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Abstract—Cognitive radio (CR) technology has emerged as a
promising solution to many wireless communication problems
including spectrum scarcity and underutilization. To enhance
the selection of channel with less noise among the white spaces
(idle channels), the a priory knowledge of Radio Frequency
(RF) power is very important. Computational Intelligence (CI)
techniques cans be applied to these scenarios to predict the
required RF power in the available channels to achieve optimum
Quality of Service (QoS). In this paper, we developed a time
domain based optimized Artificial Neural Network (ANN) and
Support Vector Regression (SVR) models for the prediction of
real world RF power within the GSM 900, Very High Frequency
(VHF) and Ultra High Frequency (UHF) FM and TV bands.
Sensitivity analysis was used to reduce the input vector of the
prediction models. The inputs of the ANN and SVR consist of
only time domain data and past RF power without using any RF
power related parameters, thus forming a nonlinear time series
prediction model. The application of the models produced was
found to increase the robustness of CR applications, specifically
where the CR had no prior knowledge of the RF power related
parameters such as signal to noise ratio, bandwidth and bit
error rate. Since CR are embedded communication devices with
memory constrain limitation, the models used, implemented a
novel and innovative initial weight optimization of the ANN’s
through the use of compact differential evolutionary (cDE)
algorithm variants which are memory efficient. This was found
to enhance the accuracy and generalization of the ANN model.

Index Terms—Cognitive Radio; Primary User; Artificial Neu-
ral Network; Support Vector Machine; Compact Differential
Evolution; RF Power; Prediction.

I. INTRODUCTION

DUE TO the current static spectrum allocation policy,

most of the licensed radio spectrum are not maximally

utilized and often free (idle) while the unlicensed spectrum are

overcrowded. Hence the current spectrum scarcity is the direct

consequence of static spectrum allocation policy and not the

fundamental lack of spectrum. The first bands to be approved

for CR communication by the US Federal Communication

Commission (FCC) because of their gross underutilization in

time, frequency and spatial domain are the very high frequency

and ultra-high frequency (VHF/UHF) TV bands [1] [2] [3]. In

this paper, we focused on the study of real world RF power

distribution in some selected channels (54MHz to 110MHz,

470MHz to 670MHz, 890MHz to 908.3MHz GSM up-link,

935MHz to 953.3MHz GSM down-link) within the VHF/UHF

bands, FM band, and the GSM 900 band. The problem of

spectrum scarcity and underutilization, can be minimized by

adopting a new paradigm of wireless communication scheme.

Advanced Cognitive Radio (CR) network or Adaptive Spec-

trum Sharing (ASS) is one of the ways to optimize our wireless

communications technologies for high data rates in a dynamic

environment while maintaining user desired quality of service

(QoS) requirements. CR is a radio equipped with the capability

of awareness, perception, adaptation and learning of its radio

frequency (RF) environment [4]. CR is an intelligent radio

where many of the digital signal processing that were tradi-

tionally done in static hardware are implemented via software.

Irrespective of the definition of CR, it has the followings

basic features: observation, adaptability and intelligence. CR

is the key enabling tool for dynamic spectrum access and

a promising solution for the present problem of spectrum

scarcity and underutilization. Cognitive radio network is made

up of two users i.e. the license owners called the primary users

(PU) who are the incumbent legitimate owners of the spectrum

and the cognitive radio commonly called the secondary users

(SU) who intelligently and opportunistically access the unused

licensed spectrum based on some agreed conditions. CR access

to licensed spectrum is subject to two constrains i.e on no

interference base, this implies that CR can use the licensed

spectrum only when the licensed owners are not using the

channel (the overlay CR scheme). The second constrain is on

the transmitted power, in this case, SU can coexist with the PU

as long as the interference to the PU is below a given threshold

which will not be harmful to the PU nor degrade the QoS

requirements of the PU (the underlay CR network scheme)

[5] [1]. There are four major steps involved in cognitive

radio network, these are: spectrum sensing, spectrum decision,

spectrum sharing, and spectrum mobility [6] [7].
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In spectrum sensing, the CR senses the PU spectrum
using either energy detector, cyclostationary features detector,
cooperative sensing, match filter detector, eigenvalue detector,
etc to sense the occupancy status of the PU [8]. Based on the
sensing results, the CR will take a decision using a binary
classifier to classify the PU channels (spectrum) as either
busy or idle there by identifying the white spaces (spectrum
holes or idle channels). Spectrum sharing deals with efficient
allocation of the available white spaces to the CR (SU) within
a given geographical location at a given period of time while
spectrum mobility is the ability of the CR to vacate the
channels when the PU reclaimed ownership of the channel and
search for another spectrum hole to communicate. During the
withdrawal or search period, the CR should maintain seamless
communication. Many wireless broadband devices ranging
from simple communication to complex systems automation,
are deployed daily with increasing demand for more, this calls
for optimum utilization of the limited spectrum resources via
CR paradigm. Future wireless communication device should
be enhanced with cognitive capability for optimum spectrum
utilization. CRs are embedded wireless communication devices
with limited memory, thus in this paper, we utilized the power
of compact differential evolutionary (cDE) algorithm which
is memory efficient, to develop an optimized ANN and SVR
model for the prediction of real world radio frequency (RF)
power. RF power traffics is a function of time, geographical
location (longitude and latitude), height above the sea level
(altitude) and the frequency or channels properties. Since our
experiment is conducted at a fixed geographical location and
at constant height, the inputs of the ANN and SVR consist of
only past RF power samples, current time domain information
and frequency (channel) while the output is the predicted
current RF power in decibel (dB) (i.e. the current RF power is
modelled as a function of time, frequency and past RF power
samples) hence forming a nonlinear time series prediction
model. ANN and SVR models were adopted because of the
dynamic nonlinearity often associated with RF traffic pattern,
coupled with random interfering signals or noise resulting
from both artificial and natural sources. The use of sensitivity
analysis as detailed in Section VIII for the determination
of the optimum number of past recent RF power samples
to be used as part of the input of the ANN or SVR for
prediction of current RF power, results into a more compact,
robust, accurate, and well generalized models. The proposed
algorithm used a priori data to enable the system to avoid
noisy channels. The prior knowledge of the RF power allowed
the cognitive radio to predictively select channels with the
least noise among those that were unused or free. This would
allow for a reduced utilization of radio resources including
transmitted power, bandwidth, and in turn maximizing the
usage of the limited spectrum resources. The data used in
this study was obtained by capturing real world RF data
for two months using Universal Software Radio Peripheral
1 (USRP 1). The digital signal processing and capturing of
the data were done using gnuradio which is a combination
of Python for scripting and C++ for signal processing blocks;
while the models design and prediction were done in Matlab.
The experiment was conducted at Centre for Computational
Intelligence, De Montfort University, UK, located very close
to Leicester city centre.

Many prediction models used in CR radio uses known RF

related parameters as their inputs of which licensed owners
will not be willing to dispose such information to CR users.
Some of the models are based on explicit mathematical model
which may be different from real world situation as highlighted
in Section II. Some of the prediction models aim at prediction
of spectrum holes, but the fact that spectrum holes (vacant
channels) are known does not depict any information about
the best channel to be used among the idle channels as the
noise level is not flat for all the channels. Thus the major
contribution of our model is that it can be used for Rf power
prediction where the CR has no prior knowledge of any RF
power related parameter. This will enable the CR to avoid
noisy channels. The model is trained and tested using real
world data. Also instead of training the ANN using back
propagation algorithms (BPA) which often lack optimality due
to premature convergent, the weights of the ANN are initially
evolves using cDE and then fine tune using BPA, this was
found to produce a more accurate and generalized model as
compared with the one trained using only BPA. SVR was also
examined using different kernels and we come up with the
model that is more appropriate for our studied location.

The rest of this paper is consist of the following sections.
Section II consist of previously presented related research in
this field. This will be followed by Section III and Section
V, that gives brief description of neural network and the
optimization algorithms implemented. Experimental details are
discussed in Section VII. The paper is concluded with Section
IX, which discusses the results of the experiments, Section X
gives the summary of the findings.

II. RELATED WORK

There are different types and variants of Computational
Intelligence (CI) and machine learning algorithms that can be
used in CR such as genetic algorithms for optimization of
transmission parameters [9], swarm intelligence for optimiza-
tion of radio resource allocation [10], fuzzy logic system (FLS)
for decision making [11] [12], neural network and hidden
Markov model for prediction of spectrum holes; game theory,
linear regression and linear predictors for spectrum occupancy
prediction [13] , Bayesian inference based predictors, etc.
Some of the CI methods are used for learning and prediction,
some for optimization of certain transmission parameters while
others for decision making [14]. TV idle channels prediction
using ANN was proposed in [15], however, data were collected
only for two hours everyday day (5pm to 7pm) within a period
of four weeks, this is not sufficient to capture all the various
trends associated with TV broadcast. Also, identifying the idle
channels does not depict any spatial or temporal information
of the expected noise and/ or level of interference based on
the channels history which is vital in selecting the channels to
be used among the idle channels. Spectrum hole prediction
using Elman recurrent artificial neural network (ERANN)
was proposed in [16]. It uses the cyclostationary features
of modulated signals to determine the presence or absence
of primary signals while the input of the ERANN consists
of time instances. The inputs and the target output used in
the training of the ERANN and prediction were modelled
using ideal multivariate time series equations, which are often
different from real life RF traffics where PU signals can be
embedded in noise and/ or interfering signals. Traffic pattern
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prediction using seasonal autoregressive integrated moving-
average (SARIMA) was proposed for reduction of CRs hop-
ping rate and interference effects on PU while maintaining a
fare blocking rate [17]. The model (SARIMA) does not depict
any information about the expected noise power.

Fuzzy logic (FL) is a CI method that can capture and
represent uncertainty. As a result it has been used in CR
research for decision making processes. In [11] an FL based
decision-making system with a learning mechanism was devel-
oped for selection of optimum spectrum sensing techniques for
a given band. Among these techniques are matched filtering,
correlation detection, features detection, energy detection, and
cooperative sensing. Adaptive neural fuzzy inference system
(ANFIS) was used for prediction of transmission rate [18].
This model was designed to predict the data rate (6, 12, 24,
36, 48 and 54 Mbps) that can be achieved in wireless local area
network (WLAN) using a 802.11a/g configuration as a function
of time. The training data set was obtained by generating a
random data rate with an assigned probability of occurrence
at a given time instance, thus forming a time series. In this
study, real world RF data wasn’t used. More importantly, the
research did not take into account the dynamic nature of noise
or interference level which can affect the predicted data rates.
Semi Markov model (SMM) and continuous-time Markov
chain (CTMC) models have also been used for the prediction
of packet transmission rates [19]. This avoids packet collisions
through spectrum sensing and prediction of temporal WLAN
activities combined with hoping to a temporary idle channel.
However, SMM are not memory efficient, neither was there any
reference made to the expected noise level among the inactive
(idle) channels to be selected. An FL based decision system
was modeled for spectrum hand-off decision-making in a con-
text characterized by uncertain and heterogeneous information
[12] and fuzzy logic transmit power control for cognitive
radio. The proposed system was used for the minimization
of interference to PU’s while ensuring the transmission rate
and quality of service requirements of secondary users [20].
The researcher did not, however, include any learning from
past experience or historical data. An exponential moving
average (EMA) spectrum sensing using energy prediction was
implemented in [21]. The EMA achieved a prediction average
mean square error (MSE) of 0.2436 with the assumption that
the channel utilization follow exponential distribution with rate
parameter λ = 0.2 and signal to noise (SNR) of 10dB; RF real
world data was not used in their study. Within this paper we
demonstrate the use of SVR and an ANN trained using cDE
for prediction of real world RF power of selected channels
within the GSM band, VHF and UHF bands. An optimized
ANN model was produced by combining the global search
capabilities of cDE algorithm variants and the local search
advantages of back-propagation algorithms (BPA). The initial
weights of the ANN were evolved using cDE after which
the ANN was trained (fine tune) more accurately using back-
propagation algorithms. This methodology demonstrates the
application of previously acquired real world data to enhance
the prediction of RF power to assist the implementation of CR
applications. The meta parameters that govern the accuracy and
generalization SVR model were evolves using cDE.

III. ARTIFICIAL NEURAL NETWORK

Artificial Neural Networks (ANN) are composed of simple
elements operating in parallel. These elements are inspired by
biological nervous systems [22], [23]. Due to the dynamic
nonlinearity often associated with RF traffic pattern, coupled
with random interfering signals or noise resulting from both
artificial and natural sources, a fully connected multilayer
perceptron (MLP) ANN with two hidden layers was used in
this study. The input layer was cast into a high dimensional first
hidden layer for proper features selection. The activation func-
tions used in the two hidden layers are nonlinear hyperbolic
tangent functions (1), and a linear symmetric straight line (2)
is used for the output activation function. Implementation with
other activation functions were also adopted, but this choice
gave a better promising results. The nonlinear hyperbolic
tangent functions introduced a nonlinear transformation into
the network. The hidden layers serve as a feature detector i.e.
during the training; they learn the salient attributes (features)
that characterizes the training data. The ANN is trained us-
ing compact differential evolutionary algorithms variants after
which the weights are further fine tuned using backpropaga-
tion algorithm (BPA). The training objective function is the
minimization of the mean square error (MSE) i.e. the synaptic
weights and biases were updated every epoch to minimize the
MSE. A supervised batch training method was used with 60%
of the data used for training the ANN, 20% for validation
and 20% for testing the trained ANN. In this study, the back
propagation algorithm is used as a local searcher, thus the
learning rate was kept low at 0.01. The inputs of the ANN
consist of seven past recent RF power, and time domain data
of varying rates of change i.e. second, minute, hour, week
day (1 to 7), date day (1 to at most 31), week in a month
(1 to 5), and month while the output gives the power in
Decibels (dB). Each input of the time domain, enables the
ANN to keep track with the trend of RF power variation as
a function of that particular input. The current RF power is
modelled as a nonlinear function of recent past RF power
samples and current time, thus forming a nonlinear time series
model. The number of past samples to be used (in this study
7) for reliable prediction and efficient memory management
was obtained experimentally as detailed in Section VIII. The
actual past RF power (not the predicted RF power) samples fed
at the input of the ANN, coupled with the long time training
information captured via the time domain inputs, results in
a robust ANN model that adapt well to the present trend of
RF power variation. In this paper we designed three ANN
models. The first model is shown in Fig 1; it consists of only
one output neuron and is dedicated for RF power prediction of
only one channel which implies that each channel will have its
own dedicated ANN. To circumvent this problem, we designed
two models for RF power prediction in multiple channels. The
second model depicted in Fig 2 is used for prediction of RF
power in many channels (for this study is 20 channels) but
one at a time. It has only one output neuron, but in addition
to the time and past RF power samples inputs, it has another
inputs representing the channels. The output neurons of the
third (parallel) model is equal to the number of channels to be
considered Fig 3. The parallel model is used for simultaneous
prediction of RF power in multiple channels given the current
time instant and past RF power samples as inputs. For the
parallel model, if 7 recent past samples of each of the channels
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were used as distinct feedback inputs, there will be a total of
7N feedback inputs; where N is the number of channels Fig 3;
and the training will be computationally expensive. These large
feedback inputs ware reduced to 7 by using their average.The
data used in this study were obtained by capturing real world
RF signals within the GSM 900, VHF and UHV TV and FM
bands for a period of two months. In all the models, no RF
power related parameters such as signal to noise ratio (SNR),
bandwidth, and modulation type, are used as the input of
the ANN. Thus making the models robust for cognitive radio
application where the CR has no prior knowledge of these RF
power related parameters.

Artificial neural network architecture can be broadly clas-
sified as either feed forward or recurrent type [22]. Each of
these two classes can be structured in different configurations.
A feed forward network is one in which the output of one
layer is connected to input of the next layer via a synaptic
weight, while the recurrent type may have at least one feedback
connection or connections between neurons within the same
layer or other layers depending on the topology (architecture).
The training time of the feed forward is less compared to that
of the recurrent type but the recurrent type has better memory
capability for recalling past events. Four ANN topologies
were considered: feed forward (FF), cascaded feed forward
(CFF), feed forward with output feedback (FFB), and layered
recurrent (LR) ANN.

The accuracy and level of generalization of ANN depend
largely on the initial weights and biases, learning rate, mo-
mentum constant,training data and also the network topology.
In this paper, the learning rate and the momentum were
kept constant at 0.01 and 0.008 respectively while the initial
weights and biases were evolved using compact differential
evolutionary algorithm variants. The first generation initial
weights and biases were randomly generated and constrained
within the decision space of -2 to 2. After 1000 generations,
the ANN weights and biases were initialized using the elite i.e.
the most fittest solution (candidate with the least MSE, obtain
using test data) and then train further using backpropagation
algorithm (BPA) to fine tune the weights as detailed in the
training Section VI-A. Thus producing the final optimized
ANN model.

F (x) = b · tanh(ax) = b(
eax − e−ax

eax + e−ax
) (1)

F (x) = mx+ c (2)

Where the intercept c = 0 and the gradient m is left at Matlab
default while the constants a and b are assigned the value 1.

IV. SUPPORT VECTOR MACHINE

Support vector machine (SVM) used for regression is
often known as support vector regression (SVR). In SVR,
the input space x is first mapped onto a high m dimensional
feature space by means of certain non-linear transformation
(mapping), after which a linear model f(x,w) is constructed
in the feature space as shown in (4), [22]. Many time series
regression prediction models uses certain lost functions during
the training phase for minimization of the empirical risk,
among these loss functions are mean square error, square error

Fig. 1: Dedicated ANN model for one channel

Fig. 2: Multiple channels, single output ANN model

Fig. 3: Multiple channels, parallel outputs ANN model

Where n is a time index, P (n− 1), P (n− 2), · · · , P (n− q)
are the past q RF power samples while P (n) is the current
predicted RF power.

and absolute error. In SVM regression, a different loss function
called ε-insensitive loss proposed in [24] [25], is used. When
the error is within the threshold ε, it is considered as zero,
beyond the threshold ε, the loss function (error) is computed
as the difference between the actual error and the threshold as
depicted in (5). The empirical risk function of support vector
regression is as shown in (6). The gaol of SVR model is to
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approximate an unknown real-value function depicted by (3).
Where x is a multivariate input vector while y is a scalar
output, and δ is independent and identically distributed (i.i.d.)
zero mean random noise or error. The model is estimated using
a finite training samples (xi, yi) for i = 1, · · · , n where n is
the number of training samples. For this study, the input vector
x of the SVR model consist of past recent RF power, current
time and frequency while the scalar output y is the current
power in Decibels (dB).

y = r(x) + δ (3)

f(x,w) =
m
∑

j=1

wjgj(x) + b (4)

Where gj(x), j = 1, · · · ,m refer to set of non-linear trans-
formations, wj are the weights and b is the bias.

Lε(y, f(x,w)) =

{

0 if |y − f(x,w)| ≤ ε
|y − f(x,w)| − ε otherwise

(5)

Remp(w) =
1

n

n
∑

i=1

Lε(yi, f(xi, w)) (6)

Support vector regression model is formulated as the mini-
mization of of the following objective functions, [22]:

minimise
1

2
‖W‖

2
+ C

n
∑

i=1

(ξi + ξi
∗) (7)

subject to

{

yi − f(xi, w)− b ≤ ε+ ξi
∗

f(xi, w) + b− yi ≤ ε+ ξi
ξi, ξi

∗ ≥ 0, i = 1, · · · , n
(8)

The non-negative constant C is a regularization parameter that
determined the trade off between model complexity (flatness)
and the extend to which the deviations larger than ε will be
tolerated in the optimization formulation. It controls the trade-
off between achieving a low training and validation error,
and minimizing the norm of the weights. Thus the model
generalization is partly dependent on C. The parameter C
enforces an upper bound on the norm of the weights, as shown
in (9). Very small value of C will lead to large training error
while infinite or very large value of C will lead to over-
fitting resulting from large number of support vectors, [26].
The slack variables ξi and ξi

∗ represent the upper and lower
constrains on the output of the system. These slack variables
are introduced to estimate the deviation of the training samples
from the ε-sensitive zone thus reducing model complexity by
minimizing the norms of the weights, and at the same time
performing linear regression in the high dimensional feature
space using ε-sensitive loss function. The parameter ε controls
the width of the ε-insensitive zone used to fit the training data.
The number of support vectors used in constructing the support
vector regression model (function) is partly dependent on the
parameter ε. If ε-value is very large, few support vectors will
be selected, on the contrary, bigger ε-value results in a more
generalized model (flat estimate). Thus both the complexity
and the generalization capability of the network depend on its
value. One other parameter that can affect the generalization

and accuracy of a support vector regression model is the kernel
parameter and the type of kernel function used as shown in
(11) to (14).

There are three meta-parameters or hyperparameters that
determine the complexity, generalization capability and ac-
curacy of support vector machine regression model, these
are the C Parameter, ε and the kernel parameter γ, [27],
[28], [29]. Optimal selection of these parameters is further
complicated due to the fact that they are problem dependent
and the performance of the SVR model depends on all the three
parameters. There are many proposals how these parameters
can be chosen. It has been suggested that these parameters
should be selected by users based on the users experience,
expertise and a priori knowledge of the problem, ( [24], [25],
[30], [31]). This leads to many repeated trial and error attempts
before getting the optimums if possible, and it limit the usage
to only experts. In this study, we used cDE to evolves the
three meta parameters of the SVR model. SVR optimization
problem constitute a dual problem with a solution given by

f(x) =
s

∑

i=1

(αi − α∗
i )K(x, xi) + b (9)

The dual coefficients in (9) are subject to the constrains
0 ≤ αi ≤ C and 0 ≤ α∗

i ≤ C. Where s is the number of
support vectors, K(x, xi) is the kernel function, b is the bias,
while α and α∗ are Lagrange multipliers. The training samples
x with non-zero coefficients in (9) are called the support
vectors. The general expression for the kernel is depicted in
(10). Any symmetric positive definite function, which satisfies
Mercers Conditions [22] can be used as kernel function. In this
study, four kernel were used, i.e. the Radial Basis Function
(RBF), Gaussian Radial Basis Function, Exponential Radial
Basis Function kernel and Linear kernel given by (11), (12),
(13), and (14) respectively, [22]. In this study, we designed
two SVR models for each kernel, one of the model shown
in Fig. 4 is dedicated for prediction of RF power of only one
channel or resource block which implies that each channel will
have it own model; the second model shown in Fig. 5 has an
additional channel input thus it can be used for prediction of
RF power in many channels but one at a time.

K(x, xi) =

m
∑

j=1

gj(x)gj(xi) (10)

K(x, xi) = e(−γ‖x−xi‖2) (11)

K(x, xi) = e(−
‖x−xi‖

2

2σ2 )
(12)

K(x, xi) = e(−
‖x−xi‖

2σ2 )
(13)

K(x, xi) = xTxi + c (14)

The adjustable constant parameter c of the linear kernel was
set to 0 while the kernel parameters σ and γ were evolved
using cDE algorithm variants.
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Fig. 4: Dedicated SVR model for one channel

Fig. 5: Multiple channels, single output SVR model

Where n is a time index, P (n− 1), P (n− 2), · · · , P (n− q)
are the past q RF power samples while P (n) is the current
predicted RF power.

V. OPTIMIZATION ALGORITHMS

A brief description of the optimization algorithms im-
plemented are presented in this section. We combine the
global search capability of compact differential evolutionary
algorithms with the single solution local search advantages of
BPA to evolve the weights and biases of the optimized ANN
model as described in the training, Section VI-A.

A. Differential Evolution

Base on the original definition, DE are population based
direct search algorithms used to solve continuous optimization
problems [32] [33]. DE aims at evolving NP population
of D dimensional vectors which encodes the G generation
candidate solutions Xi,G =

{

X1
i,G, · · ·X

D
i,G

}

towards the
global optimum, where i = 1, · · · , NP . The initial candidate
solutions at G = 0 are evolves in such a way as to cover the
decision space as much as possible by uniformly randomizing
the candidates within the search domain using (15), [32].

Xi,G = Xmin + rand(1, 0) · (Xmax −Xmin) (15)

Where i = 1, · · ·NP . Xmin =
{

X1
min · · ·X

D
min

}

, Xmax =
{

X1
max · · ·X

D
max

}

and rand(1, 0) is a uniformly distributed
random number between 0 and 1.

B. Mutation

For every candidates solution (individuals or target vec-
tors) Xi,G at generation G, a mutant vector Vi,G called the
provisional or trial offspring is generated via certain mutation
schemes. The mutation strategies implemented in this study
are as shown in (16) to (20), [32]:

• DE/rand/1:

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) (16)

• DE/best/1:

Vi,G = Xbest,G + F · (Xr1,G −Xr2,G) (17)

• DE/rand-to-best/1:

Vi,G = Xi,G+F ·(Xbest,G−Xi,G)+F ·(Xr1,G−Xr2,G)
(18)

• DE/best/2

Vi,G = Xbest,G+F ·(Xr1,G−Xr2,G)+F ·(Xr3,G−Xr4,G)
(19)

• DE/rand/2

Vi,G = Xr5,G+F ·(Xr1,G−Xr2,G)+F ·(Xr3,G−Xr4,G)
(20)

Where the indexes r1, r2, r3, r4 and r5are mutually exclu-
sive positive integers and distinct from i. These indexes are
generated at random within the range [1 PN ]. Xbest,G is the
individual with the best fitness at generation G while F is the
mutation constant.

C. Cross Over

After the mutants are generated, the offspring Ui,G are
produced by performing a crossover operation between the
target vector Xi,G and its corresponding provisional offspring
Vi,G. The two crossover schemes i.e. exponential and binomial
crossover are used in this study for all the cDE algorithm
variants implemented [34]. The binomial crossover copied
the jth gene of the mutant vector Vi,G to the corresponding
gene (element) in the offspring Ui,G if rand(0, 1) ≤ CR or
j = jrand. Otherwise it is copied from the target vector Xi,G

(parent). The crossover rate Cr is the probability of selecting
the offspring genes from the mutant while jrand is a random
number in the range [1 D], this ensure that at least one of
the offspring gene is copied from the mutant. The binomial
crossover is represented by (21), [32]:

U
j
i,G =

{

V
j
i,G if (rand(0, 1) ≤ Cr or j = jrand)

X
j
i,G otherwise

(21)
For exponential crossover, the genes of the offspring are
inherited from the mutant vector Vi,G starting from a randomly
selected index j in the range [1 D] until the first time
rand(0, 1) > Cr after which all the other genes are inherited
from the parent Xi,G. The exponential crossover is as shown
in Algorithm 1, [32].
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Algorithm 1: Exponential Crossover

Ui,G = Xi,G

2: generate j = randi(1, D)
U

j
i,G = V

j
i,G

4: k = 1
while rand (0, 1) ≤ Cr AND k < D do

6: U
j
i,G = V

j
i,G

j = j + 1
8: if j == n then

j = 1
10: end if

k = k + 1
12: end while

end

D. Selection Process

After every generation, the fitness function of each off-
spring Ui,G and the corresponding parent Xi,G are computed.
A greedy selection schemes is used in which if the fitness
function of the offspring is less than or equal to that of it
parent, the offspring will replace the corresponding parent in
the next generation otherwise the parent will be maintained
among the next generation individuals. At the end of the
generation, the most fittest individual (global best) among
the final evolved solutions is selected. The DE algorithm
pseudocode is depicted in Algorithm 2.

Algorithm 2: Differential Evolution

Generate an initial population XG=0 of Np individuals.
2: Evaluate fitness of each individuals (solutions).

while termination condition is not met (Generation) do
4: for i = 1 to Np do

Evaluate parent (Xi,G) fitness .
6: Generate trial offspring Vi,G by mutation using

(16).
Generate offspring Ui,G by either binomial
crossover or exponential crossover.

8: Evaluate offspring (Ui,G) fitness
end for

10: for i = 1 to Np do
Selection Process:

12: Form the next generation solutions by selecting the
best between parents and their offspring

end for
14: end while

end

VI. COMPACT DIFFERENTIAL EVOLUTION

Compact differential evolution (cDE) algorithm is achieved
by incorporating the update logic of real values compact
genetic algorithm (rcGA) within DE frame work [35] [36] [37].
The steps involves in cDE is as follows: A (2 x n) probability
vector PV consisting of the mean µ and standard deviation σ
is generated. where n is the dimensionality of the problem (in
this case the number of weights and biases). At initialization,
µ was set to 0 while σ was set to a very large value 10,
in order to simulate a uniform distribution. A solution called
the elite is sampled from the PV. At each generation (step)
other candidate solutions are sampled from the PV according

to the mutation schemes adopted as described in Section V-B,
e.g. for DE/rand/1 three candidate solutions Xr1 , Xr2 and
Xr3 are sampled. Without lost of generality, each designed
variable Xr1 [i] belonging to a candidate solution Xr1 , is
obtained from the PV as follows: For each dimension indexed
by i, a truncated Gaussian probability density function (PDF)
with mean µ[i] and standard deviation σ[i] is assigned. The
truncated PDF is defined by (22). The CDF of the truncated
PDF is obtained. A random number rand(0,1) is sampled from
a uniform distribution. Xr1 [i] is obtained by applying the
random number rand(0,1) generated to the inverse function
of the CDF. Since both the PDF and CDF are truncated
or normalized within the range [-1, 1]; the actual value of
Xr1 [i] within the true decision space of [a, b] is obtain as

(Xr1 [i] + 1) (b−a)
2 + a. The mutant (provisional offspring) is

now generated using the mutation schemes. The offspring is
evolved by performing a crossover operation between the elite
and the provisional offspring as described in Section V-C.
The fitness value of the offspring is computed and compare
with that of the elite. If the offspring outperform the elite, it
replaces the elite and declare the winner while the elite the
loser; otherwise the elite is maintained and declare the winner
while the offspring the loser. In this study, the fitness function
is the MSE obtain using the test data. The weights and the
biases of the ANN are initialized with the offspring and the
MSE is obtain, this is repeated using the elite. The one with
the least MSE is the winner. The PV is updated using (23)
and (24). Hence in cDE, instead of having a population of
individuals (candidates solutions) for every generation as in
normal DE, the population are represented by their probability
distribution function (i.e. their statistics), thus minimizing the
computational complexity, amount of memory needed, and the
optimization time. The psuedocode of cDE is as shown in
Algorithm 3, [35].

PDF (µ[i], σ[i]) =
e

−(x−µ[i])2

2σ[i]2

√

2
π

σ[i](erf(µ[i]+1√
2σ[i]

)− erf(µ[i]−1√
2σ[i]

))
(22)

µt+1[i] = µt[i] +
1

NP

(Winner[i]− loser[i]) (23)

σt+1[i] =

√

(σt[i])2 + δ[i]2 +
1

NP

(Winner[i]2 − loser[i]2)

(24)
where δ[i]2 = (µt[i])2 − (µt+1[i])2 , t = steps or generations,
NP is a vitual population and erf is the error function.

Algorithm 3: Compact Differential Evolution Pseu-
docode

generation t=0
2: ** PV Initialization **

for i = 1 to n do
4: Initialize µ[i] = 0

Initialize σ[i] = 10
6: end for

Generate the elite by means of PV
8: while buget condition do

** Mutation **
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10: Generate 3 or more individuals according to the
mutation schemes e.g. Xr1 , Xr2 and Xr3 by means
of PV
Compute the mutant V = Xr1 + F · (Xr2 −Xr3)

12: ** Crossover **
U = V , where U = offspring

14: for i = 1 : N do
Generate rand(0,1)

16: if rand(0, 1) > Cr then
U [i] = elite[i]

18: end if
end for

20: ** Elite Selcetion **
[ Winner Loser] = compete(U, elite)

22: if U == Winner then
elite = U

24: end if
** PV Update **

26: for i = 1 : n do
µt+1[i] = µt[i] + 1

NP
(Winner[i]− loser[i])

28: σt+1[i] =
√

(σt[i])2 + δ[i]2 + γ[i]2

Where: δ[i]2 = (µt[i])2 − (µt+1[i])2

30: γ[i]2 = 1
NP

(Winner[i]2 − loser[i]2)
end for

32: t = t+ 1
end while

end

A. Training of ANN and SVM

The objective function in this study is the MSE of the
optimized ANN computed using the test data. After every
generation, the offspring UG and the elite are used to set
the weights and biases of the ANN and the MSE of the
ANN models are obtain using the test data. The use of the
test data (data not known by the ANN nor used to train it)
for computation of the fitness function (MSE) does not only
result in a more accurate network but also a more robust and
generalized ANN model. A greedy selection schemes is used
in which if the MSE of the offspring is less than or equal
to that of the elite, the offspring will replace the elite in
the next generation otherwise the elite will be maintained. At
the end of the generations, the most fittest candidate solution
i.e. the final evolved elite; is used to initialize the weights
and biases of the ANN which is further trained using back
propagation algorithms (BPA) to fine tune the weights to
produce the final optimized ANN model. The cDE is run for
1000 generations. The fine tuning of the ANN weights using
BPA was constrained within a maximum of 200 epoch and 6
validation fails, i.e the training stop if any of these constrain
thresholds is satisfied. One of the desirable feature of BPA is it
simplicity but it often converges slowly and lack optimality as
it can easily be trapped in a local optimum leading to premature
convergent. Many approaches has been adopted to solve the
problem of premature convergent associated with BPA such as
the introduction of momentum constant, varying of the learning
rate and retraining of the network with new initial weights. To
circumvent the problem of premature convergent, and to have
a robust ANN that is well generalized, we combine the global
search advantages of cDE optimization algorithm and the local
search capability of single solution BPA to evolve the weights

and biases of the ANN. The combination of the global search
capabilities of cDE and the local search advantages of BPA
to evolve the weight and biases of ANN have proving to be
superior to using only the famous BPA for this problem. The
cDE algorithm pseudocode is depicted in Algorithm 3.

In constract to the training of ANN using BPA, the training
of SVM is optimal with the optimality rooted in convex
optimization. This desired feature of SVM is obtained at
the cost of increased computational complexity. The fact that
the training of SVM is optimal does not implies that the
evolved machine will be well generalized or have a good
performance. The optimality here is based on the chosen meta
parameters ( i.e. C parameter, ε and the kernel parameter
γ), the type of kernel function used and the training data.
We used the same randomization cDE optimization algorithm
variants to evolve the SVM meta parameters while the weights
and bias of the SVM were evolves via convex optimization.
At each generation, the meta parameters are set using each
candidate solution, and the corresponding weights and bias are
computed. In order to estimate how the SVM will generalize
to an independent dataset (test data), we use two fold cross
validation commonly known as holdout method. This has the
advantage of having both large training and validation datasets,
and each data point is used for both training and validation on
each fold. The training data is randomly divided into two sets
e.g. A and B of equal size. The SVM was trained on A and
test on B, after which it is trained on B and test on A, the
average of the MSE for the two test was used as the fitness
function for the given sets of meta parameters. At the end
of the generations, the SVM is reconstructed using the most
fittest meta parameters and tested on the test datasets (data not
known by the SVM nor used to train it).

VII. EXPERIMENT AND SIMULATION DATA

The datasets used in this study were obtained by capturing
real world RF signals using universal software radio peripheral
1 (USRP 1) for a period of two months. The USRP are
computer hosted software-defined radios with one motherboard
and interchangeable daughter board modules for various ranges
of frequencies. The daughter board modules serve as the RF
front end. Two daughter boards, SBX and Tuner 4937 DI5
3X7901, having a continuous frequency ranges of 4MHz to
4.4GHz and 50 MHz to 860 MHz respectively, were used in
this research. The daughterboard perform analog operations
such as up/down-conversion, filtering, and other signal condi-
tioning while the motherboard perform the functions of clock
generation and synchronization, analog to digital conversion
(ADC),digital to analog conversion (DAC), host processor
interface, and power control. It also decimate the signal to
a lower sampling rate that can easily be transmitted to the
host computer through a high-speed USB cable where the
signal is processed by software. For TV channels with channels
bandwidth of 8 MHz, we divided the channels into subchannels
(resource block) each consisting of 500 KHz bandwidth. To
ensure that no spectral information was lost, we used a sample
frequency of 1MHz and obtained 1024 samples for each
sample time. For GSM 900 and FM band with a bandwidth of
200 KHz, we used 1MHz sample frequency and 512 samples
for each sample time. The power was obtained using both the
time and frequency domain data. For the frequency domain,
after passing the signal through the channel filter, the signal
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was windowed using a hamming window in order to reduce
spectral leakage. The stream of the data was converted to
a vector and decimated to a lower sampling rate that can
easily be processed by the host computer at run time using the
inbuilt decimation block in gnu-radio. This is then converted
to the frequency domain and the magnitudes of the bins were
passed to a probe sink. The choice of probe sink is essential
because it can only hold the current data and does not increase
thereby preventing stack overflow or a segmentation fault. This
allows Python to grab the data at run time for further analysis.
The interval of time between consecutive sample data was
selected at a random value between 5 seconds and 30 seconds.
The choice of this range is based on the assumption that for
any TV programme, FM broadcast or GSM calls, will last
for not less than 5 to 30 seconds. In order to capture all
possible trends, the time between consecutive sample data is
selected at random within the given range instead of using
regular intervals. For the VHF and FM band we captured RF
signals from 54MHz to 110MHz and 470 to 670MHz for the
VHF TV bands. For the GSM band, 62 down-link channels
(935MHz to 953.3MHz) and 62 uplink channels (890MHz
to 908.3MHz) were captured. The real world RF data was
divided into three subsets, randomly selected with 60% used
for training the ANN, 20% for validation and 20% for testing
the trained ANN model. The training or estimation data were
the only known data sources used in training the ANN. The
test data set was unknown to the network i.e. they are not used
in training the network rather are used in testing the trained
ANN as a measure of the generalization performance of the
ANN model. The ANN design, optimization and the simulation
were done in Matlab while the capturing of the data and the
signal processing were implemented using gnu-radio which is
a combination of Python and C++.

VIII. DELAYED INPUTS SENSITIVITY ANALYSIS

In order to examine how many numbers of recent past
RF power samples are needed as feedback inputs for reliable
prediction, and to have a model with reduced dimensionality
of input vector, we carried out a sensitivity analysis. One way
of evaluating the importance (significance) of an input in ANN
is to measure the Change Of MSE (COM) when the input is
deleted or added to the neural network [38]. In this study,
the COM method is adopted with the time domain inputs
unaltered, and the actual past RF power are added to the input
one after the other starting from the most recent one. The
ANN is trained with i delay inputs (past RF power samples)
and the MSE MSEi is evaluated. The network is retrained
with i + 1 delayed inputs, the MSE MSEi+1 is obtained
and the change in the MSE, δmse = MSEi+1 − MSEi is
computed as a means of evaluating the importance of the i+1
delay input, for i = [0 · · · q], where q is the total number of
past samples used; see Fig 1. Note, δmse is not computed
relative to the MSE obtained when all the q delayed inputs are
used as in normal COM method, due to the fact that we don’t
know the required number of delay inputs q at the start of the
experiment; in this case q is obtained by setting a constrain
on δmse. The importance of the inputs are ranked base on the
one whose addition causes the largest decrease in MSE as the
most important since they are most relevant to the construction
of a network with the smallest MSE. In order to justify the
importance or ranking of the inputs statistically, for every i

inputs delay, the ANN is trained 20 times, each time with a
randomly generated initial weights and biases, the average of
the 20 MSEi is used. The ranking using the normalized values
of change in average MSE δmse as delayed inputs were added
is as shown in Fig 7. The graph of the average MSE against
number of delayed inputs is as depicted in Fig 6. From Fig 6
and Fig 7, it is obvious that when the number of delay inputs
is > 7, the change in MSE δmse, is very small. Thus in this
study we decided to use 7 past recent RF power samples as
part of the ANN inputs for current RF power prediction, taken
into cognition the memory constrain of CR as an embedded
device.

Fig. 6: Sensitive analysis curve

Fig. 7: Past RF power sensitivity ranking

IX. RESULTS

To minimize the MSE of the ANN when tested with
the test data, the above listed algorithms were run for 30
independent runs. Each run has been continued with 30000
fitness evaluations for 1000 generations. After a manual tuning
of the parameters, the following parameters are used in this
study:

• cDE/rand/1/bin, cDE/rand/1/exp, cDE/rand/2/bin,
cDE/rand/2/exp, cDE/best/1/bin, cDE/best/1/exp,
cDE/best/2/bin, cDE/best/2/exp, cDE/rand-to-
best/1/bin and cDE/rand-to-best/1/exp has been run
with F = 0.1 and Cr = 0.3

• BPA has been run with Epoch = 1200,
learningrate = 0.01 mumentum = 0.008 the other
specifications are shown in Table I.
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TABLE I: ANN Models Specification

ANN Models

Dedicated Multiple Multiple

one channels, channels,

channel single output parallel output

First Hidden Neurons 5 15 15

Second Hidden Neurons 3 10 10

Output Neurons 1 1 20

Number of Channels 1 20 20

Tables IV and III shows the numerical results in terms
of the MSE obtained using the test data (data not known by
the ANN nor used in training the ANN). The final results of
each algorithm was obtained by taken the average of the MSE
(AMSE) for the 30 independent runs and their corresponding
standard deviation (STD). From the results, the combination
of cDE/rand/1/exp and back propagation algorithm (BPA)
outperform all the other algorithms with reference to the FFB
ANN model while the combination of cDE/rand/1/bin and BPA
is the best for the FF ANN model. These two bests are used as
the reference for the Wilcoxon test [39]. A ’+’ indicate that the
reference algorithm outperform the other algorithm while “−”
mean that the other algorithm outperform the reference. For
this problem, when the Wilcoxon test was perform by changing
the reference algorithm, the second best algorithm for the FFB
ANN model are cDE/rand-to-best/1/exp and cDE/rand/2/exp;
both having the same AMSE and STD of 0.0290 and 0.0005
respectively while for FF ANN model, the second best algo-
rithm is cDE/rand/1/exp. For this problem, the FF ANN model
trained using cDE/rand/1/bin and BPA emerge as the best
compared with other models (FFB, CFF, LR) and algorithms
implemented. This implies that the feedback information may
have been captured through the inputs assigned to the 7 recent
past RF power samples. Comparing the results depicted in
tables IV and III with our previous work detailed in [40]; the
use of some of the most recent RF power samples as part of
the input vector of the ANN, produces a more accurate and
robust ANN model with reduced number of neurons. This form
a non-linear time series predictive model. The neurons in the
model adopted in this study is approximately half of the ones
used in [40], thus it has less parameters (weights and biases) to
be optimized. To validate the fact that the combination of these
cDE variants of optimization algorithms with the famous BPA
to evolves the weights and biases of ANN will produce a more
accurate, robust and generalized model than using only BPA;
we use the same topology but train with only BPA at constant
learning rate of 0.01 and another one with varying learning
rate starting from 0.8 and keep on changing with change in
MSE using inbuilt Matlab training function traingda. For both
models trained with only BPA, each was run 30 times, each
run was constrain within a maximum of 1200 epoch and 6
validation fails, the average results is depicted in tables IVand
III. For the hybridized training i.e combining cDE with BPA,
the cDE is run for 1000 generations and the final best solution
(elite) was used to reinitialized the ANN weights and further
train using BPA constrained within 200 epoch and 6 validation
fails. In almost all cases, the hybridize training outperform the
training with only BPA. Fig 8, 9 and 10 shows the prediction
graphs of some selected channels using test data. These results
depict a good generalization of the three models. For this

problem, the combination of the global search capabilities of
cDE algorithm variants, and the local search advantages of
BPA to evolve the weights of the ANN was found to yield an
improved performance as compared to using only the famous
BPA.

The prediction results of the dedicated SVR model shown
in Fig. 4 is depicted in Table IV. From this result, the exponen-
tial kernel with meta parameters evolved using cDE/rand/2/exp
seem to be more promising with an average MSE of 0.0226,
the next best kernel is the linear kernel with AMSE of 0.0301
using cDE/rand/1/bin variant. For multiple channel, single
output SVR model Fig. 5, trained for prediction of RF power of
20 resource blocks or channels, the linear kernel emerge as the
best with AMSE of 0.0682 this is followed by the RBF kernel
with AMSE of 0.0819. the best hyperparameters are evolved
using cDE/rand/1/exp for linear kernel and cDE/rand/1/bin and
cDE/rand/2/bin for RBF. The results for FF ANN, multiple
channel, single output model is also shown in Table with best
model having an AMSE of 0.0818 with weights and biases
evolved using cDE/best/2/exp and BPA.

TABLE II: Test Results Using FFB ANN Model With
DE/best/1/bin as Reference

Algorithms
Algorithms Algorithms + BPA

AMSE STD AMSE STD

cDE/rand/1/bin 0.4055 0.0780 0.0403 (0.0879+)

cDE/rand/1/exp 0.1950 0.0964 0.0242 (0.0007)

cDE/best/2/bin 0.1496 0.0354 0.1999 (0.2405+)

cDE/best/2/exp 0.3243 0.0400 0.1635 (0.2272+)

cDE/best/1/bin 0.1436 0.0335 0.1644 (0.2267+)

cDE/best/1/exp 0.3376 0.0419 0.1808 (0.2352+)

cDE/rand-to-best/1/bin 0.1575 0.0212 0.0359 (0.0275+)

cDE/rand-to-best/1/exp 0.5233 0.1233 0.0290 (0.0005+)

cDE/rand/2/bin 0.0928 0.0119 0.0312 (0.0112+)

cDE/rand/2/exp 0.2087 0.0302 0.0290 (0.0005+)

BPA (constant learning rate) 0.1345 (0.2029+)

BPA (varying learning rate) 0.2508 (0.0332+)

TABLE III: Test Results Using FF ANN With DE/best/1/bin
as Reference

Algorithms
Algorithms Algorithms + BPA

AMSE STD AMSE STD

cDE/rand/1/bin 0.3294 0.1664 0.0203 (0.0004)

cDE/rand/1/exp 0.1720 0.1490 0.0204 (0.0006+)

cDE/best/2/bin 0.1181 0.0447 0.0240 (0.0134+)

cDE/best/2/exp 0.1656 0.0833 0.0205 (0.0005+)

cDE/best/1/bin 0.1145 0.0314 0.0206 (0.0015+)

cDE/best/1/exp 0.2121 0.1189 0.0205 (0.0005+)

cDE/rand-to-best/1/bin 0.3102 0.1136 0.0205 (0.0006+)

cDE/rand-to-best/1/exp 0.1646 0.1147 0.0205 (0.0008+)

cDE/rand/2/bin 0.3039 0.1448 0.0214 (0.0042+)

cDE/rand/2/exp 0.1627 0.1050 0.0207 (0.0009+)

BPA (constant learning rate) 0.0267 (0.0004+)

BPA (varying learning rate) 0.0476 (0.0180+)

X. CONCLUSION

This paper demonstrates the power of ANN to produce a
robust time series prediction models for RF power traffics in
some selected channels. The combination of the global search
capabilities of memory efficient cDE and the local search
advantages of single solution BPA to evolves the weights and
biases of the ANN prediction models, proved to produce a
more robust, accurate and well generalise ANN models than
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TABLE IV: SVR results using one channel dedicated model

Algorithms
RBF Gaussian RBF Exponential Linear

AMSE STD AMSE STD AMSE STD AMSE STD

cDE/rand/1/bin 0.4055 0.0780 0.0614 0.0198 0.0243 0.0006 0.0301 0.0005

cDE/rand/1/exp 0.1950 0.0964 0.1333 0.0916 0.0298 0.0111 0.0313 0.0012

cDE/best/2/bin 0.0508 0.0174 0.2043 0.1437 0.0350 0.0181 0.0303 0.0003

cDE/best/2/exp 0.0416 0.0078 0.2114 0.0788 0.0437 0.0190 0.0313 0.0005

cDE/best/1/bin 0.0474 0.0015 0.2670 0.0385 0.0266 0.0041 0.0310 0.0007

cDE/best/1/exp 0.0511 0.0035 0.2115 0.1355 0.0323 0.0015 0.0323 0.0015

cDE/rand-to-best/1/bin 0.0477 0.0045 0.2062 0.0856 0.0243 0.0001 0.0314 0.0007

cDE/rand-to-best/1/exp 0.0507 0.0037 0.1346 0.0806 0.0239 0.0014 0.0306 0.0008

cDE/rand/2/bin 1.6718 0.0000 0.1937 0.0946 0.0248 0.0008 0.0306 0.0005

cDE/rand/2/exp 0.2087 0.0302 0.1912 0.0625 0.0226 0.0009 0.0313 0.0015

TABLE V: SVR and ANN results using one output, multiple channel model for 20 channels

Algorithms
Linear Gaussian RBF Exponential RBF RBF ANN FF

AMSE STD AMSE STD AMSE STD AMSE STD AMSE STD

cDE/rand/1/bin 0.0700 0.0033 0.1274 0.0035 0.2422 0.0296 0.0819 0.0093 0.0842 0.0029

cDE/rand/1/exp 0.0682 0.0016 0.1238 0.0025 0.2609 0.0651 0.0848 0.0016 0.0835 0.0028

cDE/best/2/bin 0.1104 0.0012 0.3565 0.3051 0.1472 0.0225 0.1056 0.0084 0.0875 0.0033

cDE/best/2/exp 0.1078 0.0020 0.1609 0.0155 0.1434 0.0136 0.0855 0.0119 0.0818 0.0017

cDE/best/1/bin 0.1112 0.0017 0.6258 0.4953 0.1466 0.012 0.1057 0.0087 0.0869 0.0018

cDE/best/1/exp 0.1112 0.0016 0.3395 0.2010 0.3020 0.2732 0.0947 0.0087 0.0832 0.0032

cDE/rand/best/1/bin 0.1096 0.0019 0.2854 0.0425 0.1361 0.0060 0.0910 0.0040 0.0839 0.0028

cDE/rand/best/1/exp 0.1086 0.0016 0.4062 0.0433 0.1357 0.0035 0.0868 0.0036 0.0851 0.0012

cDE/rand/2/bin 0.1094 0.0019 0.1281 0.0095 0.2345 0.0162 0.0819 0.0074 0.0844 0.0035

cDE/rand/2/exp 0.0687 0.0011 0.1255 0.0036 0.2257 0.0104 0.0902 0.0156 0.0859 0.0042

Fig. 9: Cascaded feed forward, parallel output model prediction

Fig. 10: Multiple channels, single output SVR model predic-
tion

TABLE VI: Best SVR model parameters for Table IV

Kernel

RBF Gaussian Exponential Linear

RBF RBF

MSE 0.0416 0.0614 0.0226 0.0301

C 7.72 7.62 22.28 3.76

ε 0.000653 0.0003331 0.000228 0.000472

γ or σ 7.38 1.49 7.57 -

Algorithms cDE/ best/2/exp rand/1/bin rand/2/exp rand/1/bin

Fig. 8: Feed forward dedicated model prediction

using only BPA for this problem. For the dedicated one channel
model, the ANN outperform the SVR model for all the kernels
implemented while for the multiple channels, single output
model, only the linear kernel SVR model outperform the ANN.
The a priori knowledge of the RF power resulting from either
communication signals, noise and/or interferences, is not only
applicable to cognitive radio network, but in any wireless
communication system for noisy channels avoidance.
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