
Fully Homomorphic Encryption for Secure

Computations in Protected Database

Darya Chechulina, Kirill Shatilov, Sergey Krendelev

Department of Information Technology, Novosibirsk State University,

Novosibirsk, Russia

Email: chechulina, shatilov, krendelev@ccfit.nsu.ru

Abstract—Outsourced computations and, more particularly,
cloud computations, are widespread nowadays. That is why
the problem of keeping the data security arises. Multiple fully
homomorphic cryptosystems were proposed in order to perform
secret computations in untrusted environments. But most of the
existent solutions are practically inapplicable as they require
huge computation resources and produce big (∼1Gb) keys
and ciphertexts. Therefore, we propose the undemanding fully
homomorphic scheme with practically acceptable (∼few Kb) keys
and output data. Our solution uses modular arithmetic in order
to avoid the increase in data size. We have validated our approach
through the implementation of the proposed cryptosystem. The
details of used algorithms and the results of security evaluation
are covered in this paper.

I. INTRODUCTION

N
OWADAYS Information Technologies and, particularly,

computations over various data are the important part of

our living and business processes. Modern trend to outsource

computations to third-parties has aroused a problem of keeping

the security of one’s data. Cloud computing and other cases

of giving the access to the personal data are affected by threat

of exposing vulnerable data to unauthorized parties. Using

a fully homomorphic encryption (FHE) scheme in secure

computations helps to avoid the data leakage.

Originally a conception of FHE was introduced by Rivest,

Adleman and Dertouzous in their paper [5]. Since people

wanted to be able to perform the computations over the

encrypted data, the problem of privacy homomorphism became

very actual one in cryptography at whole. The first attempt of

proposing FHE scheme belongs to Gentry [1]. After publica-

tion of the scheme’s idea he introduced the implementation

of his algorithm in conjunction with Halevi [2]. Then a lot

of improvements of Gentry’s work were proposed. But all of

them were criticized as they required significant computing

resources due to the usage of complex mathematical tools and

produced big sizes of keys and output data [6].

Most of the proposed encryptions suffer from inefficiency

to the practical use; therefore the problem of computations

security is still actual [4]. That is why our ultimate goal for

FHE developing is researching for the previously not used but

efficient mathematical technics to make practical implemen-

tation. As a result, we introduce a new fully homomorphic

This research was performed in Novosibirsk State University under sup-
port of the Ministry of education and science of Russia (contract no.
02.G25.310054)

scheme that doesn’t require massive computation resources

and provide acceptable sizes of encryption keys and output

values.

The next section of this paper features the mathematical

bases of our approach as it gives some fundamental defi-

nitions. Section 3 describes the properties of computations

over encrypted data. After it, in Section 4, we show the core

components of the proposed fully homomorphic encryption

cryptosystem. Section 5 covers the evaluation of our scheme’s

security. Then, Section 6 discusses possible applications of

the developed homomorphic encryption including the imple-

mented one and summarizes our achievements.

II. MATHEMATICAL FOUNDATION

This section gives essential mathematical bases. Let us

discuss what a fully homomorphic cryptosystem means. For-

mally, such a scheme allows performing computation over the

encrypted data without their decryption. In other words, an

encryption algorithm E and a decryption D should satisfy the

following conditions:

c1 = E(a1), c2 = E(a2)

D(f(c1, c2)) = f(a1, a2)

where c1, c2 are the ciphertexts and f is an arbitrary, efficiently

computed function. In order to avoid the increase in data size

we use modular arithmetic in our approach. Thus, the main

idea of the proposed solution is as follows: we have a set of

relatively prime numbers (m1,m2, . . . ,mk). The plaintext P

we associate with the set P = (P1, P2, . . . , Pk) where Pi =
P mod mi, i = 1, . . . , k. This set is encrypted with proposed

algorithm that will be described in details in the following

section. The approach has the only constraint: the result of all

the mathematical operations can’t exceed the number M =
m1 · . . . ·mk.

Firstly we consider the simplified algorithm for the ring

Zm and the modulus m only. To encrypt P we select a secret

vector x = (x1, . . . , xn), xi ∈ Zm. Then we construct a vector

a = (a1, . . . , an), ai ∈ Zm as follows:

(a, x) = P mod m

It is worth noting that in general every number m can be

represented as m = pα1

1
· . . . ·pαs

s , where p1, . . . , ps are prime

numbers. Thus, it is enough to make all the necessary steps

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 125–131

DOI: 10.15439/2015F140

ACSIS, Vol. 6

c©2015, PTI 125

of the algorithm for the power of prime number only, or, in

the simplest case, only for the prime number.

So, let m be a prime number. Now we will describe some

mathematical details of the proposed approach.

The scalar product can be considered as a linear function:

h(x1, . . . , xn) = (u, x), u, x ∈ Zn
m

x = (x1, . . . , xn)

u = (u1, . . . , un)

Thus, a linear function is completely determined by the

vector u.

The secret point is defined as a vector x = (x1, . . . , xn).
Thereby, to represent the number P , we must construct a

vector v ∈ Zn
m as follows:

(v, x) = P mod m

This task belongs to the standard linear algebra and can be

easily solved. Thus, v is called a ciphertext for P .

III. COMPUTATIONS OVER ENCRYPTED DATA

As it was previously mentioned, the proposed encryption

allows performing the computations over ciphertexts.

A. Addition

Addition of vectors is equivalent to addition of their com-

ponents with given modulus m according to the properties of

the scalar product and the modular arithmetic. So, if we have

representations for two numbers P1 and P2:

(v, x) = P1 mod m

(u, x) = P2 mod m

and in general the sum of the simple linear functions is defined

as:

(v, x) + (u, x) = (v + u, x)

thus:

(v + u, x) mod m = [(v, x) + (u, x)] mod m =

= P1 mod m+ P2 mod m = (P1 + P2) mod m

Let us note that addition keeps the size of vectors. That

means the resulting vector has the same length as the initial

ciphers.

B. Multiplication

Multiplication of vectors v and u in common way leads to

the increase in the result’s length almost n times:

w = v · u = (v1u1, v1u2, . . . , vnun)

In order to prevent vectors’ length growth, we define a

specific kind of multiplication. Let the secret vector satisfy

the following condition:

xixj =

n
∑

k=1

γijkxk mod m (1)

Also generally, the result of two vectors’ multiplication can

be written as:

(v, x)(u, x) =

n
∑

i=1

vixi

n
∑

j=1

ujxj =

n
∑

i,j=1

viujxixj (2)

One can see that the right part of the expression is a

quadratic function. Let us associate this function with the

linear one according to rule:

xixj =

n
∑

k=1

γijkxk

So, let us rewrite (2):

n
∑

i,j=1

viujxixj =
n
∑

i,j=1

vjuj

n
∑

k=1

γijkxk =

=

n
∑

k=1

(n
∑

i,j=1

viujγijk

)

xk

This function can be represented as (w, x) and the com-

ponents of vector w can be defined using the components of

initial vectors v and u as follows:

wk =
n
∑

i,j=1

viujγijk (3)

In other words, we describe the specific kind of vectors’

multiplication. According to (1), (2):

(v, x)(u, x) = (w, x)

Let us call the rule (3) the multiplication table and γijk -

the structural constants.

Such a determination of multiplication table is similar to the

definition of algebra. But there is an important difference: the

structural constants have no constraints such as commutativity,

associativity and presence of "unit".

In order to avoid the evident question whether we can find

the structural constants that satisfy (1) for every secret vector

or not, let us indicate the method of its construction. Let us

represent the structural constants as a set of vectors:

γij = (γij1, . . . , γijn)

Thus, rewritten (1) looks as follows:

xixj = (γij , x) mod m, i, j = 1, . . . , n (4)

126 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

If we consider (4) as a set of linear equations with a given

left part xixj and n3 variables γijk, these unknown variables

are found ambiguous for every equation due to its non-trivial

kernel.

The problem is the fact that in order to produce the real

computations we need to disclose the structural constants. It

is unobvious whether it is possible in this case to determine the

secret vector with given constants. This question is equivalent

to the question whether we can find a solution of the following

system (if the coefficients γijk are given):

xixj =
n
∑

k=1

γijkxk mod m (5)

On the one hand, it is considered that solving the equation

(2) in a finite field is a difficult task. But on the other hand, the

system (5) consists of n2 equations in reference to n variables,

i.e. highly overdetermined. For highly overdetermined systems

of equations it is expected that the solution is unique. There is

one more argument to justify the complexity of the problem:

the prime number is a secret, therefore, it is still unknown

what modulus should be used in order to solve the system.

Thus, let us prove the following.

Theorem 3.1: The secret vector x = (x1, . . . , xn) and the

structural constants γijk can be selected so that the system of

equations (5) has at least n solutions.

In order to prove this theorem, let us give the construction

of such a set of the structural constants. Let S be an arbitrary

n×n matrix with the only constraint - it should be invertible

by given modulus m. Then, choose two arbitrary columns of

the matrix with i and j indexes (i and j may be the same).

These columns match with two vectors - si and sj respectively.

As it was mentioned, componentwise multiplication of the

vectors u = (u1, . . . , un) and v = (v1, . . . , vn) is defined by

the following rule:

u · v = (u1v1, u1v2, . . . , unvn)

Let us define vector γij as a solution of the equation

si · sj = Sγij

According to the invertibility of the matrix S, the solution

can be rewritten:

γij = S−1
(

si · sj
)

mod m

All the columns of the matrix S satisfy the equation (5),

where the structural constants are obtained as it is described

above. As matrix S has n rows, we finally get n different

solutions of the equation (5).

Remark 3.1: This construction is appropriate for any finite

fields.

Remark 3.2: Since n different secret vectors correspond to

the same set of structural constants, we can produce n secure

computations simultaneously.

IV. PROPOSED CRYPTOSYSTEM

In this section we consider the description of the proposed

encryption that is based on modular arithmetic.

A. Basics

Firstly, let original message P be an integer number - we

impose the only constraint: P < M,M ∼ 264 in order to

perform all the computations correctly. Then, let us define the

encryption’s secret key as a triple (mods, α, x), where

• mods = (m1, . . . ,mk) - a set of k moduli, mi is prime

∀i = 1, . . . , k;

• α = (α1, . . . , αk) - a set of k arbitrary vectors needed

for generating secret vectors x;

• x = (x1, . . . , xk) - a set of k vectors with length n.

Thus, to encrypt P we should represent it as a set of residues

(P1, . . . , Pk) : Pi = P mod mi and after that construct

a vector ci for every Pi such that it satisfies the following

condition:

(ci, xi) mod mi = Pi

A set of vectors C = (c1, . . . , ck) is a ciphertext for the initial

number P .

B. Multiplication table

Before presenting the essence of the proposed encryption

algorithm, let us describe the special multiplication table T =
(γijk) introduced in the previous section. Matrix T is used for

the computations over ciphertexts in order to avoid the increase

in the data lengths. We can work with the only multiplication

table for all the moduli, but also we can generate k different

tables for k different moduli. Let us consider this method for

the chosen modulus mi and fix the index i for all used terms;

so then, we work simply with modulus m.

In order to generate such a table we need matrix S described

in Section 2. Thus, computing the constants γijk for every

couple of i and j we get the specific multiplication table T =
(γijk) for the fixed modulus m = mi.

Let us note one more feature of the multiplication table. If

we construct matrix T as a non-symmetric matrix, we will get

different results while computing (ai ·aj) ·ak and aj ·(ai ·ak).
It means that the operation of multiplication has no associative

and commutative properties. Also this fact invokes a non-

deterministic character of the proposed encryption scheme.

C. Cryptosystem

Our fully homomorphic cryptosystem consists of three

algorithms (KeyGen,Enc,Dec), where

• KeyGen - the probabilistic key generation algorithm that

constructs the key;

• Enc - the encryption algorithm that takes initial message

P , mods - a part of the secret key and the multiplication

tables T as the input parameters and returns a ciphertext

C;

• Dec - the decryption algorithm that uses the secret key

and the ciphertext C, returns the original message P .

DARYA CHECHULINA, KIRILL SHATILOV, SERGEY KRENDELEV: FULLY HOMOMORPHIC ENCRYPTION 127

1) Key Generation: As it was previously mentioned, the

encryption key is secret and consists of the set of the relatively

prime moduli and two sets of vectors. Let us consider the way

of key generation in details.

Step 1. Let S be an arbitrary n × n matrix with non-zero

determinant det(S). Then we choose k relatively prime moduli

(m1, . . . ,mk) with a condition: gcd(m, det(S)) = 1. It is

necessary in order to provide the invertibility of S by each

modulus. Thus, matrix S for each modulus will be computed

as follows:

Si = (sij) mod mi

Step 2. Then we should construct an arbitrary vector α =
(αi1, . . . , αin) associated with modulus mi using a rule:

∀αij ∃α−1

ij : αij · α
−1

ij = 1 mod mi

This rule means that every element of vector αij is invertible

by chosen modulus mi.

Besides we should provide the existence of at least two

relatively prime elements in vector αi in order to solve

diophantine equations in the Enc algorithm.

A set of vectors αi is also a part of the secret key.

Step 3. At the last step of key generation we compute xi

from the equation:

αi = Sxi

Due to the fact that matrix Si is invertible by modulus mi:

xi = (S−1

i αi) mod mi ∀mi

Therefore, after key generation process we have k moduli

(m1, . . . ,mk) and the set of k secret vectors x = (x1, . . . , xn)
constructed using the set of αi. It is worth noting that the

generation method is probabilistic due to the arbitrariness of

S and αi selection.

2) Encryption: The input parameters for this algorithm are

the original message P - an integer number that satisfies the

following constraint: P < M,M ∼ 264, the secret key and

the set of multiplication tables (T1, . . . , Tk).
Step 1. Let us start with the computing the set (P1, . . . , Pk)

as follows:

Pi = P mod mi ∀i = 1, . . . , k

Step 2. Using vectors of the secret key (α1, . . . , αk), con-

sider the equation:

Pi = (αi, yi) = αi1yi1 + · · ·+ αinyin (6)

Then compute the set of yi as a result of the diophantine

equation. Let us describe the way of solving such an equation

in details. Due to the existence of two relatively prime com-

ponents in every vector αi the solution of this equation can

be found as follows: let the position of two coprime integers

be r and s, then choose random values for the coefficients

yiq : q = 1, . . . , n, q 6= r, q 6= s and substitute them into the

equation (6). Thus, we get a linear diophantine equation with

only two variables:

Pi −

n
∑

q=1,q 6=r,s

αiqyiq = αiryir + αisyis (7)

The equation (7) can be solved, because the coefficients αir

and αis are relatively prime. Therefore, the values of the

components yir and yis can be computed using the Euclidean

algorithm.

Also we can use the multiplication table Ti in order to solute

such an equation. In this case we should only substitute xixj

in the formula (5) with Pi.

Step 3. Compute a cipher C = (c1, . . . , ck) using the

following rule:

ci = (yi · Si) mod mi

The result of the encryption algorithm is the ciphertext C

that consists of k vectors of length n : (c1, . . . , ck). Thus,

cipher C is a k × n matrix.

3) Decryption: The algorithm’s input parameters are the

ciphertext C, described previously, and the secret key.

Step 1. Compute a set (P1, . . . , Pk) as follows:

Pi = (ci, xi) mod mi (8)

Let us prove the correctness of the equation (8) using pre-

viously given formulas of the encryption algorithm and the

properties of the standard linear algebra:

(ci, xi) mod mi = (yiSi, xi) mod m =

= (yi, αi) mod m = Pi

Step 2. As we have the set of Pi, apply the Chinese

remainder theorem [3] and get the original integer number

P that satisfies the next condition:

P ≡















P1

(

mod m1

)

...

Pk

(

mod mk

)

Let us consider the modification of the algorithm that

provides the probabilistic character of the encryption in order

to improve its security. Let C be a ciphertext for the initial

number P . First of all, we compute a ciphertext corresponding

to zero - C0, then multiply it by an arbitrary coefficient θ. After

that we add the result θ · C0 to the ciphertext C:

C ′ = C + θ · C0

Then C ′ is called a new ciphertext for the number P . As our

encryption is fully homomorphic we may be sure the cipher-

text C ′ is appropriate for P . So, to get the original message P ,

we should decrypt C ′ only. Thus, the proposed modification

improves the complexity of the encryption algorithm. Such a

modification is considered as a primary encryption algorithm.

Its security evaluation will be discussed in the following

section.

To conclude, in this section the details of the proposed

fully homomorphic scheme were given. Briefly, let us mention

the main features of this scheme again. The secret key is a

triple (mods, α, x). We decided to perform all of the secure

computations using modular arithmetic in order to avoid

growth of the integers’ size. Also the specific kind of vectors’

128 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

multiplication that allows performing arithmetical operations

over ciphertexts without the increase in the resulting vectors’

length was proposed. Then the probabilistic modification of

our FHE scheme was described.

V. ENCRYPTION SECURITY EVALUATION

In order to analyze the complexity of the proposed FHE

scheme, we provide some information about its efficiency:

• O(k · n2) is the complexity of key generation algorithm;

• O(n3) is the complexity of multiplication table genera-

tion process;

• O(n2) is encryption algorithm’s complexity;

• O(k2 · n) is decryption algorithm’s complexity.

In previous section it was mentioned that we might consider

the proposed fully homomorphic encryption as a probabilistic

one. The probabilistic encryption algorithm means that we get

different ciphertexts if we encrypt the same plaintext more than

once. Obviously such a modification prevents our scheme from

common attacks, i.e. chosen ciphertext or plaintext attacks.

VI. FHE APPLICATIONS

The proposed homomorphic encryption can be used in

a multiple applications due to its practical allowance and

acceptable data overhead. It’s main purpose - as it was

stated previously - to perform mathematical operations over

encrypted data in untrusted and non-interactive environments

without access to the encryption keys or initial data. So, the

proposed solution can be practically used in the following

cases of the secure computations.

A. Computation in Database

Databases and cloud databases, as a special case of cloud

services, are affected by the same problem of keeping data

confidentiality. Such a problem arises when a customer does

not trust a database provider and/or an administrator or is not

sure about security of connection between end user machine

and database server [13]. Analogically, Fully Homomorphic

and Order Preserving encryptions (OPE) can be applied to

solve problem of keeping confidentiality of database entries.

Properties of FHE and OPE allow users to perform any kind

of computations (of course, with corresponding limitations)

inside DBMS and the end user should decrypt only the result

of selected data. Such an approach was implemented in MIT

CryptoDB [14] and was positively acclaimed by the academy

and the industry.

Alternatively we designed and developed a solution for

secure Database [15]. We use proprietary developed OPE

[16], proposed in this article FHE and strong deterministic

encryptions. Main idea of our approach to secure database is

to intercept user SQL queries on a flexibly configurable proxy

server, encrypt vulnerable user’s data and change the syntax of

queries according to encryption’s output ciphertext. Responses

from DBMS are decrypted in a proper way and displayed

to the user. The feature of granular security allows different

encryptions to be applied to different columns in SQL table

and perfectly accommodates user’s requirements. Combination

of implemented encryptions with carefully designed secure

database architecture allowed us to achieve significantly low

overhead of data flow and SQL queries’ execution time.

Estimated average overhead is around 20%.

This project allowed us to validate developed homomorphic

encryption and to show its practical acceptance. Thus, we

can perform secure computations over ecrypted data directly

in protected database due to the properties of FHE. That is

why such an application is primary for the proposed fully

homomorphic encryption.

B. Cloud Computation

Cloud technologies are very popular and wide spread nowa-

days. Although customers of cloud services are very excited

by cloud features and benefits that cloud has brought to en-

terprises, they are very concerned about security, particularity

confidentiality, of data stored and processed in a cloud [7].

Those concerns are caused by several security issues of cloud

technology in common, such as insider threat [8], possible

security breach [9], intervention of special services into citi-

zens privacy [10] and any other case of unauthorized access to

vulnerable user data. There are multiple solutions [11][12] to

described problem and one of them is usage of encryptions.

Using homomorphic encryption or order preserving encryp-

tions will allow business users to perform variety of operations

over data stored in cloud data centers without necessity of

massive computations on customers’ side. Such a scenario

will possibly lower expenses, while ensuring confidentiality

of customer’s data.

C. Constructing Public-Key Cryptosystem

Firstly we consider the application of fully homomorphic

encryption for constructing linear and polynomial public-key

cryptosystems. It is worth to note that we use the simplified

method of the proposed encryption with fixed parameters: k =
1, n = 4. It means that we have the only modulus m and the

only secret vector x.

The linear one is based on the Hill cipher [20]. In common

way Hill cipher matches an original vector p to a ciphertext

c according to the rule: c = A · p mod m, where a square

matrix A and a modulus m are secret. Besides, the matrix A

should be invertible by the modulus m in order to provide the

correctness of the decryption process. It is obvious that such

a method is vulnerable to the plaintext attack. That is why

the main idea of our approach is to hide the secret matrix A

using the proposed FHE for its encryption. Also we encrypt the

initial message with fully homomorphic algorithm E. Then we

get a ciphertext, a result of public-key encryption, according

to the rule: c = E(A) · E(p) mod m.

The second, polynomial, cryptosystem is based on the

analogue of the well-known RSA algorithm [19] where the

modulus m is secret. Unfortunately this construction is un-

stable, but we can modify it using our fully homomorphic

encryption. Thus, we propose to encrypt original number

with the FHE algorithm E and after that raise the result of

encryption to the power:
(

E(p)
)e

mod m.

DARYA CHECHULINA, KIRILL SHATILOV, SERGEY KRENDELEV: FULLY HOMOMORPHIC ENCRYPTION 129

Let us consider the details of the polinomial cryptosystem

via some examples.

1) Keys generation: Secret key consists of the components

of the proposed homomorphic encryption’s key:

m = 659

x = (176 657 361 197)

Public key includes an integer number e = 3 that is

invertible by modulus φ(e) (where φ(a) is the Euler function

for a) and the multiplication table γijk that contains 16 vectors

(or 43 = 64 elements):

γ11 = (319 77 626 452)

γ12 = (80 182 161 229)

γ13 = (542 527 513 623)

γ14 = (2 148 241 557)

γ21 = (281 131 618 399)

γ22 = (568 414 276 590)

γ23 = (404 220 384 640)

γ24 = (238 252 389 179)

γ31 = (253 620 610 313)

γ32 = (304 88 55 421)

γ33 = (5 565 352 650)

γ34 = (63 390 604 279)

γ41 = (478 460 120 176)

γ42 = (78 568 258 224)

γ43 = (59 332 90 33)

γ44 = (432 103 198 222)

The size of secret and public keys is 2.5 Kb for the chosen

parameters k and n.

2) Encryption: The initial number is an integer p = 123.

The first step of the algorithm is to encrypt p using our

fully homomorphic encryption. In other words, we should

match p with a vector c that satisfies the following condition:

(c, x) mod m = p.

123
Hom
−−−→









27458280
16546176
35555955
21767475









The second step is to raise the result of the FH encryption

to the appropriate power e:

z =









27458280
16546176
35555955
21767475









3

=

=









360897386526156024805067154756
477019133423387912922438809475
488782414123179226098993372132
522900667259504641607843920158









Vector z is a ciphertext for the initial number p.

3) Decryption: First, let us multiply the ciplertext z and

the secret vector x. It is obvious that as a result we get the

initial number p raised to the power e:

(z, x) mod m = (ce, x) mod m = pe mod m

According to the example:









360897386526156024805067154756
477019133423387912922438809475
488782414123179226098993372132
522900667259504641607843920158









·









176
657
361
197









T

mod 659 =

= 510

Then, let us raise the result of the previous operation to the

power d, where d = e−1 mod φ(m):

(

pe mod m
)d

= ped mod m = p

Next, substitute the real values:

d = 3−1 mod 658 = 439

510439 mod 659 = 123

Finally we get the initial number p = 123.

Implementation of these cryptosystems demonstrates that all

of the arithmetical calculations over encrypted data are correct.

Also it proves that the multiplication of ciphertexts doesn’t

lead to the increase in dimension of multiplication results. This

is the illustration of first practical use of the proposed FHE

scheme.

130 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

D. Government Defensive Purpose

It is obvious that modern warfare needs a lot of computa-

tions. A part of these computations is done on machines using

a software that are produced in foreign countries (for one fixed

country), thus can not be fully trusted, because of possible

hardware and software Trojans [17][18]. This problem of lack

of trust can be solved by producing in a secure way the FH

hardware encryptors. In the same time all untrusted computers

will perform computations only over encrypted data.

All the mentioned applications are only examples of secure

computation and described in this section as the illustrations of

a wide area of the proposed homomorphic encryption usage.

REFERENCES

[1] C. Gentry, “A fully homomorphic encryption scheme,” [Online]. Avail-
able: http://crypto.stanford.edu/craig/craig-thesis.pdf.

[2] C. Gentry and S. Halevi, “Implementing Gentry’s Fully-Homomorphic
Encryption Scheme,” in Advances in Cryptology - EUROCRYPT 2011,

pp. 129–148. DOI: 10.1007/978-3-642-20465-4_9. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20465-4_9

[3] D. Knuth, The Art of Computer Programming Seminumerical Algo-

rithms, vol. 2, Addison-Wesley Pub. Co., 1981.
[4] “Programming Computation on Encrypted Data,” Broad Agency An-

nouncement DARPA-BAA-10-81, Defense Advanced Research Projects
Agency, 2010.

[5] R. Rivest, L. Adleman and M. Dertouzos, “On data banks and pri-
vacy homomorphisms,” in Foundations of Secure Computation, 1978,
pp. 169–180.

[6] D. Stehle and R. Steinfeld, “Faster Fully Homomorphic Encryption,” on

Asiacrypt conference, http://eprint.iacr.org/2010/299.pdf, 2010.
[7] “Cloud Computing Top Threats in 2013,” The Notorious

Nine, Cloud Security Alliance, [Online]. Available: https:
//downloads.cloudsecurityalliance.org/initiatives/top_threats/The_
Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf.

[8] W. R. Claycomb and A. Nicoll, “Insider Threats to Cloud Comput-
ing: Directions for New Research Challenges,” in Proceedings of the

2012 IEEE 36th Annual Computer Software and Applications Confer-

ence, 2012, pp. 387–394. DOI: 10.1109/COMPSAC.2012.113. [Online].
Available: http://dx.doi.org/10.1109/COMPSAC.2012.113

[9] “Chronology of data breaches,” Privacy Rights Clearinghouse, [Online].
Available: http://www.privacyrights.org/data-breach.

[10] “Interview with Whistleblower Edward Snowden on Global Spying,”
Der Spiegel, 2013.

[11] J. Zhou, “On the security of cloud data storage and sharing,” in

Proceedings of the 2nd international workshop on Security in cloud

computing, 2014, pp. 1–2. DOI: 10.1145/2600075.2600087. [Online].
Available: http://doi.acm.org/10.1145/2600075.2600087

[12] A. J. Feldman, W. P. Zeller, M. J. Freedman and E. W. Felten “SPORC:
Group collaboration using untrusted cloud resources,” in Proceedings of

the 9th Symposium on Operating Systems Design and Implementation,

Vancouver, Canada, 2010.
[13] “OpenSSL Heartbleed Vulnerability,” Cyber Security Bulletins, Canada,

2014.
[14] S. Tu, M. F. Kaashoek, S. Madden and N. Zeldovich, “Processing

Analytical Queries over Encrypted Data,” in Proceedings of the 39th

International Conference on Very Large Data Bases (VLDB), Trento,
Italy, 2013, pp. 289–300. DOI: 10.14778/2535573.2488336. [Online].
Available: http://dx.doi.org/10.14778/2535573.2488336

[15] K. Shatilov, V. Boiko, S. Krendelev, D. Anisutina and A. Sumaneev,
“Solution for Secure Private Data Storage in a Cloud,” in Proceedings

of the Federated Conference on Computer Science and Information Sys-

tems, 2014, pp. 885–889. DOI: 10.15439/2014F43. [Online]. Available:
http://dx.doi.org/10.15439/2014F43

[16] M. Usoltseva, S. Krendelev and M. Yakovlev, “Order-preserving encryp-
tion schemes based on arithmetic coding and matrices,” in Proceedings

of the Federated Conference on Computer Science and Information Sys-

tems, 2014, pp. 891–899. DOI: 10.15439/2014F186. [Online]. Available:
http://dx.doi.org/10.15439/2014F186

[17] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Tro-
jan Taxonomy and Detection,” in IEEE Des. Test, 2010, pp. 10–
25. DOI: 10.1109/MDT.2010.7. [Online]. Available: http://dx.doi.org/10.
1109/MDT.2010.7

[18] R. Lehtinen, D. Russell and G. T. Gantemi, “Computer Security Basics,”
O’Reilly, 2006.

[19] A. Shamir, “A Polynomial Time Algorithm for Breaking the Basic
Merkle-Hellman Cryptosystem,” CRYPTO, 1982, pp. 279–288.

[20] L. S. Hill, “Cryptography in an Algebraic Alphabet,” The American

Mathematical Monthly, vol. 36, 1929, pp. 306–312.

DARYA CHECHULINA, KIRILL SHATILOV, SERGEY KRENDELEV: FULLY HOMOMORPHIC ENCRYPTION 131

