

In the standard iBP, the feasibility of these candidate atomic

positions is verified by exploiting the so-called pruning dis-

tances. The Direct Distance Feasibility (DDF) is the pruning

device that, for each candidate position related to the current

atom i, verifies whether the inequality

di j − ε ≤ ||xi − x j|| ≤ di j + ε, (3)

is satisfied for each atom j < i that is not involved in the

discretization, where ε > 0 is a given tolerance. This way,

however, a large number of generated positions may be pruned

and only a few of them may be actually feasible. The scheme

we propose in this paper aims at overcoming this issue.

Finally, we remark that an essential pre-processing step,

before applying the iBP, is to find a discretization order for the

vertices of the graph G that allow to satisfy the assumptions

in the iDDGP3 definition. This preprocessing step can be

performed efficiently, in polynomial time [11], so that the

necessary assumptions can be fulfilled by graphs related to

proteins.

III. ADAPTIVE BRANCHING IN iBP

The discretization of the two candidate arcs, used in the

standard iBP algorithm when interval data are available, rep-

resents the simplest way to deal with imprecise information

about the distances [8]. The candidate arcs are discretized by

considering a finite number of samples in the two intervals

[ω+
i ,ω

+
i] and [ω−

i ,ω
−
i], and then a new branch is created for

each of them. If D is the discretization factor (see Alg. 1),

2×D positions are generated, and 2×D new branches are

added to the tree at the current layer. When considering this

approach, it is expected that at least one of such samples is

able to fulfill the pruning distance constraints at the current

layer.
The value given to D plays a critical role. On the one hand,

too small values can generate trees where no solutions can

be found (all branches are pruned, because no positions are

compatible to the pruning distances). On the other hand, too

large D values can drastically increase the width of the tree.

Unfortunately, no upper bound on D can theoretically be de-

fined: in the case only one specific singleton in the given arcs

is actually feasible, only an infinite number of samples could

guarantee that this singleton can be discovered. However, this

is the worst case scenario: nondegenerate subarcs generally

result to be feasible w.r.t. the available pruning distances.

In the standard iBP, after the generation of candidate atomic

positions, their feasibility is verified by employing pruning

devices, such as DDF (see Section II). There are two extreme

situations:

1) all positions are feasible: this suggests that we could

consider a smaller D value without harming the compu-

tations;

2) all positions are infeasible: since a finite number of

samples on the two arcs are taken, this information does

not allow us to discriminate between “the two arcs are

infeasible” and “the chosen samples are infeasible”.

The adaptive scheme that we propose was conceived for

tailoring the branching phase of the iBP algorithm so that

all computed candidate positions are feasible at the current

layer. The basic idea is to identify, before the branching phase

of the algorithm, the subset of positions (if it exists) on the

two candidate arcs that is feasible with respect to all pruning

distances to be verified at the current layer.

Let us consider expression (2), which is able to give the

Cartesian coordinates of the atom i as a function of the torsion

angle ωi. For simplifying the notations, we will omit, in the

following, the subscripts of the angles θi and ωi.
In case the distance di′′′,i is represented by an interval, i.e.

di′′′,i ∈ [di′′′,i,di′′′,i], two candidate arcs can be computed (see

ANTONIO MUCHERINO ET AL.: AN ADAPTIVE BRANCHING SCHEME FOR THE BRANCH 459

Section II). These two arcs correspond to the two interval

torsion angles [ω+,ω+] ⊂ [0,π) and [ω−,ω−] ⊂ [π,2π). All

points in those two arcs satisfy therefore the interval distance

[di′′′,i,di′′′,i], as well as the two exact distances di′′,i and di′,i.

However, there can be pruning distances (between already

placed atoms and i) that we could exploit for tightening

these two arcs. Therefore, instead of using these distances for

pruning pre-computed positions, our idea is to exploit pruning

distances for tightening the two arcs before sampling, so that

all generated positions can be feasible (at least at the current

layer).

Tightening the feasible arcs

Let us suppose there is an h ∈ { j < i | j /∈ {i′′′, i′′, i′}},

such that the pruning distance dh,i is known. Solutions to the

equation

dh,i = ‖xh − xi(ω)‖ (4)

give the values for the angle ω that are compatible with the

distance dh,i. By squaring equation (4), and by using (2), we

obtain

d2
h,i = ‖xh − xi(ω)‖

2

= ‖xh − (xi′ +Ui′wi)‖
2

= ‖xh − xi′‖
2 − 2〈xh − xi′ , Ui′wi〉+ ‖Ui′wi‖

2 ,

where 〈·, ·〉 denotes the inner product between two vectors.

Since Ui′ is an orthogonal matrix, we have

d2
h,i = ‖xh − xi′‖

2 − 2〈xh − xi′ , Ui′wi〉+ d2
i′,i.

Let v = xh − xi′ and let x̂, ŷ, ẑ be the columns of Ui′ . Then:

d2
h,i = ‖v‖2 − 2〈v, Ui′wi〉+ d2

i′,i

= ‖v‖2 + d2
i′,i − 2〈v,(−di′,i cosθ) x̂+

(di′,i sinθcosω) ŷ+(di′,i sin θsinω) ẑ〉

= ‖v‖2 + d2
i′,i − 2

(

〈v, x̂〉(−di′,i cosθ)+

〈v, ŷ〉(di′,i sinθ)cosω+ 〈v, ẑ〉(di′,i sinθ)sin ω
)

.

If we set

A = 2〈v, ŷ〉(di′,i sinθ), (5)

B = 2〈v, ẑ〉(di′,i sin θ),

∆ = ‖v‖2 + d2
i′,i + 2〈v, x̂〉(di′,i cosθ),

and

C = ∆− d2
h,i,

we obtain the following equation:

Acosω+Bsinω =C. (6)

Solving Acosω+Bsinω =C

In order to solve equation (6), we consider the following

approach. We set

A = Rcosα, (7)

B = Rsinα, (8)

and, in order to obtain R, we square and sum the two

equations (7) and (8):

A2 +B2 = R2 cos2
α+R2 sin2

α = R2(cos2
α+ sin2

α) = R2.

If we consider the positive square root (R can be seen as the

length of a triangle side), we have

R =
√

A2 +B2.

If A 6= 0, we can divide (8) by (7), and obtain

B

A
=

sinα

cosα
= tanα,

or, equivalently

α = tan−1

(

B

A

)

.

The correct quadrant for α can be identified by checking the

signs of cosα and sinα.

Notice that, when both A and B are zero, we can have

either no solutions or an infinite number of solutions. When

A = B = 0, then v = xh −xi′ is on the x̂ axis, because sinθ 6= 0

(assumption (b3)) and di′,i > 0 (see equation (5)). Atoms

h, i′′, i′ are therefore aligned and the sphere centered in xh

does match with the whole dashed circle C (when there are

infinite solutions) or does not (when there are no solutions). If

A = 0 and B 6= 0, then cosα = 0 and α is either π/2 or −π/2,

depending on the sign of B.

When A 6= 0, from equations (6), (7) and (8), we can obtain

Acosω+Bcosω = Rcosαcosω+Rsinαsin ω

= Rcos(ω−α),

and hence

Rcos(ω−α) =C,

which is

ω = α± cos−1

(

C

R

)

. (9)

Therefore, we usually have two solutions for equation (6) in

[0,2π). There are two exceptions. When C = R, we have only

one solution; when C/R /∈ [−1,1], there are no intersection

points.

Solutions to equation (6) (and therefore to equation (4))

provide the points where the sphere, centered at xh and with

radius dh,i, intersects the circle C in Fig. 1. Those points are the

extreme points of the feasible arcs: they define feasible inter-

vals for the angle ω. Fig. 2 shows some possible intersections

between the spherical shell centered in xh (having minimum

radius dh,i and maximum radius dh,i) with the dashed circle C .

460 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

i′′, i′i′′′
x̂, ŷ plane

ω

h h

h

hh

Fig. 2. Possible intersections between the spherical shell related to the
distance dh,i and the circle of candidate positions related to di′,i and di′′ ,i.

Managing different scenarios

The feasible positions for the current atom i can be ob-

tained by intersecting the two arcs (computed by using the

discretization distances, in bold in Fig. 1) and several spherical

shells, each of them defined by considering a pruning distance

between h < i and i. In order to perform this intersection, the

following two equations need to be solved

Acosω+Bsinω = ∆− d2
h,i, (10)

Acosω+Bsinω = ∆− d
2
h,i, (11)

for every pruning distance dh,i. There are three situations that

can occur while performing the intersections (i.e. while solving

equations (10) and (11)).

Both equations have no solutions: If both equations (10)

and (11) have no solutions, then the entire candidate circle is

either completely valid, or completely invalid. If we can find

at least one value for ω such that

d2
h,i < ‖xh − xi(ω)‖

2 < d
2
h,i,

then the entire circle C is feasible w.r.t. the distance dh,i. If

not, it is sufficient to verify whether one of these 2 equations

is satisfied
max

ω∈[0,2π]
‖xh − xi(ω)‖

2 < d2
h,i,

min
ω∈[0,2π]

‖xh − xi(ω)‖
2 > d

2
h,i,

for stating that the entire circle is infeasible.

Only one equation has solutions: Let us suppose that

only equation (10) has solutions. In this case, the resulting

intersection is an interval [ω,ω] whose extreme points are the

solutions of equation (10). In order to find the right orientation

of the arc on the circle C , we define the function

F(ω) = ‖xh − xi(ω)‖
2 = ∆−Acosω−Bsinω,

and we consider its derivative

F ′(ω) = Asinω−Bcosω. (12)

The orientation at an extreme point (solution of (10)) is the

one for which F(ω) increases, and this information is given by

(12) evaluated in such an extreme point. Notice that we might

need to add 2π to one of the extreme points in order to have

ω > ω. The analysis in the case in which only equation (11)

has solutions is analogous.

Let [ω∗,ω∗] be the obtained interval for ω. If this interval

has an empty intersection with the two initial arcs in C , then

there are no feasible positions, and the current branch of the

search domain can be pruned. If this intersection is instead

non-empty, then the result provides the interval for ω that is

feasible w.r.t the discretization distances, as well as the pruning

distance dh,i. Notice that, when more than one pruning distance

is available, the same procedure can be repeated as many times

as the number of available pruning distances.

Both equations have solutions: When both equations (10)

and (11) have solutions, we obtain four values for ω: two from

equation (10) and other two from equation (11). Two intervals

can be therefore defined for ω, related to two arcs in C . Both

arcs need to be intersected with the initial arcs. The procedure

to apply is analogous to the one presented for the previous

case.

iBP and the new adaptive scheme

After considering all pruning distances, after performing

all intersections, the final result provides a list of arcs on C

that are feasible with all the distances that can be verified at

the current layer of the iBP tree. All positions that can be

taken from these arcs are feasible at the current layer: all of

them generate a new branch and may serve as a reference for

computing new candidate positions on deeper layers of the

tree. In order to integrate the iBP algorithm with this adaptive

scheme, there are two main changes to be performed on Alg. 1.

On line 8 and 11, the adaptive scheme needs to be invoked

for taking into consideration the information about the pruning

distances. Moreover, line 22 needs to be removed, because this

verification is not necessary anymore (unless other pruning

devices rather than DDF are employed).

IV. COMPUTATIONAL EXPERIMENTS

Experiments of Nuclear Magnetic Resonance (NMR) [10]

are able to provide estimates of some relative distances be-

tween pairs of atoms of a molecule. We present in this sec-

tion some computational experiments on artificially generated

NMR instances, where we compare the standard iBP algorithm

to the new iBP integrated with our adaptive scheme for the

generation of feasible atomic positions (accordingly to all

available distances at the current tree layer). In this work, we

do not consider real NMR data because the experiments here

presented have the only aim of showing the advantages in

using this new adaptive scheme. Later on, this scheme will

be integrated in a more general framework capable of dealing

with real NMR data. All codes were written in C programming

language and all the experiments were carried out on an Intel

Core 2 Duo @ 2.4 GHz with 2GB RAM, running Mac OS

ANTONIO MUCHERINO ET AL.: AN ADAPTIVE BRANCHING SCHEME FOR THE BRANCH 461

Instance iBP w/out adaptive scheme iBP with adaptive scheme

name |V | |E| D iBP calls Time D iBP calls Time

1niz 68 328 5 7668930 9.93 5 105543 0.15

2jnr 96 443 5 17410 0.02 5 16989 0.02

2pv6 110 558 7 174651 0.27 5 181020 0.24

1zec 122 622 6 1194478 1.92 5 932428 1.53

2m1a 130 681 5 323354 0.54 5 136547 0.25

2me1 135 687 6 2813983 4.30 5 1415331 2.35

2me4 135 681 5 1533970 2.36 5 249096 0.40

1dsk 140 733 6 3746764 5.34 6 1091745 1.52
TABLE I

EXPERIMENTS ON OUR ARTIFICIALLY GENERATED NMR INSTANCES.

X. The codes have been compiled by the GNU C compiler

v.4.0.1 with the -O3 flag.
The instances that we consider in the experiments have

been generated as follows. We consider a subset of proteins

from the Protein Data Bank (PDB) [1] that are related to

human immunodeficiency. Together with the coordinates of the

atoms available on the PDB, we suppose having the chemical

structure of the protein, i.e. information about bond lengths

and angles. Once the coordinates are loaded from the PDB

files, we compute all distances between atom pairs belonging

to the protein backbone, and we add a distance in our instances

if the computed distance is between:

1) two bonded atoms (considered as exact);

2) two atoms that are bonded to a common atom (consid-

ered as exact);

3) two atoms belonging to a quadruplet of bonded atoms

forming a torsion angle (considered as an interval);

4) two hydrogen atoms (considered as an interval, if the

distance belongs the interval [2.5,5] Å).

We remark that the first 3 items are related to the chemical

structure of the molecule; only the last item concerns distances

that simulate NMR data. The distances that are derived from

the information mentioned in item 3 are generally intervals;

however, when one of the possible torsion angles is related

to the peptide bond (that connects pairs of consecutive amino

acids), the distance is considered as exact, because the peptide

bond forces all atoms to lie on the same plane. Interval

distances coming from torsion angles are computed so that

all possible values for the torsion angle are allowed. The

interval distances related to item 4 have instead length equal

to 2Å, and their bounds were generated so that the true

distance is randomly placed inside the interval. After the

computation of the distance information, the atoms in every

instance have been reordered by considering the discretization

order published in [11], which is valid for every protein

backbone.
In Table I we compare the performance of the previous

version of iBP [8] with our new one, where the adaptive

branching scheme presented in Section III is implemented. For

each instance, we report the label of the corresponding file on

the PDB, the total number |V | of atoms and the number |E| of

available distances. Moreover, for each iBP version, we report

the number D of samples to be taken from each candidate arc,

the number of iBP calls and the CPU time in seconds, that

are necessary to find one solution. In the DDF pruning device

(equation (3)), the used tolerance ε is 10−3.
The D values in Table I are actually the smallest ones for

which iBP could find at least one solution in a given time limit

(10 seconds in these experiments). When using our adaptive

branching scheme, the D value never increased and it was

reduced in some cases. This was expected because our adaptive

scheme is able to guide the sample points in the feasible

regions of the candidate arcs. Even if the computation of the

intersections may increase the computational cost for single

iBP recursive calls, the overall CPU time for each experiment

is lower when the adaptive scheme is employed. This is due

to the fact that, when the branching phase in iBP is adaptive,

only feasible coordinates are generated: there are no useless

computations (i.e. computed positions that are immediately

discarded).

V. CONCLUSIONS

We proposed a new adaptive branching scheme that

was integrated in the iBP algorithm to solve discretizable

MDGPs with interval data. When interval data are used in

the discretization process, candidate positions for the current

atom are generally represented by two candidate arcs. By

exploiting the interval pruning distances that can be verified

at the current layer, we can guide the branching phase of the

iBP algorithm to take samples only on the feasible regions

of the candidate arcs.
As it was assessed by our computational experiments,

this approach improves the overall performances of the iBP

algorithm, thereby improving its robustness. Using the inter-

sections of the spherical shells defined by the pruning distances

with the candidate arcs provided by the discretization, we

avoid the generation of useless samples in infeasible portions

of the candidate arcs.
However, it is important to mention that, as in the previous

iBP version, the presented scheme does not guarantee that

the chosen sample positions can lead to feasible positions at

further layers: our scheme ensures the feasibility only up to the

current layer. Predicting the compatibility of sample positions

with the atoms that follow the current one is a topic of future

research.

VI. ACKNOWLEDGMENTS

We are thankful to Brittany Region (France) which funded

a 1-year postdoc for DG at IRISA, University of Rennes 1

462 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

(stratégie d’attractivité durable). This work is partially sup-

ported by the ANR project ANR-10-BINF-03-01 “Bip:Bip”.

CL is also thankful to FAPESP and CNPq for financial support.

REFERENCES

[1] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weis-
sig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acid
Research 28, 235–242, 2000.

[2] V. Costa, A. Mucherino, C. Lavor, A. Cassioli, L.M. Carvalho, N. Mac-
ulan, Discretization Orders for Protein Side Chains, to appear in Journal
of Global Optimization, 2014.

[3] G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Con-

formation, John Wiley & Sons, New York, 1988.
[4] D.S. Gonçalves, A. Mucherino, Discretization Orders and Efficient

Computation of Cartesian Coordinates for Distance Geometry, to appear
in Optimization Letters, 2014.

[5] T.F. Havel, Distance Geometry, D.M. Grant and R.K. Harris (Eds.),
Encyclopedia of Nuclear Magnetic Resonance, Wiley, New York, 1701-
1710, 1995.

[6] C. Lavor, J. Lee, A. Lee-St.John, L. Liberti, A. Mucherino, M. Sviri-
denko, Discretization Orders for Distance Geometry Problems, Opti-
mization Letters 6(4), 783–796, 2012.

[7] C. Lavor, L. Liberti, N. Maculan, A. Mucherino, The Discretizable
Molecular Distance Geometry Problem, Computational Optimization
and Applications 52, 115–146, 2012.

[8] C. Lavor, L. Liberti, A. Mucherino, The interval Branch-and-Prune

Algorithm for the Discretizable Molecular Distance Geometry Problem
with Inexact Distances, Journal of Global Optimization 56(3), 855–871,
2013.

[9] L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean Distance
Geometry and Applications, SIAM Review 56(1), 3–69, 2014.

[10] T.E. Malliavin, A. Mucherino, M. Nilges, Distance Geometry in Struc-

tural Biology: New Perspectives. In: [13], 329–350, 2013.
[11] A. Mucherino, On the Identification of Discretization Orders for Dis-

tance Geometry with Intervals, Lecture Notes in Computer Science
8085, F. Nielsen and F. Barbaresco (Eds.), Proceedings of Geometric
Science of Information (GSI13), Paris, France, 231–238, 2013.

[12] A. Mucherino, C. Lavor, L. Liberti, The Discretizable Distance Geom-

etry Problem, Optimization Letters 6(8), 1671–1686, 2012.
[13] A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Eds.), Distance

Geometry: Theory, Methods and Applications, Springer, 2013.
[14] H.B. Thompson, Calculation of Cartesian Coordinates and their Deriva-

tives from Internal Molecular Coordinates, Journal of Chemical Physics
47, 3407, 1967.

ANTONIO MUCHERINO ET AL.: AN ADAPTIVE BRANCHING SCHEME FOR THE BRANCH 463

