
Approach to Building a Web-based Expert System
Interface and Its Application for Software

Provisioning in Clouds

Evgeny Pyshkin
Institute of Computing and Control

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia, 195251

Email: pyshkin@icc.spbstu.ru

Andrey Kuznetsov
St. Petersburg Software Center

Motorola Solutions Inc.

St. Petersburg, Russia, 192019

Email: andrei.kuznetsov@motorolasolutions.com

Abstract—This paper focuses on a generalized approach to
providing user interface to a web-based expert system (WBES).
We examine MVC and MVP design patterns used traditionally to
construct a web application user interface. In order to leverage
the strength of the MVC/MVP design patterns we propose a
special ontology representing a user communication domain. We
describe a self-service networked infrastructure for automatic
deployment of command line interface (CLI) applications. We
demonstrate how to apply the proposed ontology for the design
of a WBES aimed at supporting client software re-execution in
clouds. In particular, we address the problems existing in the
area of software development for music information retrieval
algorithms implementation.

I. INTRODUCTION

Pervasive nature of modern software is a popular subject

of the present-day technology discourse, whether the ques-

tion concerns computer-assisted education, interface design,

usability or elementary forms of programming, which are

one of necessary elements of modern information literacy.

In particular, service-oriented software and cloud technology

significantly transformed the way we use computing and

storage capabilities.

There is a constant interest to organizing processes of

research software distribution in order to make computational

and data resources available for other users. For example,

in the domain of information retrieval (IR) many developed

approaches are semantic relatedness centered. The focus of

such works is on developing algorithms for better semantic

relatedness evaluation, semantic classification or clusteriza-

tion. An obvious way to evaluate an IR algorithm is to use

various test collections, while an algorithm itself might be

implemented in the form of a computer program. However,

those programs often remain unpublished. In some IR do-

mains, particularly, in music information retrieval (MIR), even

if a software implementation is reusable, test collections might

not be available for a third party researcher either for the

reason of their big size or due to the copyright restrictions.

That’s one of the reasons explaining difficulties of comparing

or reproducing results achieved by other researchers. From the

study [1] we know some statistics of what MIR researchers are

as software developers. The figures are rather discouraging:

82% of researchers did develop software, but only 39% of

those took steps to achieve better reproducibility. It is no

wonder that only 35% of those developers published any

code, whereas 51% said their code had never left their own

computer. Often the only way to follow is to believe in the

results reported in papers without any possibility to be sure

that the reported results came from a research method, and

not from bugs in the software. Thus, researchers often re-

implement algorithms based on the published descriptions;

such re-implementations are not often executed in the same

context as it was for the original software.

In [2] the best practices are examined, which are aimed

to improve research reproducibility. Among them there are

such ones as using collaborative platforms (like Github) and

resource sharing mechanisms in order to lower the barrier

to reproduce the third party work. In [3] a platform for re-

executing software in the same context is described. That

solution is based on capturing files and environments required

for an experiment, and building an archive with subsequent

software re-execution on a third party machine.

In [4] the authors took the significant step toward research

reusability and reproducibility in the domain of machine

learning. They developed and maintain a networked system

(OpenML) for sharing and organizing data sets and algorithms

solving the typical machine learning tasks. In our work we

pay attention to two broader aspects of the reproducibility

problem. Firstly, it might not be permitted to distribute the

source code, the binary files or the datasets due to the legal

issues. Secondly, due to manifold existing supporting tools

(such as version control systems, build systems or runtime

environments) it is not easy to configure a local environment

in a way to be capable to run a third party software not limited

by the specific data and task types.

A possible solution addressing both mentioned issues is to

distribute both software and datasets as services accessible via

a standard client (e.g. a web browser). In such a case nei-

ther data copying, nor environment configuration is required.

However, distributing algorithms and datasets as services is far

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 343–354

DOI: 10.15439/2015F142

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 343

from being a trivial problem. There is a certain similarity with

Milne and Witten’s consideration on data mining. Researchers

who want to use Wikipedia as a knowledge source have

two major options: either to base their work on secondary

structures, or to build their own algorithms from scratch [5].

There are difficulties to share the algorithms due to lack of

supporting platforms. We think that the similar situation exists

in the domain of MIR.

Clouds can serve as a platform to share algorithms as

services. One significant problem is a relatively high barrier

to entry for non-experts. In our earlier work we described

sources, advantages and problems of deploying research soft-

ware in clouds and proposed an architecture of a provisioning

service for automatic CLI applications deployment in comput-

ing clouds [6]. The proposed solution targets problems of build

and run error discovery and handling, with special emphasis

on errors conditioned by possible misconfiguration of a virtual

platform where client software modules have to be executed.

The remaining text is organized as follows. In section II-A

we discuss the process of CLI software deployment and pro-

vide a brief survey of existing approaches in order to explain

their limitations and constraints (conditioning difficulties of

provisioning applications as services). For the reason that we

consider using expert systems as one of possible ways to

overcome such difficulties, in section II-B we pay attention

to a web based expert system (WBES) user interfaces. In

section II-C we analyze a state-of-the art example of a web

based expert system and evaluate its architecture with reuse

and change scenarios. We discover that the modification of a

model requires changes in all the model-view-presenter (MVP)

architecture components, which, in a sense, goes against the

motivation to use MVC/MVP pattern in design. In section III

we examine two approaches to define a model interface: a

domain aware approach and a domain agnostic approach.

In order to better separate a presenter from a model, we

propose to complement a subject domain ontology with a

user communication ontology. For the problem of provision-

ing software in clouds, we define an ontology of software

provisioning partially described in section III-A as well as a

user communication ontology (section III-B). In section IV

we describe a software provisioning self-service networked

infrastructure, its architecture and its major components. In

section V we demonstrate how the proposed approach helps

in developing a web-based expert system for CLI applications

deployment in computing clouds. We list some experiments we

arranged in order to evaluate the knowledge based approach

of using introduced networked infrastructure for provisioning

a series of projects developed in the domain of MIR. We

compare the knowledge based approach with the other existing

implementations (section V-A) and describe a scenario based

architecture evaluation process (section V-B).

II. RELATED WORK

In order to position our work within the framework of the

service distribution domain we have to examine three major

issues. First, we attempt to have a look at existing systems

for deploying CLI applications in clouds with respect to the

user expertise necessary to use such systems properly. Second,

we analyze existing works on expert system user interface

development with special attention paid to WBESs. Third, we

analyze an emerging problem of providing a web-based user

interface of an expert system to end users: specifically, how

to apply MVC or MVP design patterns (widely used in web

application architectures) for a WBES.

A. Deploying a CLI Application in a Cloud

Research software (especially in the MIR domain) is often

developed as desktop applications which primarily were not

intended to be executed in networked or distributed envi-

ronments. This aspect causes difficulties of their deployment

in clouds without significant changes in software code. For

example, an OpenShift PaaS1 provides two ways to deploy an

application in a cloud. The first way is to develop a custom

cartridge, while the second one is to develop a module for

an existing cartridge (e.g. JavaEE cartridge, Python cartridge,

Ruby-on-Rails cartridge, etc.). Unfortunately, both approaches

seem to be unsuitable for deploying CLI applications having

no any networking capabilities. In order to support networking

features without modification of an existing application, a

proxy component is required [7]. The reality is that a deployer

must be provided with the exact configuration describing a

runtime environment. If the configuration is not valid (for

example, an incorrect Python version is selected) users get

unrecoverable deployment errors. In order to recover deploy-

ment errors automatically we could use such approaches as

AutoBash [8].

In our earlier work we described how to extend the Au-

toBash approach by applying knowledge engineering for-

malisms [9]. We designed a proxy architecture which, in turn,

is an enhanced MEDEA2 proxy where a knowledge base is

leveraged to control deployment and execution processes. In

fact, the system described in the following sections of this

paper can be considered as a web based expert system helping

users to deploy a CLI application both in a cloud and within

a desktop environment. Thus, the idea is to make deployment

and invocation process as easy as uploading applications and

datasets via web forms. Specifically, in the MIR domain the

main algorithm experimentation scenarios are the following:

• A researcher wishes to test his/her algorithm by using

one of the standard test collections, which might not be

publicly available;

• A researcher wishes to compare the algorithm to other

algorithms by using the same corpus;

• A researcher wishes to test a third party algorithm by

using his/her own test corpus;

• A researcher wishes to test the corpus by running third

party algorithms.

In the above mentioned work [9] we analyzed two popular

software platforms facilitating the above mentioned scenarios:

1http://openshift.redhat.com
2MEDEA – Message, Enqueue, Dequeue, Execute, Access

344 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

one used in MIR, while the second used as a software

deployment infrastructure.

NEMA3 [10] provides access to the MIR software and data

sets through the Internet. The environment was developed in

2008–2010, just about the period when the very first cloud

service commercial implementations appeared. In fact, the

NEMA provides a platform as a service (PaaS) and allows

provisioning client software as a service (SaaS). The NEMA

uses a set of preconfigured virtual machine images; each

image provides a platform (e.g. Python, Java, etc.), which is

completely configured to be used by the NEMA flow service.

Storing a large set of custom images is expensive, moreover,

any image modification has to be done manually; that’s why

using NEMA in public clouds is not easy.

The MEDEA4 [7] infrastructure enables the deployment of

an arbitrary CLI application on an arbitrary cloud platform.

The MEDEA uses standard virtual machine images provided

by a cloud and uploads a special wrapper (a task worker, in

MEDEA terms) to the running virtual machine. The wrapper

initializes the respective execution environment (Python or

Java, for example) and then executes a client application.

If we consider MEDEA as a self-service platform (within

the context of MIR), there are two issues to be observed.

Firstly, MIR applications often have dependencies on third

party components and libraries, therefore, a wrapper might

not initialize the environment properly. Sometimes researchers

are unable to upload these libraries due to certain license

restrictions; sometimes they don’t know how to create an

application package containing all the required dependencies.

Secondly, there are MIR test collections which are not publicly

available, so the code executed against those collections shall

be considered to be “unsafe”, and shall be executed in man-

aged way in order to avoid dataset leaking. Let us mention

that within the framework of the proposed architecture we

address both issues by introducing a deployment manager

that includes a wrapper component as it is described in the

following sections.

The special case is MIREX5, which is not a platform but

an organization providing a service for testing algorithms

delivered by its creators. In addition to the published test

collections, some “secret” test collections are also used, and

the evaluation process is arranged in the form of an annual

contest. Thus, researchers have to wait for the results till the

next competition, hence, this is not a way for everyday use.

B. Expert System User Interfaces

As mentioned in [11], “Expert systems is a branch of

Artificial Intelligence that makes extensive use of specialized

knowledge to solve problems at the level of a human expert.”

As a result of Internet evolution and telecommunication tools

development a new type of expert systems appeared: Web

3NEMA – Networked Environment for Music Analysis: www.music-ir.org/
?q-nema/overview

4MEDEA – Message, Enqueue, Dequeue, Execute, Access
5MIREX – Music Information Retrieval Evaluation eXchange: http://www.

music-ir.org/mirex/

Based Expert Systems (WBES)[12]. In our work we pay

attention to one important aspect of WBES design, i.e. user

communication with WBES.

The focus of the majority of current works on expert system

user interfaces is on the functional requirements (e.g. on

capabilities the UI does provide and the reasons for them).

Examples of such requirements are listed in [11]. We also

found research works focused on a particular expert system

development containing some screenshots of an expert system

user interface and a discussion on the system architecture

(see [13] for instance). Fewer works are focused on WBES de-

velopment process [14]. We only found few works discussing

a level of workload separation between a server and a client of

an expert system [15]. The same is true for architectural issues

of providing a user interface for a generic expert system [16],

[17].

In [18] the authors realized that existing approaches to

evaluate an expert system are connected mostly with the

rules evaluation, paying less attention to user interaction

issues. Some researchers complain about “a lack of a general

methodology for developing web-based expert systems” [12]

and notice that “web sites that enclose an expert system have

been developing ad hoc and their developers do not follow

any systematic method or process” [19].

C. A Case Study: Web Based Expert Systems and Design

Patterns

In order to better understand WBES user communication

issues, we studied one of the rare state-of-the-art examples of

the WBES where there is a discussion on WBES architecture

and WBES-related design patterns.

For an end user, a WBES is presented as a web application.

As we can see from many works (see [20], [21] for example)

a common way to implement web applications is to use a

model-view-controller (MVC) pattern [22] or its generalization

known as a model-view-presenter (MVP) pattern [23]. How-

ever, using MVP might present a problem if we evaluate an

architecture by using any scenario-based method (for example,

SAAM [24]).

Let us think, for instance, of an MVC-based solution for

an automatic price negotiation proposed in [25]. The authors

suggest we use a production knowledge base with an inference

engine as a Model, while the generated HTML pages are Views

and a mediator component is a Controller (see Figure 1).

As it is well known, if we follow an MVC pattern we

expect to have such an advantage that each of the three

structural components (e.g. a Model, a View and a Controller)

can be modified independently. It allows to improve such

software quality properties as reusability, modifiability and

reduce a ripple effect appearing if one of the components

changes significantly [23]. Let’s evaluate this statement with

the following scenarios:

1) Reusability: we can change an expert system domain

from price negotiation to CLI application execution. If

we consider this rather substantial change, we have to

modify the Model (despite keeping the inference engine,

EVGENY PYSHKIN, ANDREY KUZNETSOV: APPROACH TO BUILDING A WEB-BASED EXPERT SYSTEM 345

Fig. 1. The MVC design pattern and the price negotiation system class diagram [25]

we still have to change the knowledge base), the View

(in order to be compatible with another ontology serving

us as a dictionary of concepts used for production rules)

as well as the Controller (since the model interface has

to be updated in order to be compatible with that new

ontology).

2) Changeability: during the evolution the price negotia-

tion domain description changes significantly: temporal

aspects are added to the price negotiation rules similar to

“if a seller decreased the price on a small value followed

by decreasing the price on a medium value then ...”. If

we consider this change, we have to modify the View (in

order to make it compatible with another set of concepts)

as well as the Model and the Controller (for the similar

reasons as those in the reusability scenario description).

Thus, the above scenarios require changes in all the three

MVC major components.
Applying methods of formal architecture evaluation allows

to evaluate component relations and discover whether a system

follows a loosely coupled design strategy [26]. Let us note that

using component interfaces doesn’t guarantee system loose

coupling since a scenario might affect changes in an interface,

which, in turn, leads to the changes in all the components

depending on this interface.
Both of the above mentioned scenarios require an ontology

to be changed (e.g. the dictionaries used in production rules).

This is a key factor since other two components (e.g. the View

and the Presenter/Controller) directly depend on the domain

ontology.
We think that the problem is that an interface is strongly

connected to the subject domain. If we succeed to remove

the subject domain related information from the interface, we

are able to construct a user friendly GUI without having to

redesign an expert system architecture in order to fit every

change in the expert system subject domain.
Following [23], there are two major problems to be resolved

while developing a GUI application:

• UI: How does the user interact with my data?

• Data Management: How do I manage my data?

Each problem falls into three more concrete questions

(see Figure 2). In our work we only address the following

questions: What is my data? (see Section III-A), How do

I change my data? (see Section IV-C1), and partially the

question How do I display my data? (see Section IV-C2). In

MVC terms the questions are: What is the interface of my

model for the view? and What is the interface of my model for

the controller?.

III. INTRODUCING THE MODEL

After the analysis of a series of existing expert system im-

plementations, we realized that there are two basic approaches

to define a Model interface:

1) Expert system domain aware model interface: There

are interface methods directly connected to the subject

domain as it is implemented in work [25] (e.g. setPrice-

High in the example of automated price negotiation on

the web). Figure 5 (1) illustrates this issue.

2) Domain agnostic model interface: A user interface

communicates directly with the inference engine inter-

face as it is implemented in works [27], [28]. It means

that there are methods like assertFact(fact: Fact) (see

Figure 5 (2)).

If we follow the first approach, we have to change the Model

interface in order to respond to subject domain changes. If

we rely on the second one, we are able to keep the Model–

presenter interaction interface, but changes in the subject

domain still require changes both in the Model (the knowledge

base rules) and in the Presenter (since the latter should be

able to assert new facts to the knowledge base). Thus, both

approaches are not aimed at using the MVP pattern in the best

way.

In order to separate the Presenter and the Model we propose

to complement an expert system subject domain ontology

(e.g. automatic price negotiation or CLI application deploy-

ment) with a user communication subject domain ontology

(UserComm, see Figure 5 (3)). As far as a problem of user

346 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 2. The MVP design pattern [23]

communication can be described with no connection to the

subject domain problems, a user communication model can

be developed once and then reused oftentimes as long as its

interface is well designed and doesn’t change. Therefore, as

a Model, we propose to use a knowledge base (with rules

description and its working memory), but an interface of the

model for other components includes only the concepts from

the UserComm domain.

A. Introducing a Request-Activity and Related Facts Core

Ontology

In order to formalize both software provisioning and execu-

tion error description, as well as the relationships between an

error and an error resolution procedure, knowledge engineer-

ing formalisms are required. In [29] and [9] we proposed and

argued for a Software Provisioning Ontology that describes

processes of software code building and execution with much

attention paid to represent build and execution errors as well

as the actions required to fix the recognized errors. In the

earlier mentioned works we also demonstrated how ontologies

of specific tasks can be defined by extending the core ontology

base entities.

Hereinafter we only introduce basic entities of the above

mentioned software provisioning ontology aimed at describing

and resolving the problems of CLI software provisioning

to a virtual platform. Let us mention again that we focus

on deployment problems in relation to the special software

class – research software implementing the MIR algorithms.

The authors of such programs are usually able to implement

an algorithm in the form of CLI-based console application,

which transforms the input data to the output according to

the data formats required by a certain algorithm evaluation

system. However, it is common that a developer might not be

experienced enough to resolve runtime environment failures or

to guarantee that virtual platform requirements are satisfied.

The major concepts of this ontology are Activities and

activity Requests (see Figure 3). An Activity is a sequence of

Actions aimed at achieving an activity goal, while a Request

can be considered as a new goal setting. An activity might

aggregate requests (being subrequests, in a sense), while a

request might consist of activities: if an activity fails, an error

has to be identified and fixed, then the activity for the same

request has to be restarted. If the activity failure can not be

fixed, the request is considered failed.

In order to describe activity results, we introduce a concept

of an Activity status, which is twofold: there may be an Activity

runtime status and an Activity completion status. The Activity

runtime status instances are an Activity being executed and an

Activity suspended. The Activity completion status instances

are an Activity succeeded and an Activity failed. We assume

that an activity is completed successfully if the activity goal is

reached (for example, for the activity Unpacking the artifact

has been successfully unpacked). Otherwise the activity is

failed (for example, some file artifact has not been unpacked

for the reason that the required archiving utility has not been

found in the system).

The Request features a necessary and appropriate condition

that there starts an activity of a particular type. Similar to an

activity concept, a Request might also have its status, which is

also twofold: there are a Request runtime status and a Request

completion status. The Request runtime status instances are a

Request being executed and a Request suspended, while the

Request completion status instances are a Request succeeded

and a Request failed. If at least one activity for the request

is completed successfully, the request is considered to be

completed successfully too. By contrast, if all the activities

associated with the given request failed, the request is consid-

ered to be failed.

Subject domain ontologies are rarely used in expert systems

directly: they are usually too common to describe the subject

domain-related specific tasks. However, we are able to define

an ontology of specific tasks by extending the base entities of

the core ontology, and in so doing to follow an extendibility

principle of the ontology design: “an ontology should be

designed so as to allow to use shared vocabularies and to

support monotonic ontology extension or/and specialization

(i.e. new terms might be introduced without revising existing

definitions)” [30].

Let us note that in the earlier mentioned work [9] we also

demonstrated how to construct the knowledge base production

rules in order to manage processes of client application build-

ing and execution with detecting respective errors while using

some building tool (e.g. maven) as a kind of specific building

system.

EVGENY PYSHKIN, ANDREY KUZNETSOV: APPROACH TO BUILDING A WEB-BASED EXPERT SYSTEM 347

Activity

kindOf

Request

kindOf

Request-

scoped-

knowledge

kindOf

Request-

status

kindOf

for-activity

for-request
for-request-

status

Activity-status

kindOf

for-activity-

status

Activity-

related-fact

Global-fact

Activity-status-

related-fact
Request-

status-related-

fact

Request-

related-fact
produces

Fig. 3. Activities and requests are main ontology concepts

B. User Communication Ontology

The user communication ontology (that we refer to as

UserComm) is based on Request-RequestStatus and Related-

Facts concepts of the core ontology mentioned in the previous

section.
The UserComm ontology provides the following concepts

(see Figure 4) which represent users’ requests:

• A user request extends a Request concept and represents

a request generated by a user. Associated request related

facts provide more details on the user request

• An ordered argument extends a request related fact and

represents a part of the user request in the form of an

integer-value, where a value is an arbitrary string.

• A key-value argument extends a request related fact

concept and represents a part of the user request in the

form of key-value where key and value are strings.

• A key-(multivalue argument) extends a request related

fact concept and represents a part of the user request in

the form of key-(array of values), where key and each

value are strings.

• A named artifact extends a request related fact concept

and represents a part of the user request in the form of a

name-(binary file), where name is a string

• An unnamed artifact extends a request related fact

concept and represents a part of the user request in the

form of binary file. At most one unnamed artifact may

be associated with a request.

The UserComm domain description serves as an abstraction

layer used by both the Presenter and the Model allowing to

hide real expert system’s domain from the Presenter as shown

in Figure 5 (3). UML diagram presenting the Model interface

to be used by a Presenter, a Controller or a View is shown

in Figure 6. In the following sections we describe how the

Presenter and the View use the Model interface, and how the

expert system domain rules communicate with a user via the

UserComm ontology abstraction layer.

IV. SOFTWARE PROVISIONING SELF-SERVICE

NETWORKED INFRASTRUCTURE: AN ARCHITECTURE AND

MAJOR COMPONENTS

An architecture of a system for automated experiments

with algorithms developed in MIR is shown in Figure 7 (see

Request
Request-

status

kindOffor-request

Request-

related-fact

User-

request

kindOf

kindOf kindOf

kindOf

kindOf

kindOf

for-request-

status
Request-

status-related-

fact

Ordered-argument

+ value: string

+ order: int

Key-value-argument

+ value: string

+ key: string

Named-artifact

+ name: string

+ location: path

+ location: path

Unnamed-artifact

Key-multivalue-argument

+ value: string[]

+ key: string

Fig. 4. UserComm domain ontology

also [6]). It includes the following components:

• User interface

• Submitted applications repository

• Virtual machine images repository

• Deployment knowledge base

• Deployment manager

• Input provider service

• Result collecting service

• Statistics service

• Authentication and authorization service

• Client virtual machines

• Cloud manager

• Cloud administrator console

Some of the listed components (e.g. a cloud administrator

console, authentication and authorization services, etc.) are

provided by a cloud infrastructure.

Provisioning client applications to a cloud is supported by

two major components of a virtual platform: a cloud broker

and a deployment manager (see Figure 8). The latter is a

composition of a deployment manager agent and a configu-

ration manager. A knowledge base (KB), an inference engine

and its working memory are components of an expert system

controlling the provisioning process.

348 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Presenter Model

+setMinPrice(in minPrice)

+setMaxPrice(in maxPrice)

+...()

«interface»
DomainAwareInterface

ES Domain

Aware of

Aware of

1

Presenter Model

ES Domain

Aware of

Aware of

2

+assertFact(in fact : Fact)

+retractFact(in fact : Fact)

+...()

«interface»
DomainAgnosticInterface

«interface»
Fact

«interface»
MaxPrice

«interface»
MinPrice

Presenter Model

ES Domain

Aware of

Aware of

3

UserComm

Domain
Aware of

Aware of

+...()

«interface»UserCommModel

Fig. 5. Model interface for a presenter: (1) expert system domain aware; (2)
expert system domain agnostic; (3) user communication domain aware

+createNewRequest(in context : ContextHandler) : RequestHandler

+addRequestRelatedFact(in h : RequestHandler, in f : RequestRelatedFact)

+getRequestStatus(in h : RequestHandler) : RequestStatus

+getRequestStatusRelatedFacts(in h : RequestHandler) : RequestStatusRelatedFact[]

«interface»
UserCommModel

Fig. 6. Model interface

Fig. 7. CLI software provisioning service architecture

A. Deployment Manager

Similar to the MEDEA approach, a wrapper is uploaded to

a virtual machine deployed in a cloud. The wrapper provides

an HTTP interface and executes a client CLI application in

response to user inputs provided via an HTTP proxy interface.

Normally the wrapper consists of two components: a proxy

and an executor, where the proxy invokes the executor directly

according to HTTP commands received via an HTTP interface.

In our implementation, in contrast to a traditional approach, the

proxy and the executor never interact directly but via indirect

communications using a knowledge base. In terms of the MVP

design pattern the Proxy is a Presenter, the Knowledge Base

is a Model. while the View could be either a client side web

browser, or a server side HTML code generator component.

Let us note that an expert system often communicates not

only with a user but with other components of the system. For

instance, for the purpose of CLI application deployment an ex-

pert system might need executing a command (a communica-

tion with the executor) or changing a platform configuration (a

communication with the configuration manager). The problem

is how to define an interface that doesn’t need to be changed

if an expert system domain changes. This problem is similar

to the problem of interface definition between a View and a

Model, as well as between a Presenter and a Model in MVP

pattern. Hence, we can use the same approach. We can define

an ontology (ActionExecution ontology or ConfigManagement

ontology) used for communication between an expert system

and any external component.

B. Deployment Manager Agent

The deployment manager agent gathers runtime information

about the client application and about the environment state

and uses the knowledge base in order to resolve deployment

and execution errors such as absence of required components

or libraries, improper runtime environment version, etc. The

agent interacts with the configuration manager by using the

ConfigManagement ontology (including high-level commands

like “need Python3”) in order to reconfigure the platform

properly. In turn, the configuration manager interacts with the

cloud broker (which is a component provided by a cloud itself)

by using low-level commands (e.g. “change VM image”). In

so doing, the configuration manager controls the installation of

the external components (such as language runtimes, necessary

middleware or databases) to the platform. It also controls

virtual machines recreation if required.

C. Proxy

The proxy component is responsible for providing a capa-

bility to access the expert system by supporting two routines:

1) Asserting user requests to the knowledge base;

2) Retrieving the execution status.

In a sense, the proxy acts as an adapter transforming the data

representation from one form (HTTP) to another (UserComm

facts) and vice versa. The UserCommModel interface (see

Figure 6) is used for interaction with the knowledge base.

Request related facts for a request generated by the proxy

EVGENY PYSHKIN, ANDREY KUZNETSOV: APPROACH TO BUILDING A WEB-BASED EXPERT SYSTEM 349

Fig. 8. Managing application deployment in a cloud

should be only concepts from the set of concepts defined by

the UserComm ontology. In order to interact with a user the

REST-like HTTP interface is provided (as defined in Table I).

Two major procedures for HTTP requests processing are

described in the following subsections.

1) Proxy: Processing POST Requests: In this section we

describe a method for an arbitrary HTTP request transfor-

mation to a knowledge base facts representation with use

of a fixed set of UserComm ontology concepts. The method

consists of five major steps:

1) Parse an HTTP request (according to RFC 2616).

2) Map parts of the HTTP request to ontology facts ac-

cording to the rules defined in Table II.

3) Obtain a ContextHandler6 object from the HTTP

request URL.

4) Obtain a RequestHandler object by invoking

createNewRequest method (see Figure 6) with a

ContextHandler parameter obtained in the previous

step. In fact, this invocation asserts new UserRequest
object to the knowledge base of the model.

5) Assert all the RequestRelatedFacts by

invoking addRequestRelatedFact method with a

RequestHandler parameter obtained in the previous

step.

2) Proxy: Processing GET Requests: In this section we

describe a method for querying a RequestResult with an

HTTP request. The method consists of six major steps:

1) Parse an HTTP request according to RFC 2616.

2) Extract RequestHandler object from the request URL.

3) Get a RequestStatus for a RequestHandler by in-

voking getRequestStatus method (see Figure 6) with

a RequestHandler parameter obtained in the previous

step.

6According to Section III-A a context for a Request is an Activity. By
convention a top-level activity may represent a user and a context for all
top-level requests. For a subrequest its context is represented by the request’s
parent Activity

4) Get a RequestStatusRelatedFacts
for a RequestHandler by invoking

getRequestStatusRelatedFacts method (see

Figure 6).

5) Decide on view layout on the base of

the RequestStatus properties (including

runtime type information) and a variety of

RequestStatusRelatedFacts (or use some default

layout).

6) Draw each object with its own widget being a part of

the layout.

D. Execution Process

As we described in our earlier work [6], we extended the

MEDEA and NEMA execution model by adding the second

phase of the execution process. During the first phase (com-

mand execution) some debugging information can be written

to stdout/stderr, to the environment logs and so on. These

execution results are represented as facts and asserted into

the working memory. During the second phase the results

are analyzed. As soon as the expert system determines the

execution failure and the error cause is determined, the ex-

pert system issues appropriate reconfiguration command. This

command is handled by the executor, which either performs

the necessary operations by itself or delegates them to the

configuration manager.

An executor is a platform-specific component. It observes

a working memory for the presence of action facts. We use

a deferred action execution model: as soon as the inference

engine does not have any active rules, the executor performs

the required actions described in the form of action facts stored

in the working memory. Such an approach is tolerant to action

facts addition, deletion or modification up until the moment

when the agent performs the action.

E. Configuration Manager

The configuration manager interacts with the cloud bro-

ker in order to provide the required configuration, i.e. to

install/uninstall necessary/unnecessary system components,

(frameworks, applications). As soon as the reconfiguration

process is completed, the configuration manager asserts new

environment configuration facts. As a result, this assertion

might activate the rules asserting actions in order to execute

the failed command again or to notify the user about an

unrecoverable failure detected.

V. EVALUATION

First, let us demonstrate how to apply the proposed system

architecture to develop a web-based expert system for CLI

applications deployment in a cloud. We consider only user

communication aspect of the system in this example.

The Proxy component provides an API as described in

Table I. We extended the proxy interface with a GET method

for all URLs supporting POST requests. The response to the

GET request to such a URL returns a simple HTML page that

a user can use to upload an artifact (zip archive, for example)

350 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
REST INTERFACE OF THE PROXY COMPONENT

URL HTTP
method

Description

/action/<contextHandler>/<relative path>?<query string> POST Submit a user request within the context contextHandler. The
request is executed according to the procedure described in sec-
tion IV-C1.

/status/<requestHandler> GET Get execution result for a request identified by requestHandler.
The request is executed according to the procedure described in
section IV-C2.

TABLE II
HTTP REQUEST TO UserComm CONCEPTS TRANSFORMATION RULES

HTTP message part Ontology concept Description

Segment(*) of <relative path> OrderedArgument(segNo, segValue) The segment is represented by its value segValue (path
segment name as it appears in the URL) and its order
segNo(i.e. number of ’/’ signs in the URL before the
segment)

Parameter(**) from <query string>
(’key=value’)

KeyValueArgument(key, value) The query string parameter is represented by its key and
value.

Parameter from <query string>
(’key’ or ’key=values[]’)

KeyMultivalueArgument(key, value[]) The query string parameter is represented by its key and
value[] (zero or several, but not exactly one value).

HTML form input field
(input field type is not ’file’)

KeyValueArgument(fieldId, value) The form input field is represented by its id fieldId as it
appears in HTML code or in multipart HTTP message
and value (the contents of the field or the entity value
in multipart HTTP message)

HTML form input field
(input field type is ’file’)

NamedArtifact(fieldId, fileContentsPath) The file input field is represented by its id fieldId as it
appears in HTML code or in multipart HTTP message
and a path fileContentsPath to a local copy of the binary
file received from a user

HTTP named entity
(not HTML form)

NamedArtifact(entityName, fileContentsPath) Named entity is represented by its id entityName as it
appears in multipart HTTP message and a path fileCon-

tentsPath to a local copy of the binary file received from
a user

HTTP default entity UnamedArtifact(fileContentsPath) Default entity is represented by a path fileContentsPath

to a local copy of the binary file received from a user
(*) According to RFC 3986 path of a URL consists of zero or more segments separated by slash (’/’) character.

(**) RFC 3986 doesn’t set any restrictions on a query string format. In practice Web developers use ampersand (’&’) separated ’key=value’, ’key=values[]’
or ’key’ format as defined in RFC 1866.

to the server. Selecting a file to upload followed by clicking on

“Submit” button causes the form to be uploaded to the same

URL that is used to download the form. In our system the

GET URL path is “/action/user/deploy/” so the POST URL

path is also “/action/user/deploy/”.

According to the algorithm described in Section IV-C1,

the proxy parses an HTTP message in the following

way: a contextHandler is string “user”, a relative

path consists of one segment “deploy”. Hence

an input field with an artifact is transformed to

NamedArtifact(“artifact′′, “/local/file/path′′)
and URL path is transformed to

OrderedArgument(1, “deploy′′). The proxy invokes

createNewRequest method (see Figure 6) of the model and

receives a RequestHandler that is used to assert all other

facts via addRequestRelatedFact method and returns the

RequestHandler to the user’s browser. The latter redirects

the response to URL “/status/RequestHandler”.

In the knowledge base we can construct a rule translating a

UserComm domain to an expert system domain as follows:

RULE ‘Deploy an artifact’

IF

ctx : Context(‘user’)

req : UserRequest(ctx)

exists OrderedArgument(order==1

AND value==‘deploy’

AND request==req)

artifact : NamedArtifact(name==‘artifact’

AND request==req)

THEN

assert(Expert system domain facts)

END RULE

Similarly, we are able to define the rules to translate the

expert system domain back to the UserComm domain.

Redirection to “/status/RequestHandler” URL enables users

to monitor execution process. In the simplest case the request

result might be described as a status string, e.g. “in progress”,

“completed” and so on.

EVGENY PYSHKIN, ANDREY KUZNETSOV: APPROACH TO BUILDING A WEB-BASED EXPERT SYSTEM 351

A. Expert System Evaluation: Preview

Currently we tested the approach by implementing a proto-

type system that was successfully used for automatic deploy-

ment of two Java projects (built with maven) selected among

the projects submitted to the MIREX 2013 contest7. During

the deployment there were several configuration errors. For

each error we provided the knowledge base rule in order to

detect and fix configuration errors. Table III lists the examples

of build and run errors discovered during our experiments.

B. Scenario Based System Architecture Evaluation

1) Reuse Scenario: Domain That Changes: Let’s revisit

the case study investigated in Section II-C: the change of

the Model provoked changes in both the View and the Con-

troller. As we discovered in Section II-C, these changes are

conditioned by the fact that the Model provides a domain-

specific interface for data modification. If we use the described

architecture (which includes two domains: the communication

domain (UserComm) and the expert system domain), changing

the expert system domain doesn’t lead us to the commu-

nication domain changes. Thus, the Model interface can be

preserved, and the Presenter remains unchanged. The View

might need to be updated in order to support new Request-

StatusRelatedFacts introduced by the changed expert system

domain. The communication interface between a View and a

Model (as well as between a View and a Presenter) remains

unchanged. To sum up, updating the Model component leads

to changes in the View only because this new domain has new

concepts to be visualized.

2) Change Scenario: Model That Changes: The Model

change can be handled the same way as the domain change

(see section V-B1). Updating the Model might lead to changes

in the View if this new model has new concepts to be

visualized.

3) Change Scenario: Managed and Unmanaged Execution

Modes: As we described in [6], the architecture with isolated

proxy and executor components allows implementing different

execution modes (e.g. system behavior) without modifications

of neither the proxy, nor the executor. In practical cases,

at least two execution modes are useful: managed mode

and unmanaged mode. Regardless of the current mode, the

knowledge base is able to detect and fix recoverable errors in

order to support client software automatic deployment.

In the managed mode we have a predefined client code

invocation command, as well as we use strict validation of the

input and output data. Validated output data are automatically

published as request status related facts. Especially in case of

MIR, in the managed mode it is possible to keep private music

collections safe while providing access to these collections for

processing by third party algorithms.

In the unmanaged mode the invocation command, as well

as its input and output data are defined in an HTTP request.

The framework doesn’t check input and output data, but it still

detects and fixes recoverable execution errors.

7http://www.music-ir.org/mirex/wiki/2013:Main Page

While these modes differ significantly in behavior, they are

implemented entirely at the knowledge base level. It means

that in order to support managed or unmanaged modes, only

changes in the knowledge base component (i.e. in the Model)

are required.
4) Change Scenario: Deploying a CLI application in IaaS

or PaaS clouds: The basic idea of this evaluation scenario

is to check whether the expert system is able to deploy

a CLI application to PaaS and IaaS clouds. The platform

configuration can be handled in three different ways:

1) In PaaS clouds the configuration manager can delegate

all operations to the cloud broker (as in OpenShift).

Necessary components can be installed as cartridges

developed by the communities (e.g. Python or Ruby

cartridges). This approach is the easiest to implement,

but it requires support from the cloud as Figure 9 (left)

illustrates.

2) In PaaS and IaaS clouds the configuration manager is

able to install all the required software itself. Software

installation can be implemented using the same inter-

faces that end users have. Indeed, within the context of

deployment there is no big difference whether the de-

ployment manager deploys a particular version of a build

system (e.g. maven), or a MIR research application. This

approach is illustrated in Figure 9 (middle).

3) In IaaS clouds it is possible to have a set of preconfig-

ured virtual machines, hence configuring means switch-

ing of virtual machine images as shown in Figure 9

(right). This way might be resource consuming but in

some cases there is no other choice. For instance, it is

useful to have two images: one with *nix OS and the

other one with Windows OS, because there is no way to

install Windows applications to *nix or vice versa with

no virtual machines usage.

In its pure forms neither PaaS nor IaaS fits the task of

MIR research software automatic deployment and execution.

For example, using the only PaaS it is often impossible to

implement access to big local data. If we consider an example

of MSD (Million Songs Dataset [31]) with its size of about 240

GB, we immediately face two problems: 1) a virtual platform

is usually limited by only several GBs of disk space, 2) for

a virtual platform it is usually not allowed to mount new

partitions, volumes or remote file systems. Our subject domain

restrictions make it almost impossible to force client software

developers to use some network file system similar to webdav.
In turn, an IaaS does support mounting new partitions. How-

ever, installing and configuring, say, a Python environment

requires installing the Python interpreter from the repositories

and its additional configuration by using scripts, i.e. the

process not trivial for non-experts. On the contrary, in a PaaS

the same effect may be achieved by only one command for

installing the respective cartridge (of course, if the required

cartridge exists, and the latter observation is true for a great

majority of practical cases and PaaS platforms). Therefore we

propose to use a hybrid approach IaaS+PaaS, where a PaaS

may be deployed within an IaaS cloud.

352 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE III
EXAMPLES OF ERRORS DISCOVERED DURING EXPERIMENTS WITH MIREX 2013 PROJECTS

Error Component Detection method Recovery action

Incorrect encoding of
source file

javac Pattern matching. Look for “error: unmappable character for
encoding” in javac log

Add appropriate javac/maven flag to spec-
ify encoding. Encoding can be detected
automatically or provided by user

copy-maven-plugin
runtime exception

maven Pattern matching. Look for “copy-maven-
plugin:0.2.5:copy” and “java.lang.NoClassDefFoundError:
Lorg/sonatype/aether/RepositorySystem;” in maven log

Downgrade maven to version 3.0.5

X11 server required JVM/AWT Pattern matching. Look for “java.awt.HeadlessException” in JVM
classloader log(*)

Install X11 server (we use Xvfb virtual
server)

(*)This exception is especially interesting for two reasons: 1) nobody expected AWT exception in CLI application and 2) This exception is caught in client
code, but it is not handled properly (it is ignored). The only way to detect that the exception was thrown is to analyze the classloader log.

Fig. 9. PaaS/IaaS reconfiguration: (Left) New cartridge installation; (Middle) New software installation; (Right) Virtual machine recreation.

VI. CONCLUSION

In this paper we have examined the problem of CLI

application provisioning in clouds. Being a web application

interacting with a cloud broker in order to manage cloud

resources and their configuration, the proposed infrastructure

provides a PaaS platform to deploy CLI applications as SaaS

services. In contrast to existing solutions we have proposed an

architecture where a proxy component and an executor don’t

interact directly. Instead of invoking each other, they assert

or retract facts in/from an expert system working memory.

Thus, the approach draws on the knowledge engineering

formalisms used not only for configuration errors recovery,

but also for decision making on how to handle requests in

order to protect intellectual property (in regards to MIR one

can talk about music collections, software implementations,

etc.). Although in this research we experimented mostly with

automatic deployment of Java+maven applications, we are

working on knowledge base extensions that allow deploying

native Windows, Python, MatLab and Vamp8 applications.

The proposed architecture addresses some of the most com-

8http://www.vamp-plugins.org/

plex tasks of client virtual machine automatic reconfiguration,

including the following:

1) Installing operating systems on a virtual machine;

2) Installing and configuring a build environment;

3) Installing and configuring a required version of a runtime

environment;

4) Installing third party libraries during building;

5) Installing third party runtime libraries;

6) Providing access to machine learning and test data;

7) Providing access to a storage for execution results;

8) Providing user-side access to a client virtual machine.

We have investigated MVC and MVP design patterns as

well as the major difficulties of their application to imple-

menting a user interface for a web-based expert system. By

introducing a special ontology representing user communica-

tion concepts, we have attempted to achieve an MVP-based

implementation of an expert system with respect to the loose

coupling design requirements, which, in turn, are strongly

connected to improving such software quality properties as

reusability and changeability. With regards to the demands

of scientific communities, we believe that the introduced

approach is in good direction to reproducibility, which is

EVGENY PYSHKIN, ANDREY KUZNETSOV: APPROACH TO BUILDING A WEB-BASED EXPERT SYSTEM 353

“not an afterthought – it is something that must be designed

into a project” [32]. Let us conclude with sharing the idea

that research reproducibility might add an overhead (that we

attempted to avoid in our approach). However, even “some

reproducible practices are better than none – it does not have

to be perfect to be a huge improvement” [2].

ACKNOWLEDGMENT

We would like to express our great appreciation to Nina

Popova and Michael Tramontano for the very valuable sugges-

tions. The authors would like to thank Prof. Franck Leprevost

for the invitation to present this research within the frame-

work of the 2014 Eastern Europe–Luxembourg Workshop on

Cloud Computing, Communications, Security and Services in

conjunction with the International Conference on Cloud Net-

working. An opportunity to have a preliminary discussion of

this work has significantly improved our current contribution.

REFERENCES

[1] M. D. Plumbley, C. Cannam, and S. Dixon, “Tutorial on reusable soft-
ware and reproducibility in music informatics research to be presented in
to be presented at the 13th ismir conference,” Centre for Digital Music,
Queen Mary, University of London, 2012.

[2] S. Sufi, N. C. Hong, S. Hettrick, M. Antonioletti, S. Crouch,
A. Hay, D. Inupakutika, M. Jackson, A. Pawlik, G. Peru, J. Robinson,
L. Carr, D. De Roure, C. Goble, and M. Parsons, “Software
in reproducible research: Advice and best practice collected from
experiences at the collaborations workshop,” in Proceedings of the 1st

ACM SIGPLAN Workshop on Reproducible Research Methodologies

and New Publication Models in Computer Engineering, ser. TRUST
’14. New York, NY, USA: ACM, 2014, pp. 2:1–2:4. [Online].
Available: http://doi.acm.org/10.1145/2618137.2618140

[3] Y. Janin, C. Vincent, and R. Duraffort, “Care, the comprehensive
archiver for reproducible execution,” in Proceedings of the 1st ACM

SIGPLAN Workshop on Reproducible Research Methodologies and

New Publication Models in Computer Engineering, ser. TRUST ’14.
New York, NY, USA: ACM, 2014, pp. 1:1–1:7. [Online]. Available:
http://doi.acm.org/10.1145/2618137.2618138

[4] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “Openml:
Networked science in machine learning,” SIGKDD Explorations,
vol. 15, no. 2, pp. 49–60, 2013. [Online]. Available: http://doi.acm.org/
10.1145/2641190.2641198

[5] D. Milne and I. H. Witten, “An open-source toolkit for mining
wikipedia,” Artif. Intell., vol. 194, pp. 222–239, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1016/j.artint.2012.06.007

[6] E. Pyshkin and A. Kuznetsov, “A provisioning service for automatic
command line applications deployment in computing clouds,” in 2014

IEEE Intl Conf on High Performance Computing and Communications

(HPCC), Aug 2014, pp. 518–521.
[7] C. Bunch, “Automated configuration and deployment of applications in

heterogeneous cloud environments,” Ph.D. dissertation, Santa Barbara,
CA, USA, 2012, aAI3553710.

[8] Y.-Y. Su, M. Attariyan, and J. Flinn, “Autobash: Improving configuration
management with operating system causality analysis,” in In Proceed-

ings of the 21st ACM Symposium on Operating Systems Principles

(Stevenson, 2007, pp. 237–250.
[9] E. Pyshkin, A. Kuznetsov, and V. Klyuev, “Understanding software

provisioning: An ontological view,” in Databases in Networked

Information Systems, ser. Lecture Notes in Computer Science,
W. Chu, S. Kikuchi, and S. Bhalla, Eds. Springer International
Publishing, 2015, vol. 8999, pp. 84–111. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-16313-0 7

[10] K. West, A. Kumar, A. Shirk, G. Zhu, J. Downie, A. Ehmann, and
M. Bay, “The networked environment for music analysis (nema),” in
Services (SERVICES-1), 2010 6th World Congress on, July 2010, pp.
314–317.

[11] J. C. Giarratano and G. Riley, Expert systems: principles and program-

ming. Brooks/Cole Publishing Co., 1989.

[12] Y. Duan, J. S. Edwards, and M. Xu, “Web-based expert systems: benefits
and challenges,” Information & Management, vol. 42, no. 6, pp. 799–
811, 2005.

[13] N. Dunstan, “An interactive webbased expert system degree planner,”
in The Second International Conference on Informatics Engineering &

Information Science (ICIEIS2013). The Society of Digital Information
and Wireless Communication, 2013, pp. 302–308.

[14] I. M. Dokas, “Developing web sites for web based expert systems: A
web engineering approach.” in ITEE, 2005, pp. 202–217.

[15] N. Dunstan, “A hybrid architecture for web-based expert systems,”
International Journal of Artificial Intelligence and Expert Systems,
vol. 3, no. 4, pp. 70–79, 2012.

[16] R. A. Harrington, S. Banks, and E. Santos Jr, “Development of an
intelligent user interface for a generic expert system,” in Online Pro-

ceedings of the Seventh Midwest Artificial Intelligence and Cognitive

Science Conference, 1996.
[17] M. Nofal and K. M. Fouad, “Developing web-based semantic expert

systems,” IJCSI International Journal of Computer Science Issues,
vol. 11, no. 1, pp. 103–110, Jan. 2014.

[18] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner, H. Soncu, and
C. Newell, “Explaining the user experience of recommender systems,”
User Modeling and User-Adapted Interaction, vol. 22, no. 4-5, pp. 441–
504, 2012.

[19] I. M. Dokas, “Developing web sites for web based expert systems: A
web engineering approach,” in In Proceedings of the Second Interna-

tional ICSC Symposium on Information Technologies in Environmental

Engineering (Magdeburg. Shaker Verlag, 2005, pp. 202–217.
[20] R. Morales-Chaparro, M. Linaje, J. Preciado, and F. Sánchez-Figueroa,

“Mvc web design patterns and rich internet applications,” Proceedings

of the Jornadas de Ingenierıa del Software y Bases de Datos, 2007.
[21] P. Gupta and M. C. Govil, “Mvc design pattern for the multi framework

distributed applications using xml, spring and struts framework,” Int J

Comput Sci Eng, vol. 2, no. 4, pp. 1047–1051, 2010.
[22] G. E. Krasner, S. T. Pope et al., “A description of the model-view-

controller user interface paradigm in the smalltalk-80 system,” Journal

of object oriented programming, vol. 1, no. 3, pp. 26–49, 1988.
[23] M. Potel, “Mvp: Model-view-presenter the taligent programming model

for c++ and java,” Taligent Inc, 1996.
[24] R. Kazman, L. Bass, M. Webb, and G. Abowd, “Saam: A

method for analyzing the properties of software architectures,”
in Proceedings of the 16th International Conference on Software

Engineering, ser. ICSE ’94. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1994, pp. 81–90. [Online]. Available:
http://dl.acm.org/citation.cfm?id=257734.257746

[25] C.-C. Lin, S.-C. Chen, and Y.-M. Chu, “Automatic price negotiation on
the web: An agent-based web application using fuzzy expert system,”
Expert Systems with Applications, vol. 38, no. 5, pp. 5090–5100, 2011.

[26] B. Roy and T. N. Graham, “Methods for evaluating software architecture:
A survey,” School of Computing TR, vol. 545, p. 82, 2008.

[27] A. Kipkebut, “An evaluation of web based expert system as a catalyst
for maize production in kenya,” Computer Engineering and Intelligent

Systems, vol. 5, no. 3, pp. 86–97, 2014.
[28] K. Tutuncu and M. Koklu, “A new expert system shell in turkish

language for training,” in Proceedings of the International Conference

on challenges in IT, Engineering and Technology, ser. ICCIET’2014,
2014, pp. 26–30.

[29] A. Kuznetsov and E. Pyshkin, “An ontology of software building,
execution and environment configuration and its application for software
deployment in computing clouds,” St. Petersburg State Polytechnical

University Journal. Computer Science. Telecommunications and Control

Systems, no. 2(193), pp. 110–125, 2014.
[30] T. R. Gruber, “Toward principles for the design of ontologies used for

knowledge sharing,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5-6, pp.
907–928, Dec. 1995. [Online]. Available: http://dx.doi.org/10.1006/ijhc.
1995.1081

[31] B. McFee, T. Bertin-Mahieux, D. P. W. Ellis, and G. R. G.
Lanckriet, “The million song dataset challenge.” in WWW (Companion

Volume), A. Mille, F. L. Gandon, J. Misselis, M. Rabinovich, and
S. Staab, Eds. ACM, 2012, pp. 909–916. [Online]. Available:
http://dblp.uni-trier.de/db/conf/www/www2012c.html#McFeeBEL12

[32] D. L. Donoho, “An invitation to reproducible computational research,”
Biostatistics, vol. 11, no. 3, pp. 385–388, 2010.

354 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

