
Abstract—Native  functional-style  querying  extensions  for
programming  languages  (e.g.,  LINQ  or  Java  8  streams)  are
widely  considered  as  declarative.  However,  their  very  limited
degree  of  optimisation  when  dealing  with  local  collection
processing contradicts  this  statement.  We show that  developers
constructing complex LINQ queries or combining queries expose
themselves to the risk of severe performance deterioration. For
an inexperienced programmer, a way of getting an appropriate
query  form  can  be  too  complicated.  Also,  a  manual  query
transformation is justified by the need of improving performance,
but achieved at the expense of reflecting an actual business goal.
As a result,  benefits from a declarative form and an increased
level of abstraction are lost. 

In this paper, we claim that moving of selected methods for
automated  optimisation  elaborated  for  declarative  query
languages to the level of imperative programming languages is
possible  and  desired.  We propose  an  optimisation  method  for
collection-processing constructs based on higher-order functions
through  factoring  out  of  free  expressions  in  order  to  avoid
unnecessary  multiple  calculations.  We  have  implemented  and
verified  this idea as a simple proof-of-concept  LINQ optimiser
library. 

I. INTRODUCTION

INCE the release of LINQ (Language-Integrated Query)

for the Microsoft .NET platform in 2007, there has been

a significant progress in the topic of extending programming

languages  with  native  querying  capabilities  [1].

Programming  languages  are  mostly  imperative;  their

semantics relies on the program stack concept. They operate

on  volatile  data  and  the  meaning  of  collections  is  rather

secondary. On the other hand, query languages are usually

declarative and their semantics often bases on some forms of

algebras  or  logics;   these  languages  operate  mostly  on

collections  of  persistent  data.  Declarativity  of  a  query

language  reveals  itself  mostly when considering  operators

for  collections.  In  the  case  of  an  imperative  language,

operating on a collection takes  a form of an explicit loop

iterating over collection elements in a specified order, while

in query languages one declares a desired result (e.g., a sub-

collection containing elements of a base collection matching

a given  selection  predicate)  and  an algorithm of  filtration

itself  is  not  an  element  of  an expression  representing  the

query. Based on characteristics of data structures, a database

state and  existence  of  additional  auxiliary structures  (e.g.,

indices),  an  execution  environment  can  choose  the  most

S

promising  algorithm (a  plan)  for  evaluation  of  the  query.

Declarativity  allows  one  to  postpone  selection  of  an

algorithm even to the moment of an actual query execution.

In this paper we discuss to what extent solutions for process-

ing of collections within programming languages are actu-

ally declarative. To do so, we made an extensive research on

query optimisation. In databases it is a crucial process that

allows  a  programmer  to  be  relieved  from thinking  about

details of a processing control flow, auxiliary data structures

and algorithms. 

LINQ seems to be the most robust solution introducing a

promise  of  declarative  collection  processing  within  an

imperative programming environment. It is commonly used

for  direct  processing  of  collections  and  as  a  mapper  to

resources devoid of a robust declarative query API or query

optimisation.  When  encountering  performance  issues,

developers  are  forced  to  manually  optimise  LINQ

expressions or  partly resign from declarative constructs  in

favour of an imperative code.
var ikuraQuery = 

  from p in products 

  where (

    from p2 in products 

    where p2.productName == "Ikura" 

    select p2.unitPrice).Contains(p.unitPrice)

  select p.productName;

Listing 1. Example 1 – query expression syntax.

Consider  a  LINQ  query  expression  in  Listing  1  (the

database diagram including the Products table is available at

http://northwinddatabase.codeplex.com/)  whose  purpose  is

to find names of products with a unit price equal to a price

of  a  product  (or  products)  named  Ikura.  If  the  query

addresses  a  native  collection  of  objects,  its  execution  is

severely  inefficient  as  the  nested  subquery,  searching  for

prices of products named Ikura,  is unnecessarily evaluated

for each product addressed by the outer query. Although this

task could be resolved in a time linearly proportional to the

collection's  cardinality, the LINQ engine  induces  an outer

loop  and  a  nested  loop,  both  iterating  over  the  products’

collection. Using this example, in further sections we show

that manual optimisation of complex LINQ queries is not an

easy task.

LINQ enables to express the same goal in many different

ways.  However,  evaluation  times  of  two  semantically

equivalent  queries  may  differ  by  several  orders  of

magnitude. In particular, in the context of the LINQ query
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expressions’  declarative  syntax,  it  violates  the  declarative

programming principle. Without knowledge on how a query

engine  works  in a context of  given  data,  the optimisation

process  is  too  complex  and  time-consuming.  This  is

particularly  true  if  a  programmer  wants  to  preserve

semantics and properties of his query construct. 

To the best of our knowledge, the problem of automated

global optimisation of LINQ queries for direct processing of

collections of objects has not been addressed in the literature

so far. By global optimisation we understand the ability to

define an efficient query execution plan based on the whole

query  structure  as  opposed  to  the  local  optimisation  that

usually only targets a single operator. Below we prove that

global optimisation can be done automatically making LINQ

genuinely declarative.

Nonetheless, the problem that this paper deals with is not

limited  to  LINQ.  Surprisingly,  it  extends  to  dozens  of

programming  environments  that  support  functional-style

operations on collections of elements, such as filter, map or

reduce.  Pipelines  and  streams introduced  in  Java  8  are  a

solution  equivalent  to  LINQ  to  Objects  [2].  The  main

difference lies in the naming convention of new operators

corresponding to their functional prototypes (e.g.,  map and

filter instead of LINQ’s Select and Where). Furthermore, list

comprehension  constructs  are  examples  of  a  shorthand

syntax for specifying operations of projection and selection

(filtering).  Consequently,  discussed  issues  concern  many

imperative languages exploiting this feature (e.g.,  Python).

Fowler  summarises  such  a  functional-style  programming

pattern using a term collection pipeline [3]. Examples given

in  LINQ  can  be  expressed  in  many  imperative  and

functional  programming  languages.  While  we  extend  the

conclusions  of  our  work  to  the  universe  of  imperative

programming,  they  do  not  directly  apply  to  functional

languages (e.g.,  Haskell)  since their principles  of program

evaluation are significantly different [4].

The rest of the paper is organised in the following way.

First,  we present a brief description of the state of the art

followed  by  characteristics  of  language-integrated  query

constructs. Next, we describe issues with nested independent

subqueries  and  free  expressions  revealing  a  huge

optimisation  potential.  Finally,  we  present  our  solution

followed  by  measured  results  and  principles  of  our

optimisation  approach,  being  the  core  of  the  paper.  The

paper is concluded with a short summary. 

II. RELATED WORK AND THE STATE-OF-THE-ART

Databases  are  the  area  of  the  computer  science  where

declarative  programming  and  query  optimisation  have

developed  extensively.  Over  40  years  of  the  research  on

relational  systems  resulted  in  various  optimisation

techniques [5][6] and numerous solutions are incorporated

in available commercial products. Our research presented in

the  paper  particularly  addresses  query  optimisations

analogous to query unnesting, dating back to the early 80s

[7].  This  topic  is  constantly  appearing  in  the  context  of

arising  database  technologies.  Different  approaches  to

handle  nested  queries  evaluation  have  been  proposed  for

object-oriented databases [8][9] and XML document-based

stores  [10].  However,  NoSQL  solutions  marginalise  the

topic of query languages and usually rely on a minimalistic

programming  interface  and  domain-specific  optimisations,

mostly implemented by high redundancies and storing data

in the form matching assumed queries. Most attention from

the  scientific  community  concentrates  on  the  topic  of

distributed  data-parallel  computing  using  the  Map/Reduce

paradigm (like Hadoop or Dryad for Azure). This paradigm

can  be  transparently  used  in  declarative  collection

processing. The Dryad programming environment based on

LINQ  [11]  takes  advantage  of  mechanisms  similar  to

Map/Reduce  in  order  to  write  scalable,  parallel  and

distributed programs. To increase sharing of computations in

a  data  centre,  Dryad  can  benefit  from the  Nectar  system

[12]. It  is  able to cache results of  frequently used queries

and incrementally update them. The use of cached results is

achieved through automatic query rewriting.  Robust query

and  program  optimisations  have  been  developed  for

solutions  based  on  the  functional  paradigm.  According  to

Fegaras  [13],  an  optimisation  framework  for  a  functional

lambda-DB object-oriented database relies on mathematical

bases,  i.e.  the  monoid  comprehensions  calculus.  It

generalises  many  unnesting  techniques  proposed  in  the

literature.

Glasgow Haskell  Compiler  (GHC) for  the Haskell  non-

strict purely functional language introduces many methods

based on code rewriting. They range from relatively simple

rules  that  can  be used  to  improve efficiency  of  programs

through  modifications  on  a  high  syntactic  level  to  more

complex low-level core language transformations (e.g., let-

floating,  beta  reduction,  case  swapping,  case  elimination)

[14]. In particular, a procedure called full laziness (or fully

lazy lambda lifting) has been proposed to avoid reevaluation

of inner expressions for which result could be pre-calculated

only once [15][16].

Currently, due to introduction of lambda abstractions into

object-oriented languages, functional style of programming

became  ubiquitous.  Stream  and  collection  processing

constructs  derived  from  functional  languages  can  be

naturally  evaluated  in  parallel  using  multiple  processor

cores.  Therefore,  the  most  popular  solutions,  like  Java  8

streams,  LINQ  or  ScalaBlitz,  enable  such  optimisation

through various libraries or frameworks [17].

In  the field of  functional-style  queries  integrated  into a

programming  language,  the  topic  of  query  optimisation

seems the most advanced in LINQ. A LINQ provider library

can  implement  direct  processing  of  data  (e.g.,  LINQ  to

Objects, LINQ to XML) or delegate processing to a remote

external resource by sending a translated query (e.g., LINQ

to SQL, LINQ to Entities). To be precise, a mixture of both

approaches can be used, e.g. when the query language of a

remote resource cannot completely express the semantics of

a LINQ query. In  the case when LINQ sends a translated

query,  it  also  delegates  the  responsibility  for  query

optimisation. Consequently, if the external resource engine

provides  optimisation,  developers  can  fully  rely  on  a

declarative style of programming. However, in the context
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of LINQ to SQL, the problem of analysing and normalising

of LINQ queries in order to provide minimal and cohesive

mapping  to  SQL  has  drawn  attention  of  the  scientific

community. This is caused mostly by some drawbacks of the

original Microsoft’s solution that in some cases may fail or

produce a so-called “query avalanche” [18][19].

The issue of  performance deficiencies  while processing

collections of objects has not passed unnoticed by the LINQ

community.  In  order  to  cope  with  the  shortage  in

optimisation comparing to database engines, the i4o project

(abbr.  index  for  objects)  solution  adapted  the  idea  of

indexing  to  native  objects’  collections  [20].  It  is

implemented  as  an  alternative  for  the  LINQ  to  Objects

provider  library. Utilising the concept of secondary access

structures, i4o can produce several orders of magnitude of a

gain in performance for queries filtering data at the cost of a

data modification overhead. 

Another examples of LINQ query optimisation tools are

Steno [21] and LinqOptimizer [22] provider libraries. Their

authors focused on a significant performance deficiency of

LINQ  queries  in  contrast  to  the  equivalent  manually

optimised code that can be several times faster. Experiments

have shown that Steno allows one to obtain up to 14-fold

increase  in  processing  of  sequential  data  and  2-fold

comparing  to  a  problem  processed  by  the  DryadLINQ

distributed engine  [11].  The main idea behind Steno  is to

eliminate the overhead introduced by virtual calls to iterators

that  are  the  fundamental  mechanism  used  by  the  LINQ

engine.  This  problem  has  been  solved  by  automatic

generation  of  an  imperative  code  omitting  iterators.  The

optimisation addresses mainly implementation of individual

operators.  This  also  concerns  the  case  of  nested  loops’

optimisation when Steno has to analyse a series of operators

only to preserve the order of iteration induced by the LINQ

to Objects  library implementation.  This is  justified by the

loop fusion efficiency and consideration of side effects that

are allowed in LINQ. Steno is also capable of higher-level

optimisation giving an example of the GroupBy-Aggregate

optimisation. It involves a local term rewriting, addressing a

pair  of  neighbouring  operators,  i.e.  GroupBy followed by

Aggregate.  When  encountering  such  a  sequence  of

operators,  Steno  replaces  it  by  a  dedicated

GroupByAggregate operator that saves memory by storing

per-key partial aggregates instead of the whole collection of

group values.  This  optimisation  takes  advantage  of  LINQ

declarativity  by changing  the  course  of  evaluation.   As  a

result, introducing side effects would cause its incorrectness.

Being  aware  of  a  difficulty  of  automatic  reasoning  about

side  effects  within  queries,  Steno’s  authors  suggest

developer-guided  optimisation.  Optimisation  similar  to

GroupBy-Aggregate is considered in the SkyLINQ project

[23] that develops an alternative operator called Top. This

operator  can be used to substitute a sequence of  OrderBy

and  Take  method  calls  (i.e.  an  operation  to  get  top  k

elements).  The  significance  of  LINQ  grew  up  with

introducing  LINQ  to  Events,  an  extension  enabling

declarative programming according to the reactive paradigm

[24].  The  solution  derives  from  Functional  Reactive

Programming  and  is  well  suited  for  composing

asynchronous and event-based programs [25]. Recently, this

approach has attracted attention of commercial and scientific

communities  and,  as  a  programming  paradigm,  faces

efficiency issues  indicating possible areas  for  optimisation

[26][27].

Other current research on LINQ strives to allow seamless

integration of heterogeneous data sources [28]. As a result,

users  can  transparently  process  and  modify  data  shared

among  contributing  resources.  Because  of  complex

multilayer  architecture,  such  an  environment  is  not

efficiency-oriented.  LINQ  is  generally  focused  on  local

optimisation performed at a data source layer. In processing

of heterogeneous and distributed data, it is unlikely that such

optimisation  is  provided  by  each  contributing  resource.

Therefore, it raises a need for global optimisation performed

at the level of a LINQ query itself. 

Declarative functional-style constructs in general-purpose

object-oriented languages are not pure. As a result, decisions

concerning optimisation have to be made by programmers.

Transparent and aggressive compile-time optimisations can

be achieved by introducing a query language extension into

a programming language compiler [29]. 

One  of  numerous  examples  of  extending  compilers  of

existing  languages  with  declarative  constructs  is  SBQL4J

[30]. It enables seamless integration of SBQL queries with

language  instructions  and  executing  them in  a  context  of

Java  collections.  SBQL4J  is  based  on  the  Stack-Based

Architecture  (SBA)  approach  instead  of  the  functional

approach  and  offers  capabilities  comparable  to  the  LINQ

technology  [31][32].  What  distinguishes  it  from  other

programming  language-integrated  queries  is  incorporation

of  several  automatic  optimisation  methods  developed  for

SBA. One of these methods, i.e. factoring out independent

subqueries [8], enables SBQL4J to cope with optimisation

of queries equivalent to examples discussed in this paper. It

belongs to the group of optimisation methods that are based

on query rewriting. Factoring out concerns a subquery (that

in SBA represent any subexpression) that is processed many

times in loops implied by so called non-algebraic operators

despite that in subsequent loop cycles its result is the same.

In  SBQL4J  rewriting  is  applied  at  a  compile-time  and  a

resulting performance improvement can be very significant,

sometimes giving  query response times shorter  by several

orders of magnitude. 

III. CHARACTERISTICS OF LANGUAGE-INTEGRATED QUERY

CONSTRUCTS

Declarative style programming (especially in the context

of databases) is often associated with the select-from-where

syntactic  sugar  known  from  SQL  that  was  adapted  into

LINQ. The query in Listing 1 is expressed using the LINQ

query  expression  syntax.  That  form  lacks  explicit

information  on  an  order  of  performed  operations  and

virtually a  compiler  could  translate  it  to  any semantically

equivalent lower-level code that could be considered a query

execution  plan.  Consequently,  programmers  must  be

particularly  careful  about  potential  side  effects  within
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declarative  constructs  in  order  to  avoid  the  risk  of

unpredicted  violations.  Technically,  query  expressions  are

syntactic sugar over the implementation layer using lambda

expressions, higher-order functions and, so called, extension

methods  [33].  An  executable  query,  after  removing  the

LINQ  syntax  sugar,  will  take  the  form  presented  in

Listing 2. 
var ikuraQuery = products. 

  Where(p => products.      

    Where(p2 => p2.productName == “Ikura”).      

    Select(p2=>p2.unitPrice).Contains(

      p.unitPrice)). 

  Select(p => p.productName); 

Listing 2. Example 1 – de-sugared.

The translated query uses the traditional, non-declarative

object-oriented  programming  syntax.  When  processing

collections  or  XML documents  directly,  the  most  crucial

LINQ  library  extension  methods  (e.g.,  Select  and  Where)

expose  iterators  that  perform  a  specified  operation  on

elements of a given collection. Lambda expressions are used

to  express  details  concerning  such  an  operation,  e.g.  the

selection  predicate  for  the  Where  operator.  Despite  of

similarity of Listing 2 to the original query expression, such

composition  of  method  calls  on  the  products  collection

determines the order of evaluation.

Due to the specific implementation based on iterators and

lambda abstractions, the execution strategy of LINQ queries

is deferred. Execution is performed in presence of functions

or instructions forcing iteration over elements specified by a

query.  However,  a  result  of  an  iteration  is  not  saved  or

cached,  so  each  execution  reevaluates  a  query  against  a

given (current) data state.

The  approach  used  in  the  LINQ  to  the  objects’ library

implementation  is  generally  ubiquitous  (however,  not

uniform) in numerous programming languages (e.g., Python,

Java 8,  Elixir, Ruby) [3]. A good summary describing the

possible set of properties of functional-style constructs can

be found in the documentation of Java 8 streams [2].

The functional nature makes a language construct a good

candidate for optimisation due to intelligible querying.  All

operations  in  a  query  processing  chain  produce  a  new

queryable  result  instead of  modifying  original  data;  hence

they  do  not  introduce  side  effects.  For  example,  during

filtration  on  a  list,  no  element  is  actually  removed.  Even

though filter and map (common functional-style operators)

are  often  used  to  directly process  elements  of  a  local  in-

memory collection, in reality elements can be obtained one

by one from any so called queryable data source, e.g., a data

structure,  a generator  function,  an iterator, an I/O channel

and  a  chained  pipeline  of  collection  operations.  Such

generality  allows,  usually  time-consuming,  querying  of

remote  data  sources,  additionally  making  optimisation

desirable.

The above properties are common in implementations of

language-integrated  query  mechanisms.  However  a

programmer  must  be  sensitive  to  possible  differences  in

various  programming  languages.  For  example,  some

languages implement consumable evaluation of queries.  In

such a strategy, elements of a queryable data source instance

can be visited only once  during its  life.  As a result,  each

query instance can be evaluated only once. The last property

is present in Java 8 streams whereas LINQ operators are not

consumable.  The  laziness-seeking  property  has  the  most

profound impact on evaluation and semantics of language-

integrated queries. It is connected with the lazy evaluation

strategy assuming that a next element is returned for further

processing  only  if  necessary.  Usually,  a  place  of  a  lazy

construct definition does not determine an actual moment of

query  execution  (i.e.  deferred  execution  strategy).  Actual

query  execution  occurs  when  its  result  is  required,  for

example  elements  referred  by  a  query  are  iterated  or

counted. Operations like selection, projection, and removal

of duplicates are often implemented lazily. Consequently, to

ensure  coherence  execution  of  eager  constructs  (e.g.,

grouping  or  ordering)  is  also  deferred.  Lazy  evaluation

usually  results  in  better  performance.  It  is  cache-friendly

since  an  element  is  processed  by  a  chain  of  collection

pipeline operations before proceeding to the next element.

Moreover, in cases when the desired query result has been

reached before  visiting all  elements it  is  not necessary to

continue iterating (e.g., a query finding the first product with

name “Ikura”). 

In  the  context  of  query  optimisation,  it  is  important  to

preserve  properties  of  optimised  constructs.  In  a  general

case,  any  change  in  this  matter  can  affect  semantics  of

application  code.  Switching  an  expression  evaluation

strategy from lazy to eager or forcing immediate execution

can  have  serious  consequences.  Only  laziness-seeking

constructs can deal with possibly unbounded data sources.

Eager evaluation of selection and projection operators on an

infinite  data  source  would  require  infinite  computational

resources and time, while lazy evaluation can return partial

results.

In  the  next  section,  we  show  that  preserving  deferred

execution, which is implied by the lazy evaluation strategy,

is the factor impeding query optimisation. 

IV. PERFORMANCE PITFALLS

A. Evaluation of Independent Subqueries

Analysing  the  expression  from  Listing  2,  it  becomes

obvious  that  the  nested  query  selecting  products  named

Ikura will be executed multiple times, since it is a part of a

lambda abstraction (specifying a selection predicate) called

against each product (the external Where operator induces a

loop  iterating  over  elements  of  products  collection).  This

form  is  not  efficient  and  makes  the  computational

complexity  quadratic  (i.e.  O(n2)).  However,  searching  for

products named Ikura is independent of the parent query and

could  be  evaluated  just  once.  In  order  to  improve  query

performance, a programmer must transform it. A natural way

for optimisation seems to be factoring out the problematic

subquery to a separate instruction and assigning it to a new

variable (see Listing 3). The changes could also be presented

on the LINQ query expression, but because the form with

extension methods is actually executed, it will be a basis for

this study.
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var nestedQuery = products. 

  Where(p2 => p2.productName == “Ikura”). 

  Select(p2=>p2.unitPrice); 

var ikuraQuery = products. 

  Where(p => nestedQuery.Contains(p.unitPrice)).   

  Select(p => p.productName); 

Listing 3. Example 1 – loops in separate instructions.

A result  of  the transformation shown in Listing  3 may

seem  effective;  however,  the  expected  goal  will  not  be

achieved.  The  problem  lays  in  the  execution  strategy  of

LINQ queries. The  nestedQuery variable holds an instance

of a non-executed query that will be evaluated – like in the

case  of  the  non-transformed  expression  (Listing  2)  –  at

every  traversal  of  the  loop  induced  by  the  ikuraQuery

Where operator.

In  Java  8  streams  proper  execution  of  corresponding

queries  generally  would  become  impossible  due  to  the

consumable  property of  streams.  After  the  transformation,

the selection predicate of  the  ikuraQuery would share the

same instance of  a  nestedQuery stream. Evaluation of  the

nested  query  would  be  performed  only  once,  at  the  first

traversal  of  the  loop  induced  by  the  ikuraQuery Where

operator,  whereas  the  following iterations  would  result  in

terminating query evaluation and throwing an exception. 

Solving the above problems requires eliminating deferred

execution of the nested query. There exist several techniques

to force immediate execution of a LINQ query. For example,

the  ToList method returns  a  list  containing  a  materialised

query  result.  Applying  it  to  the  nested  query  makes  the

solution  more  efficient  (linear  computational  complexity)

than the query in Listing 2. However, a part of the original

query is executed and the other part remains deferred to the

moment of an actual  demand.  It  is  possible that  data in a

collection may change between creation of a query and its

evaluation. The original query form (and the programmer’s

intention)  is  insusceptible  to  it  –  the  query  is  always

completely executed on a current data state. After immediate

execution of the nested query one cannot be sure about it –

the  ikuraQuery can  be  evaluated  when  data  needed  for

calculating the nestedQuery subquery got already modified.

As a result of the transformation, there occurred a change of

the  query  semantics  that  is  very  difficult  to  detect  by  a

programmer or tests. Ultimately, a programmer is forced to

resign from deferred execution of the whole query, which is

shown in Listing 4. 
var nestedQuery  = products. 

  Where(p2 => p2.productName == “Ikura”).

  Select(p2=>p2.unitPrice).ToList(); 

var ikuraQuery = products.   

  Where(p => nestedQuery.Contains(p.unitPrice)).   

  Select(p => p.productName).ToList(); 

Listing 4. Example 1 – fully immediate execution.

Due  to  explicit  materialisation,  reusing  the  optimised

query against  a  different  data  state  becomes  troublesome.

For  an  inexperienced  programmer,  a  way  of  getting  an

appropriate  query  form  can  be  too  complicated.  Without

deeper  knowledge  on  the  LINQ  internal  semantics  in  a

context of object data, obtaining an optimal structure of code

is  a  tricky,  time-consuming  and  error-prone  task.  The

example shows a lack of real independence of LINQ from a

type  of  a  data  source.  Despite  the  fact  that  LINQ  allows

unified processing on various types and sources of data, an

actual execution plan relies on them. It seems that the basis

for  elaborating  this  layer  of  the  language  was  mostly the

integration  of  the  object-relational  mapping  with  a  type

system of a programming language (what also shows at the

level  of  the  LINQ  query  expression  syntax  and

implementing providers [30]). 

B. Factoring Out Constructs Executed Immediately

Although  LINQ  queries  execution  is  deferred,  an

execution  strategy  of  some expressions  comprising  LINQ

queries  can be immediate.  Such expressions  are evaluated

locally in  the  place  of  the definition.  Some operator,  like

aggregate  functions  returning  a  single  value  instead  of  a

queryable data source, force immediate execution of a query.

The  query  in  Listing  5  contains  such  an  expression

determining  the  greatest  unit  price  in  the  products’

collection.  However,  it  will  not  be  evaluated  until  the

execution of the maxQuery since it is contained in a lambda

expression  defining  a  selection  predicate  for  the  Where

method. 
var maxQuery = products.

  Where(p => products. 

    Max(p2=>p2.unitPrice) == p.unitPrice).

  Select(p => p.productName); 

Listing 5. Example 2 – extension methods syntax 

(quadratic computational complexity).

Similarly  to  the  subquery  determining  the  price  of  the

Ikura  product,  it  should  be  evaluated  only  once  during

execution  of  the  maxQuery and  therefore  needs  to  be

factored  out.  Let  us  call  such constructs  free  expressions.

Using  the  same  procedure  as  presented  in  the  previous

section,  we  break  the  query  into  two  instructions  and

perform immediate execution (see Listing 6).

The  ToList operation does not need to be applied to the

expression defining maxPrice (actually, it cannot be applied

because  it  returns  a  value),  due  to  its  inherent  immediate

execution.
var maxPrice = products.Max(p2=>p2.unitPrice); 

var maxQuery = products.   

  Where(p => maxPrice == p.unitPrice).   

  Select(p => p.productName).ToList(); 

Listing 6. Example 2 – immediate execution 

(linear computational complexity).

C. Consequences of Changing the Evaluation Order

There  exist  some  subtle  consequences  concerning

evaluation  after  the  manual  optimisation.  In  the  original

forms of example queries (Listing 2 and Listing 5), nested

expressions  would  be  evaluated  only  if  the  products’

collection is not empty. In  the optimised forms (Listing 4

and Listing 6) it will be unnecessarily evaluated also when

the  collection  is  empty.  This  is  particularly  important  for

performance when a nested query operates on a collection

different than the external query does. The current example

concerns  just  one  collection,  but  it  is  easy  to  imagine  a

situation when collections are distinct  (e.g.,  products from

other shops kept in separate collections). In extreme cases, if

calculation of a factored out expression is time-consuming,

this  can  worsen  overall  query  performance.  Aside  from
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performance issues, the transformation presented in previous

sections can have dangerous impact on query semantics. In

the  second  example  (Listing  5)  in  the  case  of  an  empty

collection  of  products,  the  selection  predicate  is  not

evaluated  at  all  and  the  final  result  is  simply  an  empty

collection of product names. After optimisation (Listing 6),

the expression products.Max(p2 => p2.unitPrice) is always

evaluated at the beginning. The  Max method applied to an

empty  collection  throws  an  exception.  Consequently,  the

behaviour of the optimised query is unsafe and inconsistent

with the intent of a programmer.

To make optimisation immune to the described risk, the

original order of evaluation should be restored. This could

be achieved by applying the lazy loading pattern to the free

expression determining maxPrice. In Listing 7 we introduce

an improved transformation. 
var maxPriceThunk = 

  new Lazy<Double>(products.Max(p2=>p2.unitPrice)); 

var maxQuery = products.

  Where(p => maxPriceThunk.Value == p.unitPrice).

  Select(p => p.productName).ToList();

Listing 7. Example 2 – immediate execution 

(linear computational complexity).

A  Lazy class  instance  is a  simple thunk – an object  in

memory  representing  an  unevaluated  (suspended)

computation,  used  in  the  call-by-need  evaluation  strategy.

The argument of the Lazy constructor specifies a function

that should be evaluated at most once, only if its value is

requested  for  the  first  time.  The  request  is  signalised  by

accessing  the  Value property  of  the  Lazy instance.

Consequently, the original  order  of the query and the free

expression  evaluation  are  restored  (except  the  free

expression  being  processed  at  most  once)  making  the

optimisation semantically safe. It is achieved at the expense

of overhead concerning access to the Value property.

In  the  next  sections  we  present  a  general  approach  to

optimisation that preserves semantics and characteristics of

an  original  query  while  reducing  its  computational

complexity. 

V. FACTORING OUT FREE EXPRESSIONS

The  solutions  presented  for  both  examples  share  a

common  shortcoming;  they  do  not  preserve  the  deferred

execution property. Our main aim is to propose  a general

query rewriting rule  overcoming the problem. In  order  to

keep the solution generic,  additional constraints have been

assumed: (1) transformation should not break a query into

separate  instructions  (in  contrary  to  what  is  shown,  for

example in Listing 7), (2) we express the rules in general

terms  rather  than  LINQ  specific  ones  (e.g.,  operators

common in functional programming). Obviously, we assume

also that the intent of a programmer is simply to query and

not to introduce side effects deliberately. 

Generalisation of the factoring out procedure should take

into account queries more complex than presented above. A

nesting  level  of  a  lambda  expression  in  the  examples

presented  in  Listing  2  and  Listing  5  is  shallow,  but

conceptually  can  be arbitrary with no  need  to  modify the

factoring  out  procedure.  Free  expressions  can  be  bound

either  globally, i.e.  to an environment independent  from a

query, or to a lambda expression at any nesting level lower

than  the  lambda  expression  containing  a  free  expression.

The examples presented in Listing 2 and Listing 5 concern

the former case. A generalising solution to the latter case can

be achieved  by treating any subquery as a  separate query

and the rest as a global environment. 

The  basic  idea  behind  the  transformation  is,  first,  to

identify free  expressions  that  could  be evaluated  before  a

loop induced by an operator containing them, and next, to

apply an appropriate rewriting rule. This is generalisation of

the  standard  procedure  called  loop-invariant  code  motion

known  from the  compilation  theory  [34].  An  example  of

incorporating this idea to programming language-integrated

queries can be found in the Stack-Based Architecture theory

[8]. To optimise evaluation in functional languages, a similar

procedure  of  fully  lazy  lambda  lifting  (called  also  full

laziness)  has  been  also  proposed  [16].  In  both  cases

rewriting rules are straightforward and make use only of the

basic set of language operators. Our attempt to generalise, in

a  similar  manner,  factoring  out  free  expressions  within

LINQ  queries  using only methods  supplied  by LINQ  has

been unsuccessful. In particular, LINQ operators in presence

of a queryable data source (e.g., a collection) cause iteration

over  elements,  whereas  factoring  out  requires  treating

empty, single  or  multiple  elements  as  an  individual  result

cached for reuse in further calculation. 

A. Formalising Optimisation

The procedure  of  factoring  out  free  expressions  can  be

applied to the following query pattern:
queryUnoptimized ::= queryExpr(λ(freeExpr))

where queryExpr denotes a query expression that includes a

nested  lambda abstraction  λ(freeExpr)  containing  freeExpr

that is free from any lambda abstraction within the query.

Additionally, we assume that  freeExpr should be evaluated

several  times  during  the  execution  in  order  to  make

factoring  out  profitable.  This pattern is  not  restricted  to a

whole query. It can match any subquery. 

The  solution  requires  introducing  transformation  of

factoring out a free expression before a loop using it and

applying  the  lazy  loading  evaluation  strategy.  Several

aspects  need  to  be  addressed  to  make  such  optimisation

effective  and  general.  (1)  In  imperative  programming

languages  deferring  execution  is  often  achieved  through

enclosing code in a function or by introducing an iterator. In

both cases, repeated execution (e.g., inside a loop implied by

map or filter collection pipeline operators) causes repeated

evaluation. If this applies to a factored out expression, then

it is usually necessary to force materialisation of its result

before entering a loop using it. (2) Moreover, materialisation

solves the issue with factoring out consumable data sources

since  they  cannot  be  evaluated  more  than  once.  Before

factoring  out,  the  problem  does  not  exist  since  such

constructs  reside  inside  lambda  abstractions  (that  are

parameters  of  collection  pipeline  operators)  and  therefore

are  evaluated  only  once  during  single  lambda  call

evaluation.  (3)  As  stated  earlier,  it  is  possible  that  a  free
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expression  is  skipped  during  evaluation  of  the  original

query. In  a general  case it is safe to preserve an order  of

evaluation by suspending materialisation of a factored out

expression  and  prevent  its  immediate  execution  before

entering  a  loop  using  it.  (4)  An instance  of  a  mechanism

used  for  suspending  materialisation  of  a  factored  out

expression should not be shared between query executions.

To solve this problem, it can be additionally enclosed in a

lambda abstraction. Otherwise, following executions would

share a cached result determined during the first execution.

(5)  In  order  to  prevent  collection  pipeline  operators  from

iterating over a collection,  it  has  to be nested  into a new

collection as a single element. The same procedure can be

applied  to  a  single  result  to  enable  usage  of  collection

pipeline operators.

Let  us  denote  the  following  abstract  operations:

Collection(arg) – creates and returns a collection consisting

of  one  element  specified  by  an  argument,  e.g.,  if  an

argument  is  a  collection  it  returns  a  nested  collection),

Immediate(expr) – evaluates and materialises a result of an

expression  passed  as  an  argument  (except  when  the  expr

execution strategy is already immediate),  Suspend(lambda)

– returns an instance of a mechanism for lazy loading of an

expression specified by a lambda abstraction passed as an

argument,  Value(lazy)  –  returns  a  lazily  initialised  value

stored by a lazy loading mechanism instance specified by an

argument. 

Taking advantage of above operations, we introduce the

following rewriting procedure:
queryOptimized ::= 

Collection(() => Suspend(() => Immediate(freeExpr))).

map(lambdaParam => lambdaParam()).

map(freeExprThunk => queryExpr(

    λ(Value(freeExprThunk)))).flatten() 

where  λ(Value(freeExprThunk))  is  a  nested  lambda

abstraction  λ(freeExpr)  with  an  occurrence  of  freeExpr

expression substituted by  Value(freeExprThunk). This form

ensures  that  execution  of  all  components  of  the  original

query is deferred assuming that collection pipeline operators

map and flatten have such an execution strategy.

The first part of the rewritten query
Collection(() => Suspend(() => Immediate(freeExpr))) 

creates a collection consisting of a single element that is a

lambda  function  creating  an  instance  of  a  mechanism for

suspended  materialisation  of  the  factored  out  free

expression. The following map operator ensures execution

of  the  lambda  function.  As  a  result,  the  following  map

operator will process 
queryExpr(λ(Value(freeExprThunk))) 

expression only once for  freeExprThunk assigned the lazily

loaded  cached  value  of  freeExpr.  Therefore,  the  result  of

evaluation of  queryExpr(λ(Value(freeExprThunk))) is equal

to the result  of  evaluation  of  queryExpr(λ(freeExpr)).  The

flatten operator eliminates an outer collection implied by the

Collection operator.  Consequently,  the  final  result  of  the

optimised query is taken from evaluation of the
queryExpr(λ(Value(freeExprThunk))) 

expression. 

B. Implementing Optimisation in C#

In C#, to simplify optimisation we introduce an auxiliary

method AsGroup to take care of the Collection operation and

suspended  evaluation  of  a  lambda  expression  returning  a

materialised value of the free expression.  Listing 8 shows

the implementation of the auxiliary operator.
static IEnumerable<TSource> AsGroup<TSource>(

                     Func<TSource> sourceFunc) {   

  yield return new Lazy<TSource>(sourceFunc);

} 

Listing 8. Auxiliary optimisation method.

The  Suspend operation  is  achieved  by  a  Lazy  class

constructor  new Lazy<TSource>(sourceFunc).  The  yield

return  statement  is  a  syntax  sugar  enabling  creating  a

collection  available  through  an  iterator  deferring  any

computations until iteration starts. In this way, a programmer

avoids using a concrete type of a collection and enables a

compiler  to  choose  the  best  implementation  on  its  own.

AsGroup exposes an iterator that returns only one element,

i.e.  an  instance  of  a  mechanism  for  suspended

materialisation  of  the  factored  out  free  expression.  It  is

created  directly  before  yielding  replacing  the  projection

map(lambdaParam =>  lambdaParam()). Consequently, the

rewritten query in case of LINQ takes the following form: 
LINQ-deferredQueryOptimized ::= 

AsGroup(() => Immediate(freeExpr)).

SelectMany(freeExprThunk => 

    queryExpr(λ(freeExprThunk.Value))) 

where the  SelectMany LINQ operator  substitutes map and

flatten  and  freeExprThunk.Value realises  the

Value(freeExprThunk) operation. 

The above transformation can be adapted to a situation

when  queryExpr(λ(freeExprThunk.Value)) is  a  construct

executed immediately (e.g., when it returns a single value).

In  that  case  SelectMany needs  to  be  replaced  with  two

operations: Select realising projection and  First responsible

for flattening and immediate execution:
LINQ-immediateExpressionOptimized ::= 

AsGroup(() => Immediate(freeExpr)).

Select(freeExprThunk => 

        queryExpr(λ(freeExprThunk.Value))).First() 

The  Immediate operation  is  required  only  in  the  case

when  freeExpr is  a  LINQ  query  deferred  in  execution.

Explicit materialisation can be achieved using LINQ specific

methods,  e.g.,  freeExpr.ToList().  The  transformation

constitutes  the  general  rewriting  rule  for  optimisation  of

LINQ  queries  through  factoring  out  free  expressions.

Applying it to the examples from Listing 2 and Listing 5 is

shown in Listing 9 and Listing 10, respectively. 
var ikuraQuery =   

  AsGroup(() => products.

    Where(p2 => p2.productName == “Ikura”).

    Select(p2=>p2.unitPrice).ToList()).

  SelectMany(ikuraPriceThunk => products.

    Where(p => ikuraPriceThunk.Value.

    Contains(p.unitPrice)).Select(p => p.productName));

Listing 9. Example 1 – after factoring out suspended 

free expressions optimisation.
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var maxQuery = 

  AsGroup(() => products.Max(p2=>p2.unitPrice)).

    SelectMany(maxPriceThunk =>

      products.Where(p =>

            maxPriceThunk.Value == p.unitPrice).

      Select(p => p.productName)); 

Listing 10. Example 2 – after factoring out suspended 

free expressions optimisation.

The queries execution strategy after optimisation remains

deferred and in the case of the second example (Listing 10),

the  problem of  the  exception  while  addressing  an  empty

products’ collection does not occur.

VI. PERFORMANCE TESTS

We have  evaluated  the  impact  of  factoring  out  of  free

expressions optimisation in C# by applying it manually to a

number of problems:  samePriceAs – given a collection of

products, find products with the same price as the product

specified  by  a  name,  maxPrice –  given  a  collection  of

products,  find  products  with  the  maximal  price  in  the

collection, promoProducts – given a collection of products,

find names of products in the imaginary sale promotion,  i.e.

exactly k times more expensive than any other product, and

pythagoreanTriples – from natural numbers between 1 and

n  find  a  number  of  triples  satisfying  the  Pythagorean

theorem. 

In  experimental  tests,  the collection  of  products  ranged

from  1  to  1,000,000  elements.  The  size  of  each  product

averaged  to 175 bytes.  Tests  for  samePriceAs,  maxPrice,

promoProducts and  pythagoreanTriples problems  have

been conducted using queries in Listing 2, Listing 5, Listing

11,  and  Listing  12  accordingly.  The  problems  have  been

solved relatively simply and each one has at least one free

expression  suitable  for  the  factoring-out  optimisation.

Solutions to  samePriceAs and  maxPrice have  free  nested

queries,  whereas  promoProducts and  pythagoreanTriples

introduce  simple  mathematical  calculations  that  can  be

factored out. The tests include comparison with PLINQ and

LinqOptimizer  optimisation  framework.  We also  combine

them manually with our optimisation to explore limits and

further opportunities.
var promoProducts = 

  products.Where(p => products.

     Any(p2 => p2.unitPrice == 

             Math.Round(p.unitPrice / 1.2, 2))).

  Select(p => p.productName); 

Listing 11. A query concerning the promoProducts 

problem before optimisation.

var pythagoreanTriples =   

  Enumerable.Range(1, max + 1).SelectMany(a =>      

    Enumerable.Range(a, max + 1 - a).SelectMany(b => 

      Enumerable.Range(b, max + 1 – b).Where(

        c => a * a + b * b == c * c))).Count() 

Listing 12. A query concerning the pythagoreanTriples 

problem before optimisation.

We conducted our experiments on a workstation with a 4-

core Intel Core i7 4790 3.6 GHz processor, 32 GB of DDR3

1600MHz  RAM,  hosting  Windows  Server  2012  R2.

Benchmarks  have been  compiled for  a  x64 platform with

enabled code optimisations using target .NET Framework v.

4.5.  Tests  results  for  following problems are  presented  in

Fig. 1, Fig. 2, Fig. 3 and Fig. 4. 

The  LinqOptimizer  is  used  in  two  variants:  sequential

(denoted by SEQ) and parallel (denoted by PAR). The latter

competes  with  PLINQ.  Each  query  before  and  after

factoring-out  optimisation  has  been  subjected  to  three

Fig 2. Query evaluation times for maxPrice problem.

Fig 1. Query evaluation times for samePriceAs problem.

Fig 3. Query evaluation times for pythagoreanTriples problem.

Fig 4. Query evaluation times for promoProducts problem.
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further  optimisation  variants,  i.e.  PLINQ,  LinqOptimizer

sequential  or  parallel  variant.  The  tests  focus  on  query

execution times and omit optimisation and compilation of a

query.  Most  of  the  plots  use  logarithmic  scales  to  more

clearly  reveal  differences  in  performance  for  various

collection  sizes.  To  improve  readability,  the  plots  omit

optimisation variants that are generally worse. In particular,

the sequential variant of LinqOptimizer is shown only if it

improved query performance in any collection size range,

and  the  better  alternative  between  PLINQ  and  parallel

variant of LinqOptimizer is selected. 

Results of the tests are as follows: 

• Tests’  results  are  consistent  with  an  expected

computational  complexity.  In  samePriceAs and

maxPrice problems  it  has  been  reduced  from

quadratic  to  linear,  achieving  a gain  in  orders  of

magnitude for large collections, e.g., in the case of

the second example (Listing 5 and Listing 10) the

query after factoring out is more than 30,000 times

faster for 100,000 products (boost from ~115 s to

~3.8 ms).

• Except  for  the  pythagoreanTriples problem,  the

profitability  threshold  of  individual  factoring-out

optimisation  is  very  low  when  comparing  to

PLINQ and LinqOptimizer. Even for a collection of

2 objects,  optimised queries  can work faster  than

original ones (e.g. samePriceAs and maxPrice). 

• The performance penalty in the case of a collection

consisting  of  a  single  element  is  at  most  0.6  μs

which  corresponds  to  a  ~60%  deterioration  (the

pythagoreanTriples problem). 

• When  processing  large  collections,  the  factoring-

out  transformation  can  give  several  times  better

performance  by  taking  advantage  of  PLINQ

(especially  in  the  case  of  the  promoProducts

problem). For smaller collections, PLINQ imposes

overhead significantly greater than factoring out. 

• The pythagoreanTriples problem optimisation tests

show that it may be difficult to obtain a significant

gain when factoring out a simple expression (i.e. a

* a + b * b). A ~3% gain is achieved for n equal to

10,000. • The LinqOptimizer framework seems to

be  designed  for  optimising  queries  involving

numbers rather than complex objects. Only in the

pythagoreanTriples problem  optimisation,  it

outperforms both PLINQ and factoring out. 

• In  general,  combining  factoring  out  of  free

expressions  with  LinqOptimizer  is  not  likely  to

produce the best solution. However, it  seems that

tuning  of  the  LinqOptimizer  algorithm should  be

possible.  In  the  pythagoreanTriples problem,

PLINQ is able to produce more efficient query after

factoring  out,  whereas  LinqOptimizer  favours  the

original  query.  Unfortunately,  the  differences  are

too small to be seen on the plot. 

C#  libraries  offer  a  Lazy class  realising  the  Suspend

operation,  but  considering  performance,  we  have

implemented  our  own  lightweight  version.  We  have

experimented  with  different  variants  of  performing

Collection,  Suspend and  Immediate operations  but  the

presented solutions generally resulted in performance better

than others. 

VII. AUTOMATIC OPTIMISATION

A. Free Expression Detection

The  transformation  is  justified  by  the  need  to  increase

effectiveness, which is achieved at the expense of reflecting

the business  goal.  As a result,  benefits  from a declarative

form and an increased level of abstraction are lost.

LINQ  expression  trees  enable  run-time  analysing  and

dynamic building of LINQ queries [36]. This feature allows

developing an optimisation method relying on rewriting of a

LINQ abstract syntax tree. Automated detection of specified

query patterns and transformation to an optimised form are

required  to  make  LINQ  queries  truly  declarative.  The

previous  part  of  this  paper  deals  with  the  latter,  i.e.  the

definition of efficacious rewriting rules for factoring out of a

free  expression.  This  section  describes  an  algorithm  for

detection of free expressions within a query. The procedure

does not address any details of implementation for the LINQ

platform.  It  is  general  in  terms  of  functional-style

programming. 

Let  us  establish  a  set  of  definitions  concerning

expressions  and  lambda  abstractions  (inspired  by  the

definitions introduced by Hughes [16]): 

• Def.  1  (bound  variables  of  lambda).  An

occurrence of a variable within lambda λA is bound

to λA if and only if it is a parameter of λAA,

• Def.  2  (bound  expressions  of  lambda).  An

expression within lambda λA is bound to λA if and

only if it contains a variable bound to λAA.

• Def.  3  (native  lambda  of  expression).  The

innermost  lambda  in  which  an  expression  e is

bound  is  its  native  lambda.  Let  us  denote  this

lambda nλ(e),

• Def.  4  (free  expressions  in  lambda).  An

expression e within lambda λA is free in lambda λA

if λA is nested in native lambda of expression e. 

• Def. 5 (maximal free expressions). A maximal free

expression (MFE) is a free expression of some λA

that is not a proper subexpression of another free

expression of λA. 

Additionally,  to  simplify  definitions  and  the  algorithm

description, we assume that names of variables are unique.

Moreover,  we implicitly treat  a  whole  query as  a  lambda

abstraction  with  all  free  variables  (constituting  a  global

environment) as its parameters. In the case of examples from

Listing 2 and Listing 5 native lambda of each MFE is the

whole query. 

From the definitions above, it follows that any MFE e free

in  a  lambda  λA can  be  determined  before  λA evaluation.

Precisely, it could be determined anytime during evaluation

of nλ(e). The above statement is correct since: 

1. e is a free expression (see definition 5).

2. λA is inside nλ(e) (see definition 4).
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3. e is not bound to λA (see definition 3).

4. e does  not  contain  variables  bound  to  λA (see

definition 2).

5. λA call does not introduce any variable (parameter)

required  by  e (see  definition  1)  that  makes  e

independent from λA.

Consequently, it is possible to factor out the expression e

from λA and evaluate it at the level of the nλ(e) lambda. 

The  algorithm  uses  the  standard  depth-first  search

approach and detects all MFEs during a single pass through

a  query  expression  tree.  Expression  visitation  focuses  on

finding  its  bindings  that  we  define  as  a  set  of  lambda

abstractions  declaring  variables  (usually  as  lambda

parameters)  used  in  the  expression.  This  information  is

further  used to determine bindings of its parent.  Usage of

lambda  abstraction  parameters  determines  whether  an

expression  is  free  or  bound.  Therefore,  it  is  necessary  to

handle  information  about  names  of  the  parameters  and

lambda abstractions to which they are bound. This is a task

of  an  auxiliary  map  called  binders.  To correctly  manage

parameters’  binding,  the  procedure  specifically  handles

lambda abstractions and terminal name binding expressions.

While  visiting  lambda  abstraction,  the  binders’  map  is

filled with its parameters. They are visible only within the

lambda  abstraction.  This  sets  the  right  context  for  the

recursive  visitation of  the lambda body in order  to  detect

free expressions  bound specifically to the current  lambda.

Finally,  the  bindings  set  is  returned  to  the  lambda parent

except for the current lambda that is removed (information

on binding to the current lambda is not relevant outside).

The  binders’  map  is  used  when  visiting  name-binding

terminal expressions. These expressions consist only of an

identifier name. If  a name is found in the binders’ map, a

corresponding  lambda  is  returned  (as  a  single-element

bindings set). If a name is not bound to any lambda, then it

is assumed to be a globally free variable. 

The described behaviour does not concern a name on the

right  hand  side  of  a  member  access  operator  (e.g.,  field

names).  Such  a  name  is  bound  locally  to  its  left  side,

therefore field member access  bindings are inherited from

their left side expression. In general, bindings for remaining

types of expressions are simply inherited from their children

(a sum of the sets).

In  the  implementation  nesting  level  annotations  for

lambda abstractions and variables are introduced to simplify

the binding analysis. Expression bindings provide sufficient

information to determine all MFEs and their native lambdas.

To  exemplify  the  algorithm  let  us  consider  the

promoProduct problem shown in Listing 11. The query in its

optimised form is presented in Listing 13. The expression

determining  a  price  Math.Round(p.unitPrice /  1.2,  2))  is

unnecessarily evaluated multiple times during execution of

the  inner  loop  implied  by  the  Any  operator.  What

distinguishes  this  and  previous  examples  is  that  the

transformation applies not to the whole query but only to the

Where predicate. Additionally, the predicate is not a LINQ

query  but  an  expression  returning  a  Boolean  value.

Therefore,  Select and  First methods  were  used  instead  of

SelectMany. 
var promoProductsOptimized = 

  products.Where(p =>      

    AsGroup(() => Math.Round(p.unitPrice / 1.2, 2)). 

    Select(priceThunk => 

      products.Any(p2 => p2.unitPrice == 

                   priceThunk.Value)).First()).

  Select(p => p.productName);

Listing 13. Example 3 – rewriting inside lambda 

abstraction.

Partial results of the algorithm work for the unoptimised

query are presented in Fig. 5. Each abstract syntax tree node

of the query is annotated with three values:  (1)  a number

indicating  an  order  of  visitation,  (2)  a  lambda expression

directly including an expression, (3) bindings set including

the  bolded  element  denoting  a  native  lambda  of  an

expression. Lambda expressions have been assigned unique

numbers  to facilitate their identification.  Bindings that are

removed at the end of lambda node visitation are indicated

by a strikethrough symbol. 

Free expressions have their native lambda (bolded lambda

in bindings set) different from a nearest lambda (denoted by

the second annotation), i.e. expressions with visitation order

ranks 6, 11-17. After omitting terminal expressions such as

literals  (constant  type  nodes  ranks  16  and  17)  and  name

bindings (bind type nodes ranks 6 and 15),  the only MFE

left  to  factor  out is  Math.Round(p.unitPrice /  1.2,  2)).  Its

native lambda is λ1. Hence, factoring out should be applied

to its indirect parent: the  Any node with a visitation order

rank 5 (presented in Listing 11). It is an expression inducing

iteration  over  the  products  collection  at  the  highest  level

within λ1.

Fig 5. Example abstract syntax tree algorithm nodes annotations.
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B. Applying Factoring Out

The  factoring  out  rewriting  rule  can  be  applied  during

visitation  of  lambda  expressions.  However,  not  all  MFEs

should  be  factored  out.  The  conditions  under  which  the

optimisation  promises  well  are  described  in  analogous

solutions [15][8], namely:  (1)  a free expression cannot  be

too simple (e.g., names and literals), (2) a free expressions’

result should be used more than once. They can be verified

during preparation to the transformation.

First,  the complexity of  an MFE can  be examined.  An

appropriate threshold for applying transformation could be

introduced,  e.g.,  based  on  an  arbitrarily  set  weight  of

language constructs comprising an MFE. Performance tests

on  the  promoProducts problem involving  factoring  out  a

relatively  simple  expression  have  proven  improvement  in

the case of collections consisting of at least 30 objects. For

over 250 products optimised query was about twice as fast. 

The second condition concerns a number of times that a

MFE result is used in evaluation. An additional analysis may

be  necessary  for  confirming  that  nλ(MFE)  contains  a

method that causes iteration over some collection that may

require  repeated  evaluation  of  the  MFE.  For  example,  in

LINQ this concerns mainly operators parameterised with a

lambda  abstraction  (such  as  Select,  Where,  Max,  etc).

Operators  operating  on  sets  (e.g.,  Contains,  Union)  or

custom ones are not any indication for the optimisation. The

more detailed cardinality analysis  is  doubtful  in case of  a

programming  language  environment  and  a  lack  of  a  cost

model. 

We have implemented a prototype LINQ provider library

realising  the  mentioned  optimisation  (available  at

https://github.com/radamus/OptimizableLINQ). The analysis

and  the  transformation  are  performed  using  the  LINQ

expression trees’ representation available at runtime. Access

to expression trees is provided though the  IQueryable<T>

interface that does not allow direct query execution. Instead,

it exposes an abstract syntax tree of a query (in a form of a

type-checked expression tree) to a data store provider. The

provider makes use of this representation to build a query in

a form (language)  dedicated for  a  given data model (e.g.,

LINQ to SQL) [36]. 

Implementing  optimisation  in  the  form  of  a  LINQ

provider library gives a developer possibility to resign from

aggressive, global query optimisation, e.g. when the order of

evaluation  is  important  considering  some  planned  side

effects. To enable automatic optimisation, the AsOptimizable

extension method should be applied to a source collection. It

is shown in Listing 14 for the Ikura product example.
var ikuraQuery = products.AsOptimizable().

  Where(p => products.Where(p2 => 

                     p2.productName == “Ikura”).       

    Select(p2=>p2.unitPrice).Contains(p.unitPrice)).   

  Select(p => p.productName); 

Listing 14. Example 1 – automatically optimised.

As a result, a rewritten query is compiled and becomes

available for multiple use. One-time overhead occurring at

the site of the definition is about a millisecond. A developer

should consider runtime optimisation with caution when a

query is used only once over a small collection. In contrast

to LINQ,  Java 8 streams operators are consumable,  which

prevents  multiple  usages  of  the  same  query.  We are  not

aware of any mechanism enabling rewriting optimisations of

Java 8 stream queries at runtime; nevertheless, in the case of

consumable  constructs  the  cost  of  optimisation  done  at

runtime would burden each query execution.

VIII. SUMMARY

The proposed solution proves that it is possible to provide

programming languages  offering functional-style access  to

querying  data  collections  with  resource-independent  static

optimisation mechanisms. We proposed a formal method –

factoring  out  of  free  expressions  –  based  on higher-order

functions  rewriting.  Its  essence  is  to  avoid  unnecessary

recurring  calculations.  Factoring  out  of  a  free  expression

that  is  complex  to  calculate  generally  produces  a  robust

performance gain. Such optimisation can be fully automated

and  does  not  require  any  interference  or  implementation-

specific  knowledge  from  a  programmer.  Using  simple

examples,  we  emphasise  the  significance  of  the  order  of

evaluation  implied  by  semantics  of  functional-style

operators.  Finally,  we  elaborate  general  and  safe

optimisation,  considering characteristics of functional-style

querying in imperative programming languages. 

In  contrast  to  the  Nectar  system [12],  which  also  uses

term rewriting to increase sharing of computations, our work

addresses  functional-style  queries  in  general,  i.e.  without

context of application which would limit our optimisation.

We take advantage of the similar approach to optimisation as

Steno [21], LinqOptimizer [22], or SkyLinq [23]. However,

we  make  an  attempt  to  explore  more  aggressive,  global

optimisations comparable to optimisations of database query

languages. 

The presented approach was verified in Microsoft .NET

environment and its Language-Integrated Query technology.

However,  the  automated  solution  has  not  been

straightforward to elaborate due to necessity of considering

several variants implied by execution strategies of constructs

comprising LINQ queries and complexity of implementing

LINQ providers. 

Our  optimisation  for  LINQ  can  be  combined

automatically  with  other  ones  as  long  as  they  preserve

queries in an expression trees form. In other cases, fusion of

optimisations has to be done manually. For example, PLINQ

enables  to  take  advantage  of  multiple  cores  and  achieve

several  times  better  efficiency  in  processing  of  large

collections.  Moreover,  the  optimiser  in  some  cases  could

automatically (or by a programmer’s decision) resign from

suspending  evaluation  of  a  factored  out  expression  and

remove overhead that it  imposes. The tests showed that it

results in further improvement of performance, up to ~18%.

Finally,  it  seems  that  transformations  would  be  the  most

profitable if incorporated in a compiler. Considering source-

to-source  transformations  already  performed  by  the  C#

compiler  on  LINQ  query  expressions  [33]  this  solution

imposes itself. 

We believe that our work is as a real step towards genuine

declarative language-integrated queries. We conduct further
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works  on  optimisation  of  functional-style  constructs

processing collections. One branch of our research concerns

the  elaboration  of  methods  that  are  aware  of  operators

semantics,  e.g.,  addressing  complex  queries  taking

advantage of the selection operation, which exposes a huge

potential for optimisation (e.g., pushing selection [37]). We

also  consider  adapting  other  methods,  such  as  revealing

weak  dependencies  within  queries  that  enable  performing

further factoring out [38]. 
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