
Simulation and Formal Modelling of

Yaw Control in a Drive-by-Wire Application

Richard Banach

School of Computer Science,

University of Manchester

Oxford Road, M13 9PL, U.K.

Email: banach@cs.man.ac.uk

Pieter Van Schaik, Eric Verhulst

Altreonic,

Gemeentestraat 61/A,

Linden B3210, Belgium

Email: {pieter.vanschaik, eric.verhulst}@altreonic.com

Abstract—Cyberphysical systems, with their interdependence
between physical behaviour and digital control, need insights
from frequency domain control engineering, state space control
engineering and discrete formal systems theory for their proper
description. Neglecting any of these, results in descriptions that
omit essential details. Hybrid Event-B is a formalism that enables
all the relevant detail to be assimilated. A case study based on
yaw control for the KURT e-vehicle is used as a testbed to explore
the effective interaction between the various needed disciplines in
exploring a specific design issue, the formalisation of yaw control
discretization, using Hybrid Event-B.

I. INTRODUCTION

TODAY, the low cost, small size, low energy consumption
and wide availability of digital processors, together with

the ready availability of a wide variety of stadardised control
components, makes the embedding of computing components
and digital control into what was previously purely analogue
equipment, ubiquitous. This has now given rise to the bur-
geoning field of cyberphysical systems, in which computing
systems are intimately connected to equipment that acts in the
physical space. Increasingly, the impact of such systems is
safety critical, and in such cases, the techniques by which the
systems are developed demand scrutiny — at least in those
spheres where it is recognised that safety and dependability
(more precisely, their potential lack) merit certification pro-
cesses that have to be successfully passed before systems can
be deployed in the field. In reality, what is required to be
certified often lags well behind what is attempted and shown
to be feasible technically.

An essential element of many such certification processes
is a verifiable audit trail of mathematical models of the
system and of their relevant properties. Ideally, all models and
properties should be verifiably consistent with one another, and
demonstrably possess the properties needed for safe operation.
In the case of cyberphysical systems this ideal is challenging,
for the following reasons.

Traditionally, control design is done in the frequency
domain [1], [2], [3]. This readily yields the quantities needed
by the engineer, using a mixture of rigorous results and design
heuristics. Although the rigorous results often do not hold
with mathematical precision in reality (e.g. needed bandwidth
assumptions), the degree of inexactitude is not harmful in
practice. A major element of this approach is the use of
simulation to judge the suitability of a design, using tools like
Modelica [4].

Traditionally, computing systems, which proceed by dis-
crete steps, are modelled and analysed within a discrete state
space — there is no notion of frequency domain for an arbi-
trarily constructed discrete space. Since there is an enormous
variety in the aspects of behaviour that can be modelled by
the discrete steps of a computing system, correspondingly,
depending on what the elements of the state space represent,
we find an enormous variety of approaches to the formalisation
of computing systems [5].

Following on from this observation, traditionally, for-
malisms for computing systems (e.g. the many surveyed in [5])
do not engage with continuous mathematics at all. To address
this shortcoming in the context of cyberphysical systems, two
different approaches are seen. In the first, the formalism does
not engage with continuous mathematics, stays essentially
discrete, and incorporates facts concerning continuous aspects
of the modelled system as inputs or axioms. In the second,
special purpose formalisms are designed to include continuous
phenomena in suitable ways alongside the discrete ones.

More recently, a more rigorous approach to control has
emerged within ‘mathematical control theory’ [6], [7], [8], that
emphasises the state based approach to control. This perspec-
tive is able to relate more directly to the state based perspective
of computing formalisms in a way that the frequency domain
perspective (although equivalent to it via transform theory)
would struggle to do. Moreover, the rigour of the proofs in
mathematical control theory typically matches much better
with the style of argument in computing formalisms, both
being ultimately grounded in set theory. Then again, much of
the useful engineering information that is evident and easily
manipulated in the frequency domain, and is inferred smoothly
from simulation, can become greatly obscured in the state
based approach. Thus there is a conflict between the usual
approaches to the various disciplines that contribute to the
cyberphysical systems agenda.

In this paper we examine a case study that hosts an
encounter (we hesitate to say collision) between the various
approaches and issues mentioned. Although it is a simplified
case study, it is not a toy, in that it is drawn directly from
a genuine system, the KURT e-vehicle from Altreonic. We
specifically look at yaw control and its stability in KURT.
We embed the abridged development in the Hybrid Event-B
(HEB) formalism [9], [10], and focus on the formal description
and properties of the discretization step from a high level
continuous design to a lower level time triggered discrete one.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 731–742

DOI: 10.15439/2015F132

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 731

Fig. 1. KURT simulation: Modelica yaw rate control configuration.

From a rigorous point of view, discretization steps intro-
duce copious amounts of low level detailed technical complex-
ity. In order to keep the account within reasonable bounds, we
do take some shortcuts in the development, commenting on
the pros and cons as we go.

The rest of this paper is as follows. In Section II we
overview KURT, and describe a Modelica simulation that was
used to validate a number of design parameters for yaw control.
In Section III we overview the HEB formalism, stressing the
aspects that are most important for us. Section IV reformulates
yaw control in HEB, and Section V examines the stability of
the model in a state space based way. Section VI discusses
the issues raised by going from a continuous to a discretized
formulation in a formal manner. Section VII concludes.

II. YAW CONTROL IN THE KURT E-VEHICLE

The KURT e-Vehicle is an innovative vehicle concept
based on a modular, scalable and fault tolerant architecture.
The propulsion system of KURT utilises four independently
controlled in-wheel motors and employs a differential steering
technique combined with a drive-by-wire architecture. In its
simplest form such a steering technique entails steering the
vehicle by creating a difference in linear velocity between the
left and right side of the vehicle. Such approaches are often
utilised in unmanned robotic platforms as well as heavy earth
moving machinery. In the absence of a mechanical steering
mechanism, such as articulated steering, these vehicles are
often referred to as skid-steer vehicles. The advantages of
utilising a 4-wheel drive differential steered concept includes
minimising the mechanical complexity of the steering mecha-
nism as well as increased manoeuvrability. However, reducing
mechanical complexity demands a more intelligent propulsion
control system which in turn will be deployed on an embedded
target platform. The employed steering control strategy will
therefore do well by minimising implementation complexity
specifically with regards to aspects such as required processing
power and number of sensors. To this end a control strategy
has been devised for the KURT e-Vehicle whereby the effective
yaw rate of the vehicle is utilised as the control parameter.

According to the kinematic relations [11] of a differential
steered vehicle, yaw rate is related to linear velocity and instan-

Fig. 2. KURT simulation: left, vehicle linear velocity (m/s) vs. simulation
Time (s); right, vehicle turning radius (m) vs. simulation time (s).

Fig. 3. KURT simulation: left, vehicle trajectory in Y vs. X axis (m); right,
vehicle yaw rate response (rad/s) vs. simulation time (s).

taneous turning radius, and can be relatively easily measured
with inexpensive MEMS based sensors. The added benefit
of yaw rate control is related to safety, more specifically,
with regards to maintaining stability of the combined vehicle
and driver centre of gravity (COG) when executing turning
manoeuvres. In a drive-by-wire, and specifically a steer-by-
wire system, there is not necessarily provision for a feedback
mechanism which serves to cause the driver to limit the turning
radius when executing a turn in accordance with the linear
velocity of the vehicle. Simply put, if a turn is taken too sharply
at too high speed the vehicle can topple over. Therefore, by
controlling the yaw rate of the vehicle when executing a
turn, the effective turning radius can be controlled. This in
turn permits preventing the centrifugal force component from
getting large enough to cause the vehicle to overturn.

A basic propulsion and steering control strategy is as
follows: the throttle command issued by the user is interpreted
as a thrust request which is translated into a torque command
and is applied equally to all four wheels; a steering command
issued by the user is translated into a yaw rate request which
serves as the set point to a closed loop PID controller. The
output of the PID controller is added to the torque command
of the wheels on one side and subtracted on the opposite side.
The side to which it is added or subtracted depends on whether
the steering request is to the left or to the right. When steering
to the left the output of the PID controller will be subtracted
from the torque command of the wheels on the left and added
to the torque commands of the wheels on the right. When
steering to the right the situation will be reversed.

In order to simulate the proposed control strategy, a dy-
namic model of a skid-steer vehicle was created in Modelica
[4]. For the purposes of this investigation, the model does
not include complex tyre and surface interactions, but rather
models the wheels as point masses, on which the propulsion,
rolling resistance and friction forces act.1 The vehicle is
represented with a simple H-shaped geometry with a single
point mass located equidistant from the rear and front wheel

1Tyre and surface interactions result in friction forces (and are even
necessary to control the vehicle properly).

732 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

representing the combined vehicle and payload mass. It is also
the yaw rate of this mass that is measured and utilised in the
steering control loop. The PID steering controller was designed
by applying the Cohen-Coon tuning method [12], [13], [14].
A typical yaw control simulation setup is depicted in Fig. 1.

The kurt_chassis1 component from Fig. 1 resembles the
dynamic model of the skid-steer vehicle. The model receives
four inputs namely the thrust applied to the left rear and front
wheel masses as well the thrust applied to the right rear and
front wheel masses. The model provides three outputs of which
the yaw rate is of primary concern. The step input source
element step2 simulates a thrust request issued by the user.
The steering PID controller is implemented by pID1 of which
the output is subtracted from the output of step2 by add1 and
added to the output of step2 by add2. The output of add1 is
applied equally to the left wheel masses whereas the output of
add2 is applied equally to the right wheel masses. The purpose
of step1 is to simulate a steering request issued by the user in
the form of a yaw rate request. The output of step1 serves as
the set point to the closed loop controller with the yaw rate
output of the kurt_chassis1 being the measured variable. The
simulation setup therefore represents a steering request to turn
left. The simulation sequence commences by issuing a constant
thrust request (thr = 15N) for a duration of 4 seconds during
which no steering request is present (yrr = 0rad/s). At t = 4
seconds the thrust command is removed (thr= 0N) and at t = 5
seconds a constant steering request is issued (yrr = 0.3rad/s).
The simulation continues to run until t = 40 seconds.

The vehicle is therefore expected to accelerate from t = 0 to
t = 4 seconds after which it will decelerate. From t = 5 seconds
onwards the vehicle is expected to turn to the left. According
to the kinematic relations the turning radius of the vehicle
is expected to decrease proportionally to the linear velocity
provided that the yaw rate is held constant. Figs. 2 and 3
depict the results obtained from the simulation run. The RHS
of Fig. 3 shows the step response of the measured yaw rate.
From the results it is seen that the controller is sufficiently
capable of maintaining a constant yaw rate with acceptable
overshoot (4%) and settling time (0.1 seconds). From Fig. 2
it is seen that the turning radius decreases in proportion to
the linear velocity in accordance with the kinematic relations.
Fig. 3 also shows the trajectory of the four wheel masses. The
trajectory indicates the vehicle follows a spiral path as the
linear velocity and the turning radius decreases. Correlating
the trajectory with the turning radius it is observed that the rear
wheels progressively digress from the trajectory of the front
wheels as the turning radius decreases. From t = 32 seconds
onwards the vehicle starts to rotate around its own centre of
mass resulting in near zero turning radius.

III. AN OUTLINE OF HYBRID EVENT-B

In this section we outline HEB, relating it to the more
familiar Event-B [15]. The bulk of the material refers to a
single machine. However, our models involve three machines:
for the user, for KURT’s behaviour, and for the control system,
so we include what we need for multiple machines below.

A. Single Hybrid Event-B Machines

In Fig. 4 we see a schematic HEB machine. It starts with
declarations of time and of a clock. Time is a first class citizen

in that all variables are functions of time (which is read-only),
explicitly or implicitly. Clocks are assumed to increase like
time, but may be set during mode events. Variables are of two
kinds. There are mode variables (like u) which take their values
in discrete sets and change their values via discontinuous
assignment in mode events. There are also pliant variables
(such as x,y), declared in the PLIANT clause, which typically
take their values in topologically dense sets (normally R) and
which are allowed to change continuously, such change being
specified via pliant events.

Next are the invariants. These resemble invariants in dis-
crete Event-B, in that the types of the variables are asserted
to be the sets from which the variables’ values at any given
moment of time are drawn. More complex invariants are
similarly predicates that are required to hold at all moments
of time during a run.

Then, the events. The INITIALISATION has a guard that
synchronises time with the start of any run, while all other
variables are assigned their initial values as usual.

Mode events are analogues of events in discrete Event-
B. They can assign all machine variables (except time). The
schematic MoEv of Fig. 4, has parameters i?, l,o!, (input, local,
and an output), and a guard grd. It also has the after-value
assignment specified by the before-after predicate BApred,
which can specify the after-values of all variables (except time,
inputs and locals).

Pliant events are new to HEB. They specify the continuous
evolution of the pliant variables over an interval of time. Fig. 4
has a schematic pliant event PliEv. There are two guards:
iv, for specifying enabling conditions on the pliant variables,
clocks, and time; and grd, for specifying enabling conditions
on the mode variables.

The body of a pliant event contains three parameters
i?, l,o!, (again, input, local, and output) which are functions
of time, defined over the duration of the pliant event. The
behaviour of the event is defined by the COMPLY and SOLVE
clauses. The SOLVE clause contains direct assignments, e.g. of
y and output o! (to time dependent functions); and differential
equations, e.g. specifying x via an ODE (with D as the time
derivative).

The COMPLY clause can be used to express any additional
constraints that are required to hold during the pliant event
via the before-during-and-after predicate BDApred. Typically,
constraints on the permitted ranges of the pliant variables,
can be placed here. The COMPLY clause can also be used
to specify properties at an abstract level, e.g. stating safety
properties for the event without going into detail.

Briefly, the semantics of a HEB machine consists of a set
of system traces, each of which is a collection of functions of
time, expressing the value of each machine variable over the
duration of a system run.

Time is modeled as an interval T of the reals. A run starts
at some initial moment of time, t0 say, and lasts either for a
finite time, or indefinitely. The duration of the run, T , breaks
up into a succession of left-closed right-open subintervals:
T = [t0 . . . t1), [t1 . . . t2), [t2 . . . t3), Mode events (with their
discontinuous updates) take place at the isolated times cor-
responding to the common endpoints of these subintervals ti,

RICHARD BANACH ET AL.: SIMULATION AND FORMAL MODELLING OF YAW CONTROL 733

MACHINE HyEvBMch
TIME t
CLOCK clk
PLIANT x,y
VARIABLES u
INVARIANTS

x,y,u ∈ R,R,N
EVENTS

INITIALISATION
STATUS ordinary
WHEN

t = 0
THEN

clk,x,y,u := 1,x0,y0,u0

END
.

.
MoEv

STATUS ordinary
ANY i?, l,o!
WHERE

grd(x,y,u, i?, l, t,clk)
THEN

x,y,u,clk,o! : |
BApred(x,y,u, i?, l,o!,
t,clk,x′,y′,u′,clk′)

END
.

.
PliEv

STATUS pliant
INIT iv(x,y, t,clk)
WHERE grd(u)
ANY i?, l,o!
COMPLY

BDApred(x,y,u,
i?, l,o!, t,clk)

SOLVE
D x =

φ(x,y,u, i?, l,o!, t,clk)
y,o! :=

E(x,u, i?, l, t,clk)
END

END

Fig. 4. A schematic Hybrid Event-B machine.

and in between, the mode variables are constant, and the pliant
events stipulate continuous change in the pliant variables.

We insist that on every subinterval [ti . . . ti+1) the behaviour
is governed by a well posed initial value problem Dxs =
φ(xs . . .) (where xs is a relevant tuple of pliant variables).
Within this interval, we seek the earliest time ti+1 at which
a mode event becomes enabled, and this time becomes the
preemption point beyond which the solution to the ODE
system is abandoned, and the next solution is sought after the
completion of the mode event.

In this manner, assuming that the INITIALISATION event
has achieved a suitable initial assignment to variables, a system
run is well formed, and thus belongs to the semantics of the
machine, provided that at runtime:

(1) Every enabled mode event is feasible, i.e. has an after-
state, and on its completion enables a pliant event (but
does not enable any mode event).2

(2) Every enabled pliant event is feasible, i.e. has a time-
indexed family of after-states, and EITHER:

(i) During the run of the pliant event a mode event be-
comes enabled. It preempts the pliant event, defining
its end. ORELSE

(ii) During the run of the pliant event it becomes infea-
sible: finite termination. ORELSE

(iii) The pliant event continues indefinitely: nontermina-
tion.

Thus, in a well formed run mode events alternate with pliant
events. The last event (if there is one) is a pliant event (whose
duration may be finite or infinite). In reality, there are several
semantic issues that we have glossed over in the framework
just sketched. We refer to [9] for a more detailed presentation
(and to [10] for the extension to multiple machines). The
presentation just given is quite close to the modern formulation
of hybrid systems. See e.g. [16], [17] — or [18] to get a
perspective stretching further back.

If, from Fig. 4, we erase time, clocks, pliant variables and
pliant events, we arrive at a skeleton (conventional) Event-B

2If a mode event has an input, the semantics assumes that its value only
arrives at a time strictly later than the previous mode event, ensuring part of
(2) automatically.

machine. This simple erasure process illustrates (in reverse)
the way that HEB has been designed as a clean extension of
the original Event-B framework. The only difference of note
is that, now —at least according to the (conventional) way
that Event-B is interpreted in the physical world— (the mode)
events (left behind by the erasure) execute lazily, i.e. not at the
instant they become enabled (which is, of course, the moment
of execution of the previous event).

B. Multiple Hybrid Event-B Machines

The principal objective in modelling complex systems in
the B-Method is to start with small simple descriptions and
to refine to richer, more detailed ones. This means that, at
the highest levels of abstraction, the modelling must abstract
away from concurrency. By contrast, at lower levels of ab-
straction, the events describing detailed individual behaviours
of components become visible. In a purely discrete event
framework, like conventional Event-B, there can be some
leeway in deciding whether to hold all these low level events
in a single machine or in multiple machines — because all
events execute instantaneously, isolated from one another in
time (in the usual interpretation).

In HEB the issue is more pressing. Because of the in-
clusion of continuous behaviour, all components are always
executing some event. Thus an integrated representation risks
hitting the combinatorial explosion of needing to represent
each possible combination of concurrent activities within a
separate event, and so there is a much stronger incentive to put
each (relatively) independent component into its own machine,
synchronised appropriately. Put another way, there is a very
strong incentive to not abstract away from concurrency.

The same impulse is reinforced when we wish to construct
systems out of components, e.g. a plant and a controller. There,
it is also convenient to conceive the pieces separately and
combine them appropriatelty. The key concept in achieving
this is the INTERFACE. This is a syntactic contruct (adapted
from the idea in [19]) that includes the declarations of a set
of variables, the invariants that involve them, and also their
initialisations. A community of machines may have access
to the variables declared in an interface if each machine
CONNECTS to the interface. All events in the machines must

734 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

PROJECT Kurt_Prj
INTERACES

YawCtrl_IF
MACHINES

KurtUser_Mch
Kurt_Mch

YawCtrl_Mch
END

INTERFACE YawCtrl_IF
SEES Kurt_Ctx
TIME t
PLIANT

yrr,yrm,stc,
yreP,yreI,yreD,
thr, tal, tar

INVARIANTS
yrr,yrm,stc ∈ R,R,R
yreD,yreP,yreI ∈ R,R,R
thr, tal, tar ∈ R,R,R

INITIALISATION
WHEN

t = 0
THEN

yrr,yrm,stc := 0,0,0
yreP,yreI,yreD := 0,0,0
thr, tal, tar := 0,0,0

END
END

CONTEXT Kurt_Ctx
.

AXIOMS
.

END

MACHINE KurtUser_Mch
CONNECTS YawCtrl_IF
EVENTS

SteerKurt
STATUS pliant
BEGIN

thr(t) := Θ(4− t)
yrr(t) := Θ(t −5)

END
END

MACHINE Kurt_Mch
CONNECTS YawCtrl_IF
EVENTS

KurtBehaves
STATUS pliant
SOLVE
D yrm(t) := CKstc(t)

END
END

MACHINE YawCtrl_Mch
CONNECTS YawCtrl_IF
EVENTS

YawControl
STATUS pliant
SOLVE

yreP(t) := yrr(t)−yrm(t)
yreD(t) := D yreP(t)
D yreI(t) := yreP(t)
stc(t) :=

KP[yreP(t)+yreI(t)/TI +TD yreD(t)]
tal(t) := thr(t)− stc(t)
tar(t) := thr(t)+ stc(t)

END
END

Fig. 5. A Hybrid Event-B system for yaw control.

preserve all of the invariants in the interface, of course. An
important point is that all invariants involving the interface’s
variables must be in the interface.

Multi-machine HEB systems need more than what we have
just described, namely (at least) synchronisation and instanti-
ation mechanisms. These, and other issues, are discussed in
[10]. What we have mentioned will suffice for this paper.

IV. A HYBRID EVENT-B MODEL OF YAW CONTROL

In this section we take the model discussed in Section II
and re-express it as a Hybrid Event-B PROJECT. The project
itself appears in Fig. 5, where its overall structure is defined in
the PROJECT Kurt_Prj file. This indicates the pieces that the
system is constructed from. These consist of the INTERFACE
YawCtrl_IF and the MACHINEs KurtUser_Mch, Kurt_Mch
and YawCtrl_Mch.

The interface SEES the CONTEXT Kurt_Ctx which con-
tains the definitions of all the constants and static mathematics
that the project will need, and more importantly, it is also the
home of any AXIOMS (concerning these static elements) that
we may rely on for verification. The interface then names the
(pliant) variables shared by the machines that connect to it, lists
their invariants, and defines their intialisations. Table 1 lists the
variables, and describes how they relate to the elements of the
KURT simulation model in Fig. 1.

The three machines KurtUser_Mch, Kurt_Mch and
YawCtrl_Mch are formal definitions of the three actors in the
dynamics.

The KurtUser_Mch machine describes the behaviour of
the user who drives KURT. The machine CONNECTS to the
YawCtrl_IF interface, to access needed variables, and it has
a single pliant event SteerKurt. This applies a constant thrust
from time 0 to time 4 thr(t) := Θ(4− t), and a constant yaw
request from time 5 onwards yrr(t) := Θ(t−5), where Θ is the
Heaviside step function. This is consistent with the description
in Section II.

Machine Kurt_Mch describes the intrinsic behaviour of the
KURT e-vehicle. It also CONNECTS to YawCtrl_IF. In this
simple model it is assumed that KURT will emit a measured
yaw rate yrm whose derivative is proportional to the difference
of the thrusts applied to left and right wheel sets tar(t)−tal(t),
and which is thus (via a positive constant CK) proportional to
the differential thrust stc(t) (see Fig. 1):

d

dt
yrm(t) = CK stc(t) (3)

Machine Kurt_Mch expresses this in HEB notation.

Machine YawCtrl_Mch describes the controller that turns
the user’s steering commands into thrust commands to KURT’s
wheels. Of course it CONNECTS to YawCtrl_IF. At its heart
is the PID controller in Fig. 1 which calculates the differential
steering thrust command stc(t) from the value, integral and
derivative of the yaw rate error yer(t):

stc(t) = KP

[

yre(t)+
1

TI

Z t

0
yre(s)ds+TD

d

dt
yre(t)

]

(4)

The formalism of HEB does not permit us to write this directly
since (aside from implicit constraints in the COMPLY clause),

RICHARD BANACH ET AL.: SIMULATION AND FORMAL MODELLING OF YAW CONTROL 735

it allows direct assignment and differential equations only,
in the SOLVE clause. The formulation in the YawCtrl_Mch
machine unwinds (4) into an acceptable form. Thus, separate
variables are introduced for the proportional, integral and
derivative of yre(t): yreP(t),yreI(t),yreD(t) (variable yre(t)
itself is not an element of the Kurt project). On this basis,
equation (4) turns into the following lines of the SOLVE clause
of the YawControl pliant event:

yreP(t) := yrr(t)− yrm(t) (5)

yreD(t) := DyreP(t) (6)

DyreI(t) := yreP(t) (7)

stc(t) := KP[yreP(t)+ yreI(t)/TI +TD yreD(t)] (8)

The remaining assignments in the SOLVE clause of the
YawControl event, quite faithfully mirror the relevant functions
and connections of the yaw control model in Fig. 1, when the
interpretation is mediated via the information in Table 1.

V. FORMAL PROPERTIES OF YAW CONTROL

Some properties can be easily checked from the text of
Fig. 5. For instance, each of the variables of the YawCtrl_IF
interface appears exactly once in the left hand side of any of the
assignments or ODEs in any of the pliant events in the project.
Since all these pliant events run concurrently, this property is
a prerequisite for consistency.

The next obvious thing is the observation that all of the
assignments and equations of the Kurt project are linear. This
means that an analytic solution to the system’s behaviour is
within reach, which we examine now.

A. Stability Analysis of the Simulation

Given that there are step functions in the system inputs thr
and yrr at t = 4 and t = 5, the behaviour splits naturally into
three intervals: [0 . . .4), [4 . . .5), [5 . . .∞).

During [0 . . .4) the vehicle accelerates from 0: thus thr =
15 = tal = tar, and all other variables remain at 0. During
[4 . . .5), the thrust is switched off thr = 0 = tal = tar. So all
variable values are 0. (In the simulation of Section II the

Table 1: Variables Used in the Yaw Control Models

Variable Meaning

yrr Yaw Rate Request (output of step1)

yrm Yaw Rate Measured (output of Kurt)
yre Yaw Rate Error, i.e. yre = yrr− yrm

(output of feedback2)
yreD Time Derivative of Yaw Rate Error

(derivative of output of feedback2)
yreP Proportional Steering Yaw Rate Error,

i.e. yreP = yre (output of feedback2)
yreI Time Integral of Yaw Rate Error

(integral of output of feedback2)

stc (Differential) Steering Thrust Command
(output of pID1)

thr Thrust Request (output of step2)

tal Thrust Applied Left (output of add1)
tar Thrust Applied Right (output of add2)

vehicle begins to slow, although this depends on frictional
forces not included in our formal model.)

Turning starts at t = 5, and we must solve the system
of equations in the Kurt project. The KurtBehaves event in
the KurtMch machine implies that yrm(t) is the time integral
of CKstc(t) up to a constant of integration LP. This can be
substituted into the right hand side of (5) which then yields
yreP(t). Differentiating this, in turn yields yreD(t) via (6).
Integrating it instead, yields yreI(t) via (7), up to another
constant of integration LI . Substituting these relationships into
(8) yields the integral equation:

stc(t) = KP(0.3−LP)−CKKP

Z t

5
stc(s)ds

+
KP

TI

[

(0.3−LP)(t − 5)−LI −CK

Z t

5

Z s

5
stc(u)duds

]

−CKKPTD stc(t) (9)

Differentiating this twice yields the homogeneous ODE:
(

TD +
1

CKKP

)

d2

dt2
stc(t)+

d

dt
stc(t)+

1

TI

stc(t) = 0 (10)

The only solutions of (10) are exponential. Putting in the ansatz
stc(t) = Reλt and integrating twice yields candidates for the
integral terms in the RHS of (9). Since (9) must be an identity,
equating coefficients of eλt and of the linear terms allows LP,
LI and R to be determined from initial conditions. And with
stc(t) determined, we can easily calculate the behaviour of all
the other system variables if we wish.

For mechanical stability, we need the real part of either
value of λ to be negative. This yields two constraints on the
family of constants in the Kurt system, each being of the
form expr > 0. However, up to positive constant factors and an
additional factor of TI , one expr is the reciprocal of the other.
Therefore, the two cannot be consistent unless TI > 0, whence
we get:

TI > 0 and TD +
1

CKKP

> 0 (11)

We can add these as AXIOMS to the context Kurt_Cxt:

AXIOMS

TI > 0

TD + 1/(CK KP)> 0

With axioms like these included in the project, new invariants
become provable. Specifically, because yreP(t) in [5 . . .∞) is
bounded by a negative exponential displaced by a constant, its
maximum is finite, so that we can add:

INVARIANTS

yreP(t)≤ yrePMAX

to the interface YawCtrl_IF , where yrePMAX can be calculated
explicitly.

B. More General Stability Analysis

The above analysis accurately reflected —though from a
formal vantage point— the kind of evaluation that can be
achieved by a simulation based approach, such as we had
in Section II. In this section, we extend the formal analysis

736 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

to the case of a more arbitrary yaw rate request input yrr(t),
provided it stays within specified bounds. We illustrate thereby
the greater reach of a more symbolically based approach, in
cases where the calculational challenges remain tractable.

With a relatively arbitrary yrr(t), we can redo the derivation
of the previous section. We arrive at an analogue of (10) in
which the LHS is as before and the RHS is modified:

. . . =
1

CK

(

TD
d3

dt3
yrr(t)+

d2

dt2
yrr(t)+

1

TI

d

dt
yrr(t)

)

≡ inh(t) (12)

We see that the inhomogeneous term inh(t) depends solely on
the derivatives of yrr(t).

Introducing the vector stc(t) = [stcP(t) stcD(t)]T where
stcP(t)≡ stc(t) and stcD(t) is the time derivative of stcP(t),
we can write the second order ODE (12) as a first order system:

d

dt
stc(t) = A stc(t)+b(t) (13)

where:

A =

[

0 1
−H/TI −H

]

and b(t) =

[

0
H inh(t)

]

(14)

and H =CKKP/(1+CKKPTD), (the latter being the reciprocal
of the constant appearing in (11)).

The form of (13) is standard (see, e.g. [20], [21], [22]
and many other places), so the system can be integrated by
applying a routine procedure. For t ≥ 5 we have:

stc(t) = eA(t−5) stc(5)+

Z t

5
eA(t−s) b(s)ds (15)

Since b(t) consists solely of derivatives of yrr(t), we
can integrate by parts repeatedly. To do so we introduce the
notation yrr(t) = [0 yrr(t)]T, and we observe that:

Z t

5
eA(t−s) dk

dsk
yrr(s)ds =

[

eA(t−s)∑
k−1

j=0
Ak− j−1 d j

ds j
yrr(s)

]t

5

+Ak

Z t

5
eA(t−s) yrr(s)ds (16)

So as not to have to deal with a large collection of boundary
terms coming from (16), we now hypothesise a turning episode
in which yrr(t) starts at zero (for t = 5), smoothly increases and
then smoothly decreases back to zero (for t > 9 say). Dropping
the boundary terms, we get, in the t > 9 region:

stc(t) = eA(t−5) stc(5) +

1

CK

(

1

TI

A+A2 +TD A3

)

Z t

5
eA(t−s) yrr(s)ds (17)

A result like (17) allows us to estimate in a symbolic man-
ner the steering thrust command required for turning episodes
corresponding to yrr(t)’s that behave in ways characterised
by some generic pattern. For example we may be able to
confirm that for the class of turning episodes considered,

the magnitude of the steering command will not breach the
physical boundaries engineered into the system.3

If this strategy is pursued, then the properties assumed
for yrr(t) can be introduced axiomatically in the interface
YawCtrl_IF. Technically, constants would be introduced in
YawCtrl_IF, e.g. a constant YRR naming a function of time,
which would be endowed with the properties required to be
assumed for yrr(t), expressed via axioms. Then the behaviour
of yrr(t) would be set equal to YRR in machine KurtUser_Mch.

The properties concerning yrr(t) derivable from this basis
could be dealt with in various ways. For persistent properties,
the most natural approach would be to recast them as invariants
of the system. Properties not of this kind cold be expressed as
THEOREMS in the syntax. Both kinds would then need to be
proved.

C. On Mechanical Verification

The previous two sections gave examples of what could be
addressed within a formal development framework capable of
treating continuous behaviour as first class citizen. But writing
a desirable property is one thing, and mechanically discharging
a proof of it is another. While proper mechanical support for
HEB is, as yet, an aspiration, achieving the power to do the
kind of mathematics indicated in a reasonable time would
require the import of the capabilities of existing tools like
Mathematica [23]. Such an approach is entirely practical, and
would provide a good level of additional assurance, beyond
what can be achieved by explorations of system behaviour via
simulation.

For applications requiring an even higher level of assur-
ance, the user would have to program the rules and tactics
for the relevant portion of mathematics directly, so that the
details of the derivation could be exposed to scrutiny, in con-
trast to tools like Mathematica, where the internal reasoning
algorithms are commercial secrets. The capability to approach
the verification task in both ways is part of the planned tool
support for HEB.

VI. DISCRETIZING HYBRID EVENT-B YAW CONTROL

A major issue in turning a conceptual design into a reality
in today’s engineering environment, is going from the original
continuous control model to a discretized control model. This
is because, with today’s components, analogue control is
prohibitively expensive when compared to its discrete counter-
part. (There are, of course, many other reasons for preferring
discrete control which are well known, such as the flexibility
of software, and the lack of drift in digital components.)

In some approaches, the design is initiated directly in the
discrete sphere, bypassing the continuous world altogether.
However, that forces the problem of deciding the sampling
frequency, to be confronted immediately. The advantage of
starting in the continuous world is that this issue is postponed
in favour of engagement with the primary design challenges,
which are most clearly viewed in the continuous world. This
is what we do here, starting with the continuous model, and
then contemplating the discretized version.

3A more realistic simulation of KURT than shown in Section II includes
limiters to do just that.

RICHARD BANACH ET AL.: SIMULATION AND FORMAL MODELLING OF YAW CONTROL 737

PROJECT KurtD_Prj
REFINES –??– Kurt_Prj
INTERACES

YawCtrlD_IF
MACHINES

KurtUserD_Mch

KurtD_Mch
YawCtrlD_Mch

END

INTERFACE YawCtrlD_IF
REFINES –??– YawCtrl_IF
SEES KurtD_Ctx
TIME t
PLIANT

yrrD,yrmD,
stcD,stc

pr
D ,

yrePD,yreP
pr
D ,

yreID,yreDD,
thrD, talD, tarD

INVARIANTS
yrrD,yrmD ∈ R,R
stcD,stc

pr
D ∈ R,R

yrePD,yreP
pr
D ∈ R,R

yreID,yreDD ∈ R,R
thrD, talD, tarD ∈ R,R,R
thrD = thr
yrrD = yrr

|yrmD −yrm|< Byrm

|stcD − stc|< Bstc

|stc
pr
D − stc|< Bstc

|yrePD −yreP|< ByreP

|yreP
pr
D −yreP|< ByreP

|yreID −yreI|< ByreI

|yreDD −yreD| < ByreD

|talD − tal|< Btal

|tarD − tar|< Btar

.

.
INITIALISATION

WHEN
t = 0

THEN
yrrD,yrmD := 0,0
stcD,stc

pr
D := 0,0

yrePD,yreP
pr
D := 0,0

yreID,yreDD := 0,0
thrD, talD, tarD := 0,0,0

END
END

CONTEXT KurtD_Ctx
EXTENDS Kurt_Ctx
.

AXIOMS
N T = 1
.

END

MACHINE KurtUserD_Mch
REFINES KurtUser_Mch
CONNECTS YawCtrlD_IF
EVENTS

SteerKurt
REFINES SteerKurt
STATUS pliant
BEGIN

thrD(t) := Θ(4− t)
yrrD(t) := Θ(t −5)

END
END

MACHINE KurtD_Mch
REFINES –??– Kurt_Mch
CONNECTS YawCtrlD_IF
EVENTS

KurtBehavesPli
REFINES KurtBehaves

STATUS pliant
COMPLY skip

END
KurtBehavesMo

STATUS ordinary
WHEN (∃n ∈ N• t = nT)
THEN

yrmD := yrmD +CKT stcD

END
END

MACHINE YawCtrlD_Mch
REFINES –??– YawCtrl_Mch
CONNECTS YawCtrlD_IF
EVENTS

YawControlPli
REFINES YawControl
STATUS pliant
COMPLY skip

END
YawControlMo

STATUS ordinary
WHEN (∃n ∈ N• t = nT)
THEN

yrePD := yrrD −yrmD

yreP
pr
D := yrePD

yreID := yreID +TyrePD

yreDD := (yrePD −yreP
pr
D)/T

stcD := “KP[yrePD+yreID/TI +TD yreDD]”
stc

pr
D := stcD

talD := thrD − stcD

tarD := thrD + stcD

END
END

Fig. 6. A discretized Hybrid Event-B system for yaw control.

A. Continuous and Discretized Systems

From a formal development standpoint, the most desirable
relationship between a system model and its more idealised
predecessor, is a refinement. Typically, a refinement enriches
a more idealised model with detail taking it ‘closer to imple-
mentation’. The enriched model is proved consistent with its
predecessor (normally, via a formal simulation relation). Done
properly, a refinement has the potential to preserve valuable
properties established earlier, in the new model. Unfortunately,
in the context of the discretization issue, this strategy, applied
naively, fails. The reasons are as follows.

A continuous description of a system contains an ‘infinite’
amount of information: i.e. the values of all system variables
over a continuum of times. Any implementable sampling
method will unavoidably ‘forget’ all but a tiny fraction of this
information, i.e. all but the sampled values themselves. If the
system response to the environment depends on the informa-
tion it has about the system’s behaviour, it is more or less
inevitable that, in principle, the quality of a sampled system’s
response will be inferior compared with the continuous case.
Thus the discretization process is not an enrichment of the

continuous model but an impoverishment, and refinement, as a
technique, struggles to cope with it, since the impoverishment
degrades the information available for the consistency proof
rather than enhancing it.

Still, the news is not all bad. Typically, the interaction
between the system and the environment/plant is two way
(closed loop). If, overall, both the continuous and discrete
versions of the combined system are stable (with suitable
choices of parameters etc.), then a reaction in the discretized
system that is in some way undesirably increased compared
to what it would be in the continuous system under similar
circumstances, can be compensated for by the environment of
the discretized system, which can increase suitably its input
to the system to steer overall behaviour towards the desired
regime. Doing this successfully depends on a number of things:
good understanding of both system and environment; the
deviations spoken of being moderate in magnitude; the overall
system (in both the continuous and discrete versions) being
stable; suitable choices of parameters being made.4 See [16]

4Suitable parameter choice is heavily dependent on insight from the
frequency domain. We return to this point below.

738 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

for a relevant technical discussion. However, if the interaction
between the system and the environment is one way (open
loop), it is much easier to see less acceptable devations.

B. The Discretized Model

In Fig. 6 there is a discretized version of the previous
continuous yaw control model. Each syntactic construct is
replaced by its discretized counterpart; e.g. Kurt_Prj is re-
placed by KurtD_Prj which REFINES –??– it. The question
marks qualifying the REFINES claim refer to a certain level of
ignorance concerning the precision of the relationship between
the continuous and discretized versions that we must endure,
and that affects many components of the two models. We
discuss this point in detail in Section VI-D.

In this exercise, for simplicity, we keep all the model
constants (such as CK ,KP etc.) the same.5 In addition, there is
a further constant T , which represents the sampling period. For
simplicity, T is axiomatized to be 1/N’th of a unit of time, so
that the external stimuli to the system can remain the same as
in the continuous model (and both, moreover, are open loop).

Variables varD are the discretized counterparts of their
earlier predecessors var, sampled and updated every T time
units. Now, the semantics of Hybrid Event-B imposes a specific
interpretation on the assignments that occur in mode events,
e.g. varD := expr(varD). When such an assignment is executed
at a time kT say, the LHS of the assignment denotes the
new value varD(kT), which we write as varD,k. However,
the RHS is evaluated using the limiting value of varD just
before kT . If we assume that varD does not change during
any sampling interval, then the RHS is in fact expr(varD,k−1),
so the assignment implements the difference equation varD,k =
expr(varD,k−1). We return to this point below.

In order to implement simple approximations to derivatives
and integrals (done via backward differences and accumulated
sums, respectively), preceding values of some variables need to
be recorded: var

pr
D . (As with the model constants, the literature

contains many approaches that tackle these issues in more
sophisticated ways; see e.g. [24], [25], [26].)

We discuss the machines, one by one. The simplest
is KurtUserD_Mch. This genuinely REFINES the earlier
KurtUser_Mch machine in a manner which is easy to see.
Namely, the original and discretized variables thr and yrr
vs. thrD and yrrD have identical behaviours in the sole (pliant)
event of the two machines SteerKurt. This is formalised via
the equalities thrD = thr and yrrD = yrr in the invariants of
the interface.

Next we have KurtD_Mch. This has both a pliant event
KurtBehavesPli and a mode event KurtBehavesMo. The pliant
event (continuously) skips. This models the zero order hold
that characterises a simple sampling scheme. The pliant event
REFINES –??– the KurtBehaves event of Kurt_Mch. The mode
event models the periodic updates to yrmD at the sampling
times, obtained by replacing the differential equation of the
KurtBehaves event with a discretized approximation of the
corresponding integral equation via yrmD := yrmD+CKT stcD.
This is to be interpreted as discussed above, which means that

5In many discretization approaches, model constants are adjusted, in order
to better approximate the continuous model.

the assignment represents the difference equation yrmD,k =
yrmD,k−1 +CKT stcD,k−1.

Then we have YawCtrlD_Mch. The conventions al-
ready described hold here too. Thus there is a pliant
event YawControlPli that skips while it REFINES –??–
the YawControl event of YawCtrl_Mch, and a mode event
YawControlMo that models the periodic updates to the
discretized counterparts of all the variables modified by
YawControl. At this point a subtlety needs to be pointed out.

In a pliant event, there is no difference between the
(parallel) direct assignments x,y := y,z and x,y := z,z because
of the equality semantics of direct (instantaneous) assignment.
However, when the two assignments are naively discretized,
they turn into xD,yD := yD,zD and xD,yD := zD,zD respectively,
which are to be interpreted as we discussed above. The first
of these corresponds to the difference equation xD,k,yD,k =
zD,k−2,zD,k−1, because the LHS and RHS of such assignments
refer to values one sampling period apart, as noted above.
Thus a chain of n dependent equalities in a pliant event
—which in the pliant event relate values at the same time
point— can generate an n’th order difference equation upon
discretization. This can have detrimental effects on the quality
of the approximation and on its stability due to the use of
older and older values — as is discussed extensively within
numerical analysis, e.g. [27], [28].

In order to minimise the impact of this, we can back
substitute to make use of values that are as fresh as possible.6

Note that every different choice of scheme for doing the
back substitutions results in a discretization scheme that is
correspondingly different, amounting to a different design
decision regarding what discretization means.

We can go further, designing the difference equations that
we wish to use for the discretization a priori, and indepen-
dently of the ‘obvious’ discretizations of the continuous model,
and then work back to derive the discrete assignments that
would implement them.

In the context of these remarks, the main impact on the
YawCtrlD_Mch machine is to alter the detailed expressions
that occur on the RHS of the assignments of the mode event.
The assignment that is of most interest is the assignment for
stcD, where the feedback from the control strategy is most felt.
Its RHS is enclosed in heavy quotes to allude to this.

C. Discretized Stability Analysis

Let k ∈ N index the number of 1/N’ths of a time unit
elapsed since t = 5. We address the discretization of stcD in
more detail. In the light of all the possibilities just discussed,
we proceed as follows.

Looking at the assignments for yrmD and yrePD that
appear in Fig. 6 and dropping the inhomogeneous terms, it
is not difficult to derive the difference equation yrePk+1 =
−CKT ∑k

r=0 stcD,r. Deriving the analogous expression for yreID

involves a double summation. Dealing with these directly in the
assignment for stcD is certainly inconvenient. However, if we
take second differences of the stcD assignment, the summations

6This amounts to using the xD,yD := zD,zD form in the earlier example.

RICHARD BANACH ET AL.: SIMULATION AND FORMAL MODELLING OF YAW CONTROL 739

cancel, and we obtain:

stcD,k+3 − 2stcD,k+2 + stcD,k+1 =

−CKKP[TD(stcD,k+2 − 2stcD,k+1 + stcD,k)

+T (stcD,k+2 − stcD,k+1)+T2stcD,k+2/TI] (18)

which is much more amenable to analysis. Inserting the ansatz
stcD,k = RW k into (18) yields:

D(W) ≡ W 3 +CKKP[T
2/TI +T +TD − 2/CKKP]W

2

+CKKP[1/CKKP − 2TD−T]W +CKKPTD = 0 (19)

This is a cubic equation for W . For stability in the system as
a whole, we need |W |< 1 for all the solutions of D(W) = 0.
Standard resources for cubics such as e.g. [29], [30], show the
technical burden of trying to analyse this directly.

We observe that because of the sign of the W 3 term in (19),
if all the roots of D(W) = 0 are real and of modulus < 1, then
(1) D(+1)> 0, (2) D(−1)< 0, and if D′ is the derivative of D,
then (3) the roots r± of D′(W) = 0 satisfy −1< r− < r+ <+1,
(4) D(r−)> 0, (5) D(r+)< 0. Since D′(W) = 0 is a quadratic it
is a lot easier to handle. (We note that the constraints cited can
be related to the Sturm technique for finding regions containing
real roots of an arbitrary polynomial [31].)

Although the general form of the coefficients of (19)
makes it cumbersome to test for the conditions (1)-(5) in full
generality, we note that we are predominantly interested in
the region T → 0. If any necessary conditions do not hold
in the limit of vanishing sampling interval, then they cannot
be of interest for any engineering purpose. The T → 0 limit
simplifies the coefficients considerably.

Beyond this, we can rely on the physical properties of the
system to simplify the case analysis further. From the Cohen-
Coon tuning analysis of Section II, it emerges that TD ≈ 10T
and TI ≈ 4TD. As well, the kinematics of the problem mean
that CK is positive, and it also follows that KP is positive. So
all the constants in our problem space are positive.

All of these observations make the corresponding tests
relatively straightforward to carry out. Tests (1) and (2) are
straightforward evaluations. The former yields a triviality while
the latter yields the constraint:

1 >CKKPTD (20)

which turns out to be necessary for the small T limit to be
feasible. Constraint (3) gives rise to a number of further con-
ditions. However, in the small T limit, they are all subsumed
by the stronger condition (20).

The expressions for the roots r± of D′(W) = 0 are the stan-
dard formulae for a quadratic, and turn out to be expressions
in the combination CKKPTD. Accordingly, it is easiest to use
(20) to substitute numerical values for CKKPTD and thence
to check conditions (4) and (5). It turns out that values of
CKKPTD around approximately 0.5 permit (4) and (5) to be
satisfied in the small T limit. We thus conclude that there is
a stable regime in the small T region, and hence furthermore,
that there is a still larger region of stability when a pair of
roots of D(W) = 0 fuses and bifurcates into a pair of complex
roots (which will be close to the real axis for some range of
values of the parameters).

We concede that the above analysis was somewhat ad hoc.
More significantly, it was purposely confined entirely within
the state space formulation of the problem. This is important to
the extent that the HEB approach is lodged in the state space
domain for reasons which were explained in the Introduction.

By contrast, most discretizations of continuous designs in
engineering practice take place within the frequency domain.
As mentioned previously, there are various approaches de-
scribed in the literature cited earlier. Happily, one of them coin-
cides with what we derived: the discrete equivalence approach.
In that approach, a zero order hold is introduced into the model
at the right point, standard z-transform elements are introduced
for the PID components, and a transfer function is calculated
by combining all of these. The poles of the transfer function
give the characteristic frequencies of the system, which are
checked for stability. It turns out that the denominator of the
transfer function (which is a rational function in the z plane),
coincides exactly with (19) aside from the change of variable.

In the conventional approach to discretization, stability is
analysed using the Jury test [32], [26], [8], which is applied in
the z domain. This generates a sequence of tests, all of which
have to be passed to deduce stability (which is the property
|z|< 1 for the characteristic frequencies). Happily once more,
the first few of these coincide with the first few of the ad hoc
tests we did above. All of this shows not only the desirability,
but the feasibility of greater cooperation between the two
formulations of control within the formal HEB approach.

D. Relating the Continuous and Discretized Models

The cornerstone of any formal development technique like
(Hybrid) Event-B is the idea of relating successive models via a
formal refinement relation, which relates a more abstract model
to a more concrete one. In practice this is always a simulation
relation, which amounts to the statement: IF the invariants hold
at a given moment THEN they hold after any update (mode
or pliant) of the concrete variables — for a suitable choice
of update of the abstract variables. Thus, suitably initialised,
the implicational structure can be cascaded inductively into
a statement that holds true at all times. Evidently, for the
described approach to have force, the invariants mentioned
must express a desired relationship between the two families
of variables that is also expected to hold at all times.

Establishing this, when viewing discretization as an in-
stance of refinement, proves to be very demanding in all but the
simplest cases. A trivial case of discretization treated this way
occurs in [9] — no technical difficulties occur there. From our
own development, an equally trivial case of refinement occurs
between machines KurtUser_Mch and KurtUserD_Mch, since
in the INVARIANTS section of the YawCtrlD_IF interface
we find the joint invariants thrD = thr and yrrD = yrr, which
express the equality of the relevant pairs of variables. Since
the original and discretized variables are defined to behave in
exactly the same way in their respective machines, establishing
the required properties is indeed trivial, and KurtUserD_Mch
is a genuine refinement of KurtUser_Mch.

For the other machines in the model, the situation is a lot
less clear cut. The detailed behaviour of the continuous and
discretized variables in each corresponding pair is known a lot
less precisely. In particular, there is a significant lack of detail

740 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

compared with what is stated regarding thr and yrr and their
counterparts. A number of points arise concerning this.

Firstly, given a linear and third order discretization scheme,
with sufficient additional effort an analytic solution could in
principle be obtained for the various variables involved, at
least in the form of summations over powers of the roots. The
effort involved would be considerable, yet the perspicacity of
the solution obtained would not be a given. With a relatively
opaque formulation of the solution, its relationship with the
analytic solution to the continuous system (which we did
not pursue to its conclusion either) would also not be clear.
This would lead to further technical difficulties in formulating
relevant joint invariants for corresponding pairs of variables. It
is not evident that they would enjoy the same level of precision
that we were able to indicate for thr and yrr.

Secondly, the effort expended in achieving the goals in-
dicated (if actually expended) would only apply for the sin-
gle pair of abstract and concrete system trajectories given
by the specific driving inputs specified by thr and yrr in
KurtUser_Mch and its counterpart. They would not necessarily
apply for any other inputs. But, for dependability, we would
want a generic result that applied to a whole family of
trajectories that was large enough to include all that could be
expected to arise in practice. For that, much more generic and
powerful results would be needed. And this mismatch between
what typical formal techniques routinely demand, and what the
analysis of control systems can routinely supply, rapidly grows
greater the more complex the application system becomes.

Based on these observations, the relationships that we have
quoted in the YawCtrlD_IF interface between continuous and
discretized versions of our variables (excepting thr and yrr)
is approximate equality. Some justification for this lies in the
fact that we were able to show that both systems were stable
(for suitably chosen static parameters).

For us, approximate equality meant |varD − var| < Bvar,
for corresponding variable pairs and constants Bvar. When
the stability properties are sufficiently strong, such results
can become provable in principle; see e.g. [16]. Still, it is
not unquestionably the case that these results can be related
directly to problem domain quantities, because of their reliance
on existential properties.

The claim that |var− varD|< Bvar can serve as a suitable
joint invariant depends crucially on knowing that the dynamics
is such that the difference between continuous and discretized
versions of variables always strictly decreases, i.e. that we
always have behaviour consistent with asymptotic stability,
regardless of the behaviour of any external input. However,
in Section VI-A, we acknowledged the possibility of impov-
erished information from sampling allowing the discrepancy
between variables to grow, even if temporarily. In such cases,
the arguments in [16] will not hold.

In cases like that, it is often not too hard to prove
local properties, i.e. properties concerning a single sampling
interval, that assert not-too-bad divergence. The downside of
such properties though, is that they do not cascade inductively
into statements that hold at all times.

A variation on the refinement technique that is focused on
such local properties is retrenchment [33], [34], [35], [36].

It provides a formal framework in which such local proper-
ties can be expressed, and additionally, related to properties
controlled by refinement (see particularly [35]). A judicious
combination of refinement and retrenchment could prove to
be the best approach to the technical difficulties mentioned.

Of course, we are not the first authors to discuss the
challenges posed by discretization. As well as standard discrete
control references such as [32], [26], [25], [37], [8], there are
more specialised treatments aimed at specific aspects, e.g. [38],
[39], [40], [41]. Frequently they focus on a frequency domain
approach or on statistical properties. It is probably fair to say
though, that there is no detailed treatment that is an ideal match
to the needs of a formal approach to control systems design
and development.

VII. CONCLUSIONS

In the preceding sections, we took a simplified though
non-trivial version of the yaw control problem for the KURT
e-vehicle, and used it as a testbed for complementing and
strengthening the assurance obtainable via conventional en-
gineering approaches, by using a formal modelling and re-
finement approach to the development. The vehicle for the
latter was the Hybrid Event-B formalism [9], [10], a formalism
designed to capture hybrid system behaviour in way that is
compatible with established formal development approaches
from the computing sphere, and with state based approaches
from the control sphere.

One immediate consequence of this is the evident tension
between the state based perspective of formal approaches
(which need to deal with arbitrarily structured state spaces) and
the frequency domain based perspective of conventional engi-
neering design. The frequency domain approaches, typically
based on Laplace transforms and z-transforms, turn functional
properties into algebraic ones — the latter are usually much
easier to manipulate in practice, and thus are strongly favoured
in practical engineering. The simplification of the design pro-
cess coming from the use of algebraic techniques is amplified
by the use of specific stimuli (such as response to step function
inputs), and of simulation, as preferred techniques to gauge
the appropriateness of a design. Of course, to quote a familiar
truism, simulation can only show the presence of faults, not
their absence, so enhancing the development methodology with
formal techniques which potentially have broader coverage is
a worthwhile aim.

Doing this seriously though, quickly invites back the
technical obstacles that the algebraic and simulation based
approaches strove to avoid. We rapidly saw this in our ex-
amination of the discretization of PID control in the KURT
e-vehicle application — the technical difficulties inherent in
moving from a relatively perspicuous continuous design to a
suitable discretized version quickly proliferated.

These observations readily propose a series of topics that
it would be very worthwhile to develop more fully in order to
increase the utility of a combined approach.

[I] A closer cooperation is needed between, on the one
hand, the state space methods typical in state based control
and formal approaches, and on the other hand, the frequency
domain based approaches so widely used in conventional en-
gineering. Normally, discussions take place exclusively within

RICHARD BANACH ET AL.: SIMULATION AND FORMAL MODELLING OF YAW CONTROL 741

one domain or the other, but a greater interaction could
improve the feasibility of a combined approach. For this, and
depending on the specific goals of a given analysis, more
contact points would be identified between state space and
frequency methods, such that the solution to a state space
question could be derived in the frequency domain. However,
it has to be appreciated that only certain questions translate
well between the two domains.

[II] With issues such as discretization, it is clearly im-
practical to tackle each development from first principles in
a practical methodology. A family of suitable generic results
is needed that can be applied in a wide variety of contexts to
inform the formal strand of the development. Similar remarks
apply to other aspects of the development methodology —
we could mention topics such as sensitivity and robustness,
besides stability, which we concentrated on.

[III] To facilitate the efficient incorporation of the relevant
kinds of formal derivation (done by hand in an ad hoc manner
in this paper) additional special purpose syntactic support
could be provided within the Hybrid Event-B formalism,
especially in the context of mechanised tool support.

Besides these issues concerned with the technical interac-
tion between different approaches, lies the application level
scope of the formal modelling and refinement. We confined
our attention to stability in an ideal environment, thereby
neglecting many things. In reality, friction and sensitivity to
external influences in the equipment affect the behaviour of
the system. If these are not modelled properly, then the rigour
of a formal refinement becomes spurious. Likewise statistical
fluctuations in both the equipment and the environment of
operation impacts the behaviour, and needs to be taken into
account.

The traditional engineering approach to such questions is
again via the frequency domain. It is assumed that influences
such as these are each characterised by a suitable frequency do-
main response profile, often determined experimentally where
needed. With a characterisation of that kind to hand, the con-
troller can be designed to filter out stimuli that are undesired,
and to respond appropriately to those that are important. With
such a bandwidth limited frequency domain controller design,
the Nyquist theorem and engineering heuristics give a good
guide to the sampling frequency needed for a dependable dis-
cretization. However, this kind of frequency domain derivation
is rather far from the state space approaches that could be
directly placed in a formal development framework. All of
these topics provide fertile territory for further work, to be
pursued in other publications.

REFERENCES

[1] K. Ogata, Modern Control Engineering. Pearson, 2008.

[2] R. Dorf and R. Bishop, Modern Control Systems. Pearson, 2010.

[3] K. Dutton, S. Thompson, and B. Barraclough, The Art of Control

Engineering. Addison Wesley, 1997.

[4] Modelica Homepage, https://www.modelica.org/.

[5] J. Van Leeuven, Handbook of Theoretical Computer Science, Vol. A and

Vol. B. Elsevier, 1990.

[6] E. Sontag, Mathematical Control Theory. Springer, 1998.

[7] N. Ahmed, Dynamic Systems and Control With Applications. World
Scientific, 2006.

[8] D. Hinrichsen and A. Pritchard, Mathematical Systems Theory I.
Springer, 2005.

[9] R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu, “Core Hybrid
Event-B I: Single Hybrid Event-B Machines,” Sci. Comp. Prog., 2015,
to appear.

[10] R. Banach, M. Butler, S. Qin, and H. Zhu, “Core Hybrid Event-B II:
Multiple Cooperating Hybrid Event-B Machines,” 2015, submitted.

[11] K. Kozłowski and D. Pazderski, “Modeling and Control of a 4-Wheel
Skid-Steering Mobile Robot,” Int. J. Appl. Match Comput. Sci., vol. 14,
pp. 477–496, 2004.

[12] ControlsWiki, https://controls.engin.umich.edu/wiki/index.php/
PIDTuningClassical.

[13] K. Astrom and T. Hagglund, Advanced PID Control. ISA, 2006.

[14] K. Ogata, System Dynamics. Pearson, 2013.

[15] J. R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[16] P. Tabuada, Verification and Control of Hybrid Systems: A Symbolic

Approach. Springer, 2009.

[17] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for

Complex Dynamics. Springer, 2010.

[18] L. Carloni, R. Passerone, A. Pinto, and A. Sangiovanni-Vincentelli,
“Languages and Tools for Hybrid Systems Design,” Foundations and

Trends in Electronic Design Automation, vol. 1, pp. 1–193, 2006.

[19] S. Hallerstede and T. Hoang, “Refinement by Interface Instantiation,” in
Proc. ABZ-12, Derrick, Fitzgerald, Gnesi, Khurshid, Leuschel, Reeves,
Riccobene, Ed., vol. 7316. Springer, LNCS, 2012, pp. 223–237.

[20] W. Walter, Ordinary Differential Equations. Springer, 1998.

[21] C. Chicone, Ordinary Differential Equations with Applications, 2nd ed.
Springer, 2006.

[22] P. Antsaklis and A. Michel, Linear Systems. Birkhauser, 2006.

[23] Mathematica Homepage, http://www.wolfram.com.

[24] J. D’Azzo and C. Houpis, Linear Control System Analysis and Design:
Conventional and Modern. McGraw Hill, 1995.

[25] G. Franklin, J. Powell, and M. Workman, Digital Control Systems.
Prentice Hall, 1996.

[26] P. Paraskevopoulos, Digital Control Systems. Prentice Hall, 1996.

[27] E. Isaacson, Analysis of Numerical Methods. Dover, 2003.

[28] A. Iserles, A First Course in the Numerical Analysis of Differential

Equations. Cambridge University Press, 1996.

[29] Wikipedia, “Cubic function.”

[30] F. Olver, D. Lozier, R. Boisvert, and C. Clark, NIST Handbook of
Mathematical Functions. Cambridge University Press, 2010.

[31] Wikipedia, “Sturm’s theorem.”

[32] B. Kuo, Digital Control Systems. Oxford University Press, 1992.

[33] R. Banach, M. Poppleton, C. Jeske, and S. Stepney, “Engineering and
Theoretical Underpinnings of Retrenchment,” Sci. Comp. Prog., vol. 67,
pp. 301–329, 2007.

[34] R. Banach, C. Jeske, and M. Poppleton, “Composition Mechanisms for
Retrenchment,” J. Log. Alg. Prog., vol. 75, pp. 209–229, 2008.

[35] R. Banach and C. Jeske, “Retrenchment and Refinement Interworking:
the Tower Theorems.” Math. Struc. Comp. Sci., vol. 25, pp. 135–202,
2015.

[36] Retrenchment Homepage, http://www.cs.man.ac.uk/retrenchment.

[37] M. Fadali and A. Visioli, Digital Control Engineering: Analysis and

Design. Academic Press, 2009.

[38] B. Widrow and I. Kollar, Quantization Noise. Cambridge University
Press, 2008.

[39] R. Marks, Introduction to Shannon Sampling and Interpolation Theory.
Springer, 1991.

[40] R. Pytlak, Numerical Methods for Optimal Control Problems with State

Constraints, ser. Lecture Notes in Mathematics. Springer, 1999, vol.
1707.

[41] L. Grune, Asymptotic Behavior of Dynamical and Control Systems

under Perturbation and Discretization. Springer, 2002.

742 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

