
Abstract—Native functional-style querying extensions for
programming languages (e.g., LINQ or Java 8 streams) are
widely considered as declarative. However, their very limited
degree of optimisation when dealing with local collection
processing contradicts this statement. We show that developers
constructing complex LINQ queries or combining queries expose
themselves to the risk of severe performance deterioration. For
an inexperienced programmer, a way of getting an appropriate
query form can be too complicated. Also, a manual query
transformation is justified by the need of improving performance,
but achieved at the expense of reflecting an actual business goal.
As a result, benefits from a declarative form and an increased
level of abstraction are lost.

In this paper, we claim that moving of selected methods for
automated optimisation elaborated for declarative query
languages to the level of imperative programming languages is
possible and desired. We propose an optimisation method for
collection-processing constructs based on higher-order functions
through factoring out of free expressions in order to avoid
unnecessary multiple calculations. We have implemented and
verified this idea as a simple proof-of-concept LINQ optimiser
library.

I. INTRODUCTION

INCE the release of LINQ (Language-Integrated Query)

for the Microsoft .NET platform in 2007, there has been

a significant progress in the topic of extending programming

languages with native querying capabilities [1].

Programming languages are mostly imperative; their

semantics relies on the program stack concept. They operate

on volatile data and the meaning of collections is rather

secondary. On the other hand, query languages are usually

declarative and their semantics often bases on some forms of

algebras or logics; these languages operate mostly on

collections of persistent data. Declarativity of a query

language reveals itself mostly when considering operators

for collections. In the case of an imperative language,

operating on a collection takes a form of an explicit loop

iterating over collection elements in a specified order, while

in query languages one declares a desired result (e.g., a sub-

collection containing elements of a base collection matching

a given selection predicate) and an algorithm of filtration

itself is not an element of an expression representing the

query. Based on characteristics of data structures, a database

state and existence of additional auxiliary structures (e.g.,

indices), an execution environment can choose the most

S

promising algorithm (a plan) for evaluation of the query.

Declarativity allows one to postpone selection of an

algorithm even to the moment of an actual query execution.

In this paper we discuss to what extent solutions for process-

ing of collections within programming languages are actu-

ally declarative. To do so, we made an extensive research on

query optimisation. In databases it is a crucial process that

allows a programmer to be relieved from thinking about

details of a processing control flow, auxiliary data structures

and algorithms.

LINQ seems to be the most robust solution introducing a

promise of declarative collection processing within an

imperative programming environment. It is commonly used

for direct processing of collections and as a mapper to

resources devoid of a robust declarative query API or query

optimisation. When encountering performance issues,

developers are forced to manually optimise LINQ

expressions or partly resign from declarative constructs in

favour of an imperative code.
var ikuraQuery =

 from p in products

 where (

 from p2 in products

 where p2.productName == "Ikura"

 select p2.unitPrice).Contains(p.unitPrice)

 select p.productName;

Listing 1. Example 1 – query expression syntax.

Consider a LINQ query expression in Listing 1 (the

database diagram including the Products table is available at

http://northwinddatabase.codeplex.com/) whose purpose is

to find names of products with a unit price equal to a price

of a product (or products) named Ikura. If the query

addresses a native collection of objects, its execution is

severely inefficient as the nested subquery, searching for

prices of products named Ikura, is unnecessarily evaluated

for each product addressed by the outer query. Although this

task could be resolved in a time linearly proportional to the

collection's cardinality, the LINQ engine induces an outer

loop and a nested loop, both iterating over the products’

collection. Using this example, in further sections we show

that manual optimisation of complex LINQ queries is not an

easy task.

LINQ enables to express the same goal in many different

ways. However, evaluation times of two semantically

equivalent queries may differ by several orders of

magnitude. In particular, in the context of the LINQ query

A step towards genuine declarative language-integrated queries

Radosław Adamus
Institute of Applied Computer
Science, Lodz University of

Technology
 90-924 Lodz, ul. Stefanowskiego

18/22, Poland
Email: r.adamus@iis.p.lodz.pl

Tomasz Marek Kowalski
Institute of Applied Computer
Science, Lodz University of

Technology
 90-924 Lodz, ul. Stefanowskiego

18/22, Poland
Email: t.kowalski@iis.p.lodz.pl

Jacek Wiślicki
Institute of Applied Computer
Science, Lodz University of

Technology
 90-924 Lodz, ul. Stefanowskiego

18/22, Poland
Email: j.wislicki@iis.p.lodz.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 935–946

DOI: 10.15439/2015F156

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 935

expressions’ declarative syntax, it violates the declarative

programming principle. Without knowledge on how a query

engine works in a context of given data, the optimisation

process is too complex and time-consuming. This is

particularly true if a programmer wants to preserve

semantics and properties of his query construct.

To the best of our knowledge, the problem of automated

global optimisation of LINQ queries for direct processing of

collections of objects has not been addressed in the literature

so far. By global optimisation we understand the ability to

define an efficient query execution plan based on the whole

query structure as opposed to the local optimisation that

usually only targets a single operator. Below we prove that

global optimisation can be done automatically making LINQ

genuinely declarative.

Nonetheless, the problem that this paper deals with is not

limited to LINQ. Surprisingly, it extends to dozens of

programming environments that support functional-style

operations on collections of elements, such as filter, map or

reduce. Pipelines and streams introduced in Java 8 are a

solution equivalent to LINQ to Objects [2]. The main

difference lies in the naming convention of new operators

corresponding to their functional prototypes (e.g., map and

filter instead of LINQ’s Select and Where). Furthermore, list

comprehension constructs are examples of a shorthand

syntax for specifying operations of projection and selection

(filtering). Consequently, discussed issues concern many

imperative languages exploiting this feature (e.g., Python).

Fowler summarises such a functional-style programming

pattern using a term collection pipeline [3]. Examples given

in LINQ can be expressed in many imperative and

functional programming languages. While we extend the

conclusions of our work to the universe of imperative

programming, they do not directly apply to functional

languages (e.g., Haskell) since their principles of program

evaluation are significantly different [4].

The rest of the paper is organised in the following way.

First, we present a brief description of the state of the art

followed by characteristics of language-integrated query

constructs. Next, we describe issues with nested independent

subqueries and free expressions revealing a huge

optimisation potential. Finally, we present our solution

followed by measured results and principles of our

optimisation approach, being the core of the paper. The

paper is concluded with a short summary.

II. RELATED WORK AND THE STATE-OF-THE-ART

Databases are the area of the computer science where

declarative programming and query optimisation have

developed extensively. Over 40 years of the research on

relational systems resulted in various optimisation

techniques [5][6] and numerous solutions are incorporated

in available commercial products. Our research presented in

the paper particularly addresses query optimisations

analogous to query unnesting, dating back to the early 80s

[7]. This topic is constantly appearing in the context of

arising database technologies. Different approaches to

handle nested queries evaluation have been proposed for

object-oriented databases [8][9] and XML document-based

stores [10]. However, NoSQL solutions marginalise the

topic of query languages and usually rely on a minimalistic

programming interface and domain-specific optimisations,

mostly implemented by high redundancies and storing data

in the form matching assumed queries. Most attention from

the scientific community concentrates on the topic of

distributed data-parallel computing using the Map/Reduce

paradigm (like Hadoop or Dryad for Azure). This paradigm

can be transparently used in declarative collection

processing. The Dryad programming environment based on

LINQ [11] takes advantage of mechanisms similar to

Map/Reduce in order to write scalable, parallel and

distributed programs. To increase sharing of computations in

a data centre, Dryad can benefit from the Nectar system

[12]. It is able to cache results of frequently used queries

and incrementally update them. The use of cached results is

achieved through automatic query rewriting. Robust query

and program optimisations have been developed for

solutions based on the functional paradigm. According to

Fegaras [13], an optimisation framework for a functional

lambda-DB object-oriented database relies on mathematical

bases, i.e. the monoid comprehensions calculus. It

generalises many unnesting techniques proposed in the

literature.

Glasgow Haskell Compiler (GHC) for the Haskell non-

strict purely functional language introduces many methods

based on code rewriting. They range from relatively simple

rules that can be used to improve efficiency of programs

through modifications on a high syntactic level to more

complex low-level core language transformations (e.g., let-

floating, beta reduction, case swapping, case elimination)

[14]. In particular, a procedure called full laziness (or fully

lazy lambda lifting) has been proposed to avoid reevaluation

of inner expressions for which result could be pre-calculated

only once [15][16].

Currently, due to introduction of lambda abstractions into

object-oriented languages, functional style of programming

became ubiquitous. Stream and collection processing

constructs derived from functional languages can be

naturally evaluated in parallel using multiple processor

cores. Therefore, the most popular solutions, like Java 8

streams, LINQ or ScalaBlitz, enable such optimisation

through various libraries or frameworks [17].

In the field of functional-style queries integrated into a

programming language, the topic of query optimisation

seems the most advanced in LINQ. A LINQ provider library

can implement direct processing of data (e.g., LINQ to

Objects, LINQ to XML) or delegate processing to a remote

external resource by sending a translated query (e.g., LINQ

to SQL, LINQ to Entities). To be precise, a mixture of both

approaches can be used, e.g. when the query language of a

remote resource cannot completely express the semantics of

a LINQ query. In the case when LINQ sends a translated

query, it also delegates the responsibility for query

optimisation. Consequently, if the external resource engine

provides optimisation, developers can fully rely on a

declarative style of programming. However, in the context

936 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

of LINQ to SQL, the problem of analysing and normalising

of LINQ queries in order to provide minimal and cohesive

mapping to SQL has drawn attention of the scientific

community. This is caused mostly by some drawbacks of the

original Microsoft’s solution that in some cases may fail or

produce a so-called “query avalanche” [18][19].

The issue of performance deficiencies while processing

collections of objects has not passed unnoticed by the LINQ

community. In order to cope with the shortage in

optimisation comparing to database engines, the i4o project

(abbr. index for objects) solution adapted the idea of

indexing to native objects’ collections [20]. It is

implemented as an alternative for the LINQ to Objects

provider library. Utilising the concept of secondary access

structures, i4o can produce several orders of magnitude of a

gain in performance for queries filtering data at the cost of a

data modification overhead.

Another examples of LINQ query optimisation tools are

Steno [21] and LinqOptimizer [22] provider libraries. Their

authors focused on a significant performance deficiency of

LINQ queries in contrast to the equivalent manually

optimised code that can be several times faster. Experiments

have shown that Steno allows one to obtain up to 14-fold

increase in processing of sequential data and 2-fold

comparing to a problem processed by the DryadLINQ

distributed engine [11]. The main idea behind Steno is to

eliminate the overhead introduced by virtual calls to iterators

that are the fundamental mechanism used by the LINQ

engine. This problem has been solved by automatic

generation of an imperative code omitting iterators. The

optimisation addresses mainly implementation of individual

operators. This also concerns the case of nested loops’

optimisation when Steno has to analyse a series of operators

only to preserve the order of iteration induced by the LINQ

to Objects library implementation. This is justified by the

loop fusion efficiency and consideration of side effects that

are allowed in LINQ. Steno is also capable of higher-level

optimisation giving an example of the GroupBy-Aggregate

optimisation. It involves a local term rewriting, addressing a

pair of neighbouring operators, i.e. GroupBy followed by

Aggregate. When encountering such a sequence of

operators, Steno replaces it by a dedicated

GroupByAggregate operator that saves memory by storing

per-key partial aggregates instead of the whole collection of

group values. This optimisation takes advantage of LINQ

declarativity by changing the course of evaluation. As a

result, introducing side effects would cause its incorrectness.

Being aware of a difficulty of automatic reasoning about

side effects within queries, Steno’s authors suggest

developer-guided optimisation. Optimisation similar to

GroupBy-Aggregate is considered in the SkyLINQ project

[23] that develops an alternative operator called Top. This

operator can be used to substitute a sequence of OrderBy

and Take method calls (i.e. an operation to get top k

elements). The significance of LINQ grew up with

introducing LINQ to Events, an extension enabling

declarative programming according to the reactive paradigm

[24]. The solution derives from Functional Reactive

Programming and is well suited for composing

asynchronous and event-based programs [25]. Recently, this

approach has attracted attention of commercial and scientific

communities and, as a programming paradigm, faces

efficiency issues indicating possible areas for optimisation

[26][27].

Other current research on LINQ strives to allow seamless

integration of heterogeneous data sources [28]. As a result,

users can transparently process and modify data shared

among contributing resources. Because of complex

multilayer architecture, such an environment is not

efficiency-oriented. LINQ is generally focused on local

optimisation performed at a data source layer. In processing

of heterogeneous and distributed data, it is unlikely that such

optimisation is provided by each contributing resource.

Therefore, it raises a need for global optimisation performed

at the level of a LINQ query itself.

Declarative functional-style constructs in general-purpose

object-oriented languages are not pure. As a result, decisions

concerning optimisation have to be made by programmers.

Transparent and aggressive compile-time optimisations can

be achieved by introducing a query language extension into

a programming language compiler [29].

One of numerous examples of extending compilers of

existing languages with declarative constructs is SBQL4J

[30]. It enables seamless integration of SBQL queries with

language instructions and executing them in a context of

Java collections. SBQL4J is based on the Stack-Based

Architecture (SBA) approach instead of the functional

approach and offers capabilities comparable to the LINQ

technology [31][32]. What distinguishes it from other

programming language-integrated queries is incorporation

of several automatic optimisation methods developed for

SBA. One of these methods, i.e. factoring out independent

subqueries [8], enables SBQL4J to cope with optimisation

of queries equivalent to examples discussed in this paper. It

belongs to the group of optimisation methods that are based

on query rewriting. Factoring out concerns a subquery (that

in SBA represent any subexpression) that is processed many

times in loops implied by so called non-algebraic operators

despite that in subsequent loop cycles its result is the same.

In SBQL4J rewriting is applied at a compile-time and a

resulting performance improvement can be very significant,

sometimes giving query response times shorter by several

orders of magnitude.

III. CHARACTERISTICS OF LANGUAGE-INTEGRATED QUERY

CONSTRUCTS

Declarative style programming (especially in the context

of databases) is often associated with the select-from-where

syntactic sugar known from SQL that was adapted into

LINQ. The query in Listing 1 is expressed using the LINQ

query expression syntax. That form lacks explicit

information on an order of performed operations and

virtually a compiler could translate it to any semantically

equivalent lower-level code that could be considered a query

execution plan. Consequently, programmers must be

particularly careful about potential side effects within

RADOSŁAW ADAMUS ET AL.: A STEP TOWARDS GENUINE DECLARATIVE LANGUAGE-INTEGRATED QUERIES 937

declarative constructs in order to avoid the risk of

unpredicted violations. Technically, query expressions are

syntactic sugar over the implementation layer using lambda

expressions, higher-order functions and, so called, extension

methods [33]. An executable query, after removing the

LINQ syntax sugar, will take the form presented in

Listing 2.
var ikuraQuery = products.

 Where(p => products.

 Where(p2 => p2.productName == “Ikura”).

 Select(p2=>p2.unitPrice).Contains(

 p.unitPrice)).

 Select(p => p.productName);

Listing 2. Example 1 – de-sugared.

The translated query uses the traditional, non-declarative

object-oriented programming syntax. When processing

collections or XML documents directly, the most crucial

LINQ library extension methods (e.g., Select and Where)

expose iterators that perform a specified operation on

elements of a given collection. Lambda expressions are used

to express details concerning such an operation, e.g. the

selection predicate for the Where operator. Despite of

similarity of Listing 2 to the original query expression, such

composition of method calls on the products collection

determines the order of evaluation.

Due to the specific implementation based on iterators and

lambda abstractions, the execution strategy of LINQ queries

is deferred. Execution is performed in presence of functions

or instructions forcing iteration over elements specified by a

query. However, a result of an iteration is not saved or

cached, so each execution reevaluates a query against a

given (current) data state.

The approach used in the LINQ to the objects’ library

implementation is generally ubiquitous (however, not

uniform) in numerous programming languages (e.g., Python,

Java 8, Elixir, Ruby) [3]. A good summary describing the

possible set of properties of functional-style constructs can

be found in the documentation of Java 8 streams [2].

The functional nature makes a language construct a good

candidate for optimisation due to intelligible querying. All

operations in a query processing chain produce a new

queryable result instead of modifying original data; hence

they do not introduce side effects. For example, during

filtration on a list, no element is actually removed. Even

though filter and map (common functional-style operators)

are often used to directly process elements of a local in-

memory collection, in reality elements can be obtained one

by one from any so called queryable data source, e.g., a data

structure, a generator function, an iterator, an I/O channel

and a chained pipeline of collection operations. Such

generality allows, usually time-consuming, querying of

remote data sources, additionally making optimisation

desirable.

The above properties are common in implementations of

language-integrated query mechanisms. However a

programmer must be sensitive to possible differences in

various programming languages. For example, some

languages implement consumable evaluation of queries. In

such a strategy, elements of a queryable data source instance

can be visited only once during its life. As a result, each

query instance can be evaluated only once. The last property

is present in Java 8 streams whereas LINQ operators are not

consumable. The laziness-seeking property has the most

profound impact on evaluation and semantics of language-

integrated queries. It is connected with the lazy evaluation

strategy assuming that a next element is returned for further

processing only if necessary. Usually, a place of a lazy

construct definition does not determine an actual moment of

query execution (i.e. deferred execution strategy). Actual

query execution occurs when its result is required, for

example elements referred by a query are iterated or

counted. Operations like selection, projection, and removal

of duplicates are often implemented lazily. Consequently, to

ensure coherence execution of eager constructs (e.g.,

grouping or ordering) is also deferred. Lazy evaluation

usually results in better performance. It is cache-friendly

since an element is processed by a chain of collection

pipeline operations before proceeding to the next element.

Moreover, in cases when the desired query result has been

reached before visiting all elements it is not necessary to

continue iterating (e.g., a query finding the first product with

name “Ikura”).

In the context of query optimisation, it is important to

preserve properties of optimised constructs. In a general

case, any change in this matter can affect semantics of

application code. Switching an expression evaluation

strategy from lazy to eager or forcing immediate execution

can have serious consequences. Only laziness-seeking

constructs can deal with possibly unbounded data sources.

Eager evaluation of selection and projection operators on an

infinite data source would require infinite computational

resources and time, while lazy evaluation can return partial

results.

In the next section, we show that preserving deferred

execution, which is implied by the lazy evaluation strategy,

is the factor impeding query optimisation.

IV. PERFORMANCE PITFALLS

A. Evaluation of Independent Subqueries

Analysing the expression from Listing 2, it becomes

obvious that the nested query selecting products named

Ikura will be executed multiple times, since it is a part of a

lambda abstraction (specifying a selection predicate) called

against each product (the external Where operator induces a

loop iterating over elements of products collection). This

form is not efficient and makes the computational

complexity quadratic (i.e. O(n2)). However, searching for

products named Ikura is independent of the parent query and

could be evaluated just once. In order to improve query

performance, a programmer must transform it. A natural way

for optimisation seems to be factoring out the problematic

subquery to a separate instruction and assigning it to a new

variable (see Listing 3). The changes could also be presented

on the LINQ query expression, but because the form with

extension methods is actually executed, it will be a basis for

this study.

938 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

var nestedQuery = products.

 Where(p2 => p2.productName == “Ikura”).

 Select(p2=>p2.unitPrice);

var ikuraQuery = products.

 Where(p => nestedQuery.Contains(p.unitPrice)).

 Select(p => p.productName);

Listing 3. Example 1 – loops in separate instructions.

A result of the transformation shown in Listing 3 may

seem effective; however, the expected goal will not be

achieved. The problem lays in the execution strategy of

LINQ queries. The nestedQuery variable holds an instance

of a non-executed query that will be evaluated – like in the

case of the non-transformed expression (Listing 2) – at

every traversal of the loop induced by the ikuraQuery

Where operator.

In Java 8 streams proper execution of corresponding

queries generally would become impossible due to the

consumable property of streams. After the transformation,

the selection predicate of the ikuraQuery would share the

same instance of a nestedQuery stream. Evaluation of the

nested query would be performed only once, at the first

traversal of the loop induced by the ikuraQuery Where

operator, whereas the following iterations would result in

terminating query evaluation and throwing an exception.

Solving the above problems requires eliminating deferred

execution of the nested query. There exist several techniques

to force immediate execution of a LINQ query. For example,

the ToList method returns a list containing a materialised

query result. Applying it to the nested query makes the

solution more efficient (linear computational complexity)

than the query in Listing 2. However, a part of the original

query is executed and the other part remains deferred to the

moment of an actual demand. It is possible that data in a

collection may change between creation of a query and its

evaluation. The original query form (and the programmer’s

intention) is insusceptible to it – the query is always

completely executed on a current data state. After immediate

execution of the nested query one cannot be sure about it –

the ikuraQuery can be evaluated when data needed for

calculating the nestedQuery subquery got already modified.

As a result of the transformation, there occurred a change of

the query semantics that is very difficult to detect by a

programmer or tests. Ultimately, a programmer is forced to

resign from deferred execution of the whole query, which is

shown in Listing 4.
var nestedQuery = products.

 Where(p2 => p2.productName == “Ikura”).

 Select(p2=>p2.unitPrice).ToList();

var ikuraQuery = products.

 Where(p => nestedQuery.Contains(p.unitPrice)).

 Select(p => p.productName).ToList();

Listing 4. Example 1 – fully immediate execution.

Due to explicit materialisation, reusing the optimised

query against a different data state becomes troublesome.

For an inexperienced programmer, a way of getting an

appropriate query form can be too complicated. Without

deeper knowledge on the LINQ internal semantics in a

context of object data, obtaining an optimal structure of code

is a tricky, time-consuming and error-prone task. The

example shows a lack of real independence of LINQ from a

type of a data source. Despite the fact that LINQ allows

unified processing on various types and sources of data, an

actual execution plan relies on them. It seems that the basis

for elaborating this layer of the language was mostly the

integration of the object-relational mapping with a type

system of a programming language (what also shows at the

level of the LINQ query expression syntax and

implementing providers [30]).

B. Factoring Out Constructs Executed Immediately

Although LINQ queries execution is deferred, an

execution strategy of some expressions comprising LINQ

queries can be immediate. Such expressions are evaluated

locally in the place of the definition. Some operator, like

aggregate functions returning a single value instead of a

queryable data source, force immediate execution of a query.

The query in Listing 5 contains such an expression

determining the greatest unit price in the products’

collection. However, it will not be evaluated until the

execution of the maxQuery since it is contained in a lambda

expression defining a selection predicate for the Where

method.
var maxQuery = products.

 Where(p => products.

 Max(p2=>p2.unitPrice) == p.unitPrice).

 Select(p => p.productName);

Listing 5. Example 2 – extension methods syntax

(quadratic computational complexity).

Similarly to the subquery determining the price of the

Ikura product, it should be evaluated only once during

execution of the maxQuery and therefore needs to be

factored out. Let us call such constructs free expressions.

Using the same procedure as presented in the previous

section, we break the query into two instructions and

perform immediate execution (see Listing 6).

The ToList operation does not need to be applied to the

expression defining maxPrice (actually, it cannot be applied

because it returns a value), due to its inherent immediate

execution.
var maxPrice = products.Max(p2=>p2.unitPrice);

var maxQuery = products.

 Where(p => maxPrice == p.unitPrice).

 Select(p => p.productName).ToList();

Listing 6. Example 2 – immediate execution

(linear computational complexity).

C. Consequences of Changing the Evaluation Order

There exist some subtle consequences concerning

evaluation after the manual optimisation. In the original

forms of example queries (Listing 2 and Listing 5), nested

expressions would be evaluated only if the products’

collection is not empty. In the optimised forms (Listing 4

and Listing 6) it will be unnecessarily evaluated also when

the collection is empty. This is particularly important for

performance when a nested query operates on a collection

different than the external query does. The current example

concerns just one collection, but it is easy to imagine a

situation when collections are distinct (e.g., products from

other shops kept in separate collections). In extreme cases, if

calculation of a factored out expression is time-consuming,

this can worsen overall query performance. Aside from

RADOSŁAW ADAMUS ET AL.: A STEP TOWARDS GENUINE DECLARATIVE LANGUAGE-INTEGRATED QUERIES 939

performance issues, the transformation presented in previous

sections can have dangerous impact on query semantics. In

the second example (Listing 5) in the case of an empty

collection of products, the selection predicate is not

evaluated at all and the final result is simply an empty

collection of product names. After optimisation (Listing 6),

the expression products.Max(p2 => p2.unitPrice) is always

evaluated at the beginning. The Max method applied to an

empty collection throws an exception. Consequently, the

behaviour of the optimised query is unsafe and inconsistent

with the intent of a programmer.

To make optimisation immune to the described risk, the

original order of evaluation should be restored. This could

be achieved by applying the lazy loading pattern to the free

expression determining maxPrice. In Listing 7 we introduce

an improved transformation.
var maxPriceThunk =

 new Lazy<Double>(products.Max(p2=>p2.unitPrice));

var maxQuery = products.

 Where(p => maxPriceThunk.Value == p.unitPrice).

 Select(p => p.productName).ToList();

Listing 7. Example 2 – immediate execution

(linear computational complexity).

A Lazy class instance is a simple thunk – an object in

memory representing an unevaluated (suspended)

computation, used in the call-by-need evaluation strategy.

The argument of the Lazy constructor specifies a function

that should be evaluated at most once, only if its value is

requested for the first time. The request is signalised by

accessing the Value property of the Lazy instance.

Consequently, the original order of the query and the free

expression evaluation are restored (except the free

expression being processed at most once) making the

optimisation semantically safe. It is achieved at the expense

of overhead concerning access to the Value property.

In the next sections we present a general approach to

optimisation that preserves semantics and characteristics of

an original query while reducing its computational

complexity.

V. FACTORING OUT FREE EXPRESSIONS

The solutions presented for both examples share a

common shortcoming; they do not preserve the deferred

execution property. Our main aim is to propose a general

query rewriting rule overcoming the problem. In order to

keep the solution generic, additional constraints have been

assumed: (1) transformation should not break a query into

separate instructions (in contrary to what is shown, for

example in Listing 7), (2) we express the rules in general

terms rather than LINQ specific ones (e.g., operators

common in functional programming). Obviously, we assume

also that the intent of a programmer is simply to query and

not to introduce side effects deliberately.

Generalisation of the factoring out procedure should take

into account queries more complex than presented above. A

nesting level of a lambda expression in the examples

presented in Listing 2 and Listing 5 is shallow, but

conceptually can be arbitrary with no need to modify the

factoring out procedure. Free expressions can be bound

either globally, i.e. to an environment independent from a

query, or to a lambda expression at any nesting level lower

than the lambda expression containing a free expression.

The examples presented in Listing 2 and Listing 5 concern

the former case. A generalising solution to the latter case can

be achieved by treating any subquery as a separate query

and the rest as a global environment.

The basic idea behind the transformation is, first, to

identify free expressions that could be evaluated before a

loop induced by an operator containing them, and next, to

apply an appropriate rewriting rule. This is generalisation of

the standard procedure called loop-invariant code motion

known from the compilation theory [34]. An example of

incorporating this idea to programming language-integrated

queries can be found in the Stack-Based Architecture theory

[8]. To optimise evaluation in functional languages, a similar

procedure of fully lazy lambda lifting (called also full

laziness) has been also proposed [16]. In both cases

rewriting rules are straightforward and make use only of the

basic set of language operators. Our attempt to generalise, in

a similar manner, factoring out free expressions within

LINQ queries using only methods supplied by LINQ has

been unsuccessful. In particular, LINQ operators in presence

of a queryable data source (e.g., a collection) cause iteration

over elements, whereas factoring out requires treating

empty, single or multiple elements as an individual result

cached for reuse in further calculation.

A. Formalising Optimisation

The procedure of factoring out free expressions can be

applied to the following query pattern:
queryUnoptimized ::= queryExpr(λ(freeExpr))

where queryExpr denotes a query expression that includes a

nested lambda abstraction λ(freeExpr) containing freeExpr

that is free from any lambda abstraction within the query.

Additionally, we assume that freeExpr should be evaluated

several times during the execution in order to make

factoring out profitable. This pattern is not restricted to a

whole query. It can match any subquery.

The solution requires introducing transformation of

factoring out a free expression before a loop using it and

applying the lazy loading evaluation strategy. Several

aspects need to be addressed to make such optimisation

effective and general. (1) In imperative programming

languages deferring execution is often achieved through

enclosing code in a function or by introducing an iterator. In

both cases, repeated execution (e.g., inside a loop implied by

map or filter collection pipeline operators) causes repeated

evaluation. If this applies to a factored out expression, then

it is usually necessary to force materialisation of its result

before entering a loop using it. (2) Moreover, materialisation

solves the issue with factoring out consumable data sources

since they cannot be evaluated more than once. Before

factoring out, the problem does not exist since such

constructs reside inside lambda abstractions (that are

parameters of collection pipeline operators) and therefore

are evaluated only once during single lambda call

evaluation. (3) As stated earlier, it is possible that a free

940 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

expression is skipped during evaluation of the original

query. In a general case it is safe to preserve an order of

evaluation by suspending materialisation of a factored out

expression and prevent its immediate execution before

entering a loop using it. (4) An instance of a mechanism

used for suspending materialisation of a factored out

expression should not be shared between query executions.

To solve this problem, it can be additionally enclosed in a

lambda abstraction. Otherwise, following executions would

share a cached result determined during the first execution.

(5) In order to prevent collection pipeline operators from

iterating over a collection, it has to be nested into a new

collection as a single element. The same procedure can be

applied to a single result to enable usage of collection

pipeline operators.

Let us denote the following abstract operations:

Collection(arg) – creates and returns a collection consisting

of one element specified by an argument, e.g., if an

argument is a collection it returns a nested collection),

Immediate(expr) – evaluates and materialises a result of an

expression passed as an argument (except when the expr

execution strategy is already immediate), Suspend(lambda)

– returns an instance of a mechanism for lazy loading of an

expression specified by a lambda abstraction passed as an

argument, Value(lazy) – returns a lazily initialised value

stored by a lazy loading mechanism instance specified by an

argument.

Taking advantage of above operations, we introduce the

following rewriting procedure:
queryOptimized ::=

Collection(() => Suspend(() => Immediate(freeExpr))).

map(lambdaParam => lambdaParam()).

map(freeExprThunk => queryExpr(

 λ(Value(freeExprThunk)))).flatten()

where λ(Value(freeExprThunk)) is a nested lambda

abstraction λ(freeExpr) with an occurrence of freeExpr

expression substituted by Value(freeExprThunk). This form

ensures that execution of all components of the original

query is deferred assuming that collection pipeline operators

map and flatten have such an execution strategy.

The first part of the rewritten query
Collection(() => Suspend(() => Immediate(freeExpr)))

creates a collection consisting of a single element that is a

lambda function creating an instance of a mechanism for

suspended materialisation of the factored out free

expression. The following map operator ensures execution

of the lambda function. As a result, the following map

operator will process
queryExpr(λ(Value(freeExprThunk)))

expression only once for freeExprThunk assigned the lazily

loaded cached value of freeExpr. Therefore, the result of

evaluation of queryExpr(λ(Value(freeExprThunk))) is equal

to the result of evaluation of queryExpr(λ(freeExpr)). The

flatten operator eliminates an outer collection implied by the

Collection operator. Consequently, the final result of the

optimised query is taken from evaluation of the
queryExpr(λ(Value(freeExprThunk)))

expression.

B. Implementing Optimisation in C#

In C#, to simplify optimisation we introduce an auxiliary

method AsGroup to take care of the Collection operation and

suspended evaluation of a lambda expression returning a

materialised value of the free expression. Listing 8 shows

the implementation of the auxiliary operator.
static IEnumerable<TSource> AsGroup<TSource>(

 Func<TSource> sourceFunc) {

 yield return new Lazy<TSource>(sourceFunc);

}

Listing 8. Auxiliary optimisation method.

The Suspend operation is achieved by a Lazy class

constructor new Lazy<TSource>(sourceFunc). The yield

return statement is a syntax sugar enabling creating a

collection available through an iterator deferring any

computations until iteration starts. In this way, a programmer

avoids using a concrete type of a collection and enables a

compiler to choose the best implementation on its own.

AsGroup exposes an iterator that returns only one element,

i.e. an instance of a mechanism for suspended

materialisation of the factored out free expression. It is

created directly before yielding replacing the projection

map(lambdaParam => lambdaParam()). Consequently, the

rewritten query in case of LINQ takes the following form:
LINQ-deferredQueryOptimized ::=

AsGroup(() => Immediate(freeExpr)).

SelectMany(freeExprThunk =>

 queryExpr(λ(freeExprThunk.Value)))

where the SelectMany LINQ operator substitutes map and

flatten and freeExprThunk.Value realises the

Value(freeExprThunk) operation.

The above transformation can be adapted to a situation

when queryExpr(λ(freeExprThunk.Value)) is a construct

executed immediately (e.g., when it returns a single value).

In that case SelectMany needs to be replaced with two

operations: Select realising projection and First responsible

for flattening and immediate execution:
LINQ-immediateExpressionOptimized ::=

AsGroup(() => Immediate(freeExpr)).

Select(freeExprThunk =>

 queryExpr(λ(freeExprThunk.Value))).First()

The Immediate operation is required only in the case

when freeExpr is a LINQ query deferred in execution.

Explicit materialisation can be achieved using LINQ specific

methods, e.g., freeExpr.ToList(). The transformation

constitutes the general rewriting rule for optimisation of

LINQ queries through factoring out free expressions.

Applying it to the examples from Listing 2 and Listing 5 is

shown in Listing 9 and Listing 10, respectively.
var ikuraQuery =

 AsGroup(() => products.

 Where(p2 => p2.productName == “Ikura”).

 Select(p2=>p2.unitPrice).ToList()).

 SelectMany(ikuraPriceThunk => products.

 Where(p => ikuraPriceThunk.Value.

 Contains(p.unitPrice)).Select(p => p.productName));

Listing 9. Example 1 – after factoring out suspended

free expressions optimisation.

RADOSŁAW ADAMUS ET AL.: A STEP TOWARDS GENUINE DECLARATIVE LANGUAGE-INTEGRATED QUERIES 941

var maxQuery =

 AsGroup(() => products.Max(p2=>p2.unitPrice)).

 SelectMany(maxPriceThunk =>

 products.Where(p =>

 maxPriceThunk.Value == p.unitPrice).

 Select(p => p.productName));

Listing 10. Example 2 – after factoring out suspended

free expressions optimisation.

The queries execution strategy after optimisation remains

deferred and in the case of the second example (Listing 10),

the problem of the exception while addressing an empty

products’ collection does not occur.

VI. PERFORMANCE TESTS

We have evaluated the impact of factoring out of free

expressions optimisation in C# by applying it manually to a

number of problems: samePriceAs – given a collection of

products, find products with the same price as the product

specified by a name, maxPrice – given a collection of

products, find products with the maximal price in the

collection, promoProducts – given a collection of products,

find names of products in the imaginary sale promotion, i.e.

exactly k times more expensive than any other product, and

pythagoreanTriples – from natural numbers between 1 and

n find a number of triples satisfying the Pythagorean

theorem.

In experimental tests, the collection of products ranged

from 1 to 1,000,000 elements. The size of each product

averaged to 175 bytes. Tests for samePriceAs, maxPrice,

promoProducts and pythagoreanTriples problems have

been conducted using queries in Listing 2, Listing 5, Listing

11, and Listing 12 accordingly. The problems have been

solved relatively simply and each one has at least one free

expression suitable for the factoring-out optimisation.

Solutions to samePriceAs and maxPrice have free nested

queries, whereas promoProducts and pythagoreanTriples

introduce simple mathematical calculations that can be

factored out. The tests include comparison with PLINQ and

LinqOptimizer optimisation framework. We also combine

them manually with our optimisation to explore limits and

further opportunities.
var promoProducts =

 products.Where(p => products.

 Any(p2 => p2.unitPrice ==

 Math.Round(p.unitPrice / 1.2, 2))).

 Select(p => p.productName);

Listing 11. A query concerning the promoProducts

problem before optimisation.

var pythagoreanTriples =

 Enumerable.Range(1, max + 1).SelectMany(a =>

 Enumerable.Range(a, max + 1 - a).SelectMany(b =>

 Enumerable.Range(b, max + 1 – b).Where(

 c => a * a + b * b == c * c))).Count()

Listing 12. A query concerning the pythagoreanTriples

problem before optimisation.

We conducted our experiments on a workstation with a 4-

core Intel Core i7 4790 3.6 GHz processor, 32 GB of DDR3

1600MHz RAM, hosting Windows Server 2012 R2.

Benchmarks have been compiled for a x64 platform with

enabled code optimisations using target .NET Framework v.

4.5. Tests results for following problems are presented in

Fig. 1, Fig. 2, Fig. 3 and Fig. 4.

The LinqOptimizer is used in two variants: sequential

(denoted by SEQ) and parallel (denoted by PAR). The latter

competes with PLINQ. Each query before and after

factoring-out optimisation has been subjected to three

Fig 2. Query evaluation times for maxPrice problem.

Fig 1. Query evaluation times for samePriceAs problem.

Fig 3. Query evaluation times for pythagoreanTriples problem.

Fig 4. Query evaluation times for promoProducts problem.

942 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

further optimisation variants, i.e. PLINQ, LinqOptimizer

sequential or parallel variant. The tests focus on query

execution times and omit optimisation and compilation of a

query. Most of the plots use logarithmic scales to more

clearly reveal differences in performance for various

collection sizes. To improve readability, the plots omit

optimisation variants that are generally worse. In particular,

the sequential variant of LinqOptimizer is shown only if it

improved query performance in any collection size range,

and the better alternative between PLINQ and parallel

variant of LinqOptimizer is selected.

Results of the tests are as follows:

• Tests’ results are consistent with an expected

computational complexity. In samePriceAs and

maxPrice problems it has been reduced from

quadratic to linear, achieving a gain in orders of

magnitude for large collections, e.g., in the case of

the second example (Listing 5 and Listing 10) the

query after factoring out is more than 30,000 times

faster for 100,000 products (boost from ~115 s to

~3.8 ms).

• Except for the pythagoreanTriples problem, the

profitability threshold of individual factoring-out

optimisation is very low when comparing to

PLINQ and LinqOptimizer. Even for a collection of

2 objects, optimised queries can work faster than

original ones (e.g. samePriceAs and maxPrice).

• The performance penalty in the case of a collection

consisting of a single element is at most 0.6 μs

which corresponds to a ~60% deterioration (the

pythagoreanTriples problem).

• When processing large collections, the factoring-

out transformation can give several times better

performance by taking advantage of PLINQ

(especially in the case of the promoProducts

problem). For smaller collections, PLINQ imposes

overhead significantly greater than factoring out.

• The pythagoreanTriples problem optimisation tests

show that it may be difficult to obtain a significant

gain when factoring out a simple expression (i.e. a

* a + b * b). A ~3% gain is achieved for n equal to

10,000. • The LinqOptimizer framework seems to

be designed for optimising queries involving

numbers rather than complex objects. Only in the

pythagoreanTriples problem optimisation, it

outperforms both PLINQ and factoring out.

• In general, combining factoring out of free

expressions with LinqOptimizer is not likely to

produce the best solution. However, it seems that

tuning of the LinqOptimizer algorithm should be

possible. In the pythagoreanTriples problem,

PLINQ is able to produce more efficient query after

factoring out, whereas LinqOptimizer favours the

original query. Unfortunately, the differences are

too small to be seen on the plot.

C# libraries offer a Lazy class realising the Suspend

operation, but considering performance, we have

implemented our own lightweight version. We have

experimented with different variants of performing

Collection, Suspend and Immediate operations but the

presented solutions generally resulted in performance better

than others.

VII. AUTOMATIC OPTIMISATION

A. Free Expression Detection

The transformation is justified by the need to increase

effectiveness, which is achieved at the expense of reflecting

the business goal. As a result, benefits from a declarative

form and an increased level of abstraction are lost.

LINQ expression trees enable run-time analysing and

dynamic building of LINQ queries [36]. This feature allows

developing an optimisation method relying on rewriting of a

LINQ abstract syntax tree. Automated detection of specified

query patterns and transformation to an optimised form are

required to make LINQ queries truly declarative. The

previous part of this paper deals with the latter, i.e. the

definition of efficacious rewriting rules for factoring out of a

free expression. This section describes an algorithm for

detection of free expressions within a query. The procedure

does not address any details of implementation for the LINQ

platform. It is general in terms of functional-style

programming.

Let us establish a set of definitions concerning

expressions and lambda abstractions (inspired by the

definitions introduced by Hughes [16]):

• Def. 1 (bound variables of lambda). An

occurrence of a variable within lambda λA is bound

to λA if and only if it is a parameter of λAA,

• Def. 2 (bound expressions of lambda). An

expression within lambda λA is bound to λA if and

only if it contains a variable bound to λAA.

• Def. 3 (native lambda of expression). The

innermost lambda in which an expression e is

bound is its native lambda. Let us denote this

lambda nλ(e),

• Def. 4 (free expressions in lambda). An

expression e within lambda λA is free in lambda λA

if λA is nested in native lambda of expression e.

• Def. 5 (maximal free expressions). A maximal free

expression (MFE) is a free expression of some λA

that is not a proper subexpression of another free

expression of λA.

Additionally, to simplify definitions and the algorithm

description, we assume that names of variables are unique.

Moreover, we implicitly treat a whole query as a lambda

abstraction with all free variables (constituting a global

environment) as its parameters. In the case of examples from

Listing 2 and Listing 5 native lambda of each MFE is the

whole query.

From the definitions above, it follows that any MFE e free

in a lambda λA can be determined before λA evaluation.

Precisely, it could be determined anytime during evaluation

of nλ(e). The above statement is correct since:

1. e is a free expression (see definition 5).

2. λA is inside nλ(e) (see definition 4).

RADOSŁAW ADAMUS ET AL.: A STEP TOWARDS GENUINE DECLARATIVE LANGUAGE-INTEGRATED QUERIES 943

3. e is not bound to λA (see definition 3).

4. e does not contain variables bound to λA (see

definition 2).

5. λA call does not introduce any variable (parameter)

required by e (see definition 1) that makes e

independent from λA.

Consequently, it is possible to factor out the expression e

from λA and evaluate it at the level of the nλ(e) lambda.

The algorithm uses the standard depth-first search

approach and detects all MFEs during a single pass through

a query expression tree. Expression visitation focuses on

finding its bindings that we define as a set of lambda

abstractions declaring variables (usually as lambda

parameters) used in the expression. This information is

further used to determine bindings of its parent. Usage of

lambda abstraction parameters determines whether an

expression is free or bound. Therefore, it is necessary to

handle information about names of the parameters and

lambda abstractions to which they are bound. This is a task

of an auxiliary map called binders. To correctly manage

parameters’ binding, the procedure specifically handles

lambda abstractions and terminal name binding expressions.

While visiting lambda abstraction, the binders’ map is

filled with its parameters. They are visible only within the

lambda abstraction. This sets the right context for the

recursive visitation of the lambda body in order to detect

free expressions bound specifically to the current lambda.

Finally, the bindings set is returned to the lambda parent

except for the current lambda that is removed (information

on binding to the current lambda is not relevant outside).

The binders’ map is used when visiting name-binding

terminal expressions. These expressions consist only of an

identifier name. If a name is found in the binders’ map, a

corresponding lambda is returned (as a single-element

bindings set). If a name is not bound to any lambda, then it

is assumed to be a globally free variable.

The described behaviour does not concern a name on the

right hand side of a member access operator (e.g., field

names). Such a name is bound locally to its left side,

therefore field member access bindings are inherited from

their left side expression. In general, bindings for remaining

types of expressions are simply inherited from their children

(a sum of the sets).

In the implementation nesting level annotations for

lambda abstractions and variables are introduced to simplify

the binding analysis. Expression bindings provide sufficient

information to determine all MFEs and their native lambdas.

To exemplify the algorithm let us consider the

promoProduct problem shown in Listing 11. The query in its

optimised form is presented in Listing 13. The expression

determining a price Math.Round(p.unitPrice / 1.2, 2)) is

unnecessarily evaluated multiple times during execution of

the inner loop implied by the Any operator. What

distinguishes this and previous examples is that the

transformation applies not to the whole query but only to the

Where predicate. Additionally, the predicate is not a LINQ

query but an expression returning a Boolean value.

Therefore, Select and First methods were used instead of

SelectMany.
var promoProductsOptimized =

 products.Where(p =>

 AsGroup(() => Math.Round(p.unitPrice / 1.2, 2)).

 Select(priceThunk =>

 products.Any(p2 => p2.unitPrice ==

 priceThunk.Value)).First()).

 Select(p => p.productName);

Listing 13. Example 3 – rewriting inside lambda

abstraction.

Partial results of the algorithm work for the unoptimised

query are presented in Fig. 5. Each abstract syntax tree node

of the query is annotated with three values: (1) a number

indicating an order of visitation, (2) a lambda expression

directly including an expression, (3) bindings set including

the bolded element denoting a native lambda of an

expression. Lambda expressions have been assigned unique

numbers to facilitate their identification. Bindings that are

removed at the end of lambda node visitation are indicated

by a strikethrough symbol.

Free expressions have their native lambda (bolded lambda

in bindings set) different from a nearest lambda (denoted by

the second annotation), i.e. expressions with visitation order

ranks 6, 11-17. After omitting terminal expressions such as

literals (constant type nodes ranks 16 and 17) and name

bindings (bind type nodes ranks 6 and 15), the only MFE

left to factor out is Math.Round(p.unitPrice / 1.2, 2)). Its

native lambda is λ1. Hence, factoring out should be applied

to its indirect parent: the Any node with a visitation order

rank 5 (presented in Listing 11). It is an expression inducing

iteration over the products collection at the highest level

within λ1.

Fig 5. Example abstract syntax tree algorithm nodes annotations.

944 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

B. Applying Factoring Out

The factoring out rewriting rule can be applied during

visitation of lambda expressions. However, not all MFEs

should be factored out. The conditions under which the

optimisation promises well are described in analogous

solutions [15][8], namely: (1) a free expression cannot be

too simple (e.g., names and literals), (2) a free expressions’

result should be used more than once. They can be verified

during preparation to the transformation.

First, the complexity of an MFE can be examined. An

appropriate threshold for applying transformation could be

introduced, e.g., based on an arbitrarily set weight of

language constructs comprising an MFE. Performance tests

on the promoProducts problem involving factoring out a

relatively simple expression have proven improvement in

the case of collections consisting of at least 30 objects. For

over 250 products optimised query was about twice as fast.

The second condition concerns a number of times that a

MFE result is used in evaluation. An additional analysis may

be necessary for confirming that nλ(MFE) contains a

method that causes iteration over some collection that may

require repeated evaluation of the MFE. For example, in

LINQ this concerns mainly operators parameterised with a

lambda abstraction (such as Select, Where, Max, etc).

Operators operating on sets (e.g., Contains, Union) or

custom ones are not any indication for the optimisation. The

more detailed cardinality analysis is doubtful in case of a

programming language environment and a lack of a cost

model.

We have implemented a prototype LINQ provider library

realising the mentioned optimisation (available at

https://github.com/radamus/OptimizableLINQ). The analysis

and the transformation are performed using the LINQ

expression trees’ representation available at runtime. Access

to expression trees is provided though the IQueryable<T>

interface that does not allow direct query execution. Instead,

it exposes an abstract syntax tree of a query (in a form of a

type-checked expression tree) to a data store provider. The

provider makes use of this representation to build a query in

a form (language) dedicated for a given data model (e.g.,

LINQ to SQL) [36].

Implementing optimisation in the form of a LINQ

provider library gives a developer possibility to resign from

aggressive, global query optimisation, e.g. when the order of

evaluation is important considering some planned side

effects. To enable automatic optimisation, the AsOptimizable

extension method should be applied to a source collection. It

is shown in Listing 14 for the Ikura product example.
var ikuraQuery = products.AsOptimizable().

 Where(p => products.Where(p2 =>

 p2.productName == “Ikura”).

 Select(p2=>p2.unitPrice).Contains(p.unitPrice)).

 Select(p => p.productName);

Listing 14. Example 1 – automatically optimised.

As a result, a rewritten query is compiled and becomes

available for multiple use. One-time overhead occurring at

the site of the definition is about a millisecond. A developer

should consider runtime optimisation with caution when a

query is used only once over a small collection. In contrast

to LINQ, Java 8 streams operators are consumable, which

prevents multiple usages of the same query. We are not

aware of any mechanism enabling rewriting optimisations of

Java 8 stream queries at runtime; nevertheless, in the case of

consumable constructs the cost of optimisation done at

runtime would burden each query execution.

VIII. SUMMARY

The proposed solution proves that it is possible to provide

programming languages offering functional-style access to

querying data collections with resource-independent static

optimisation mechanisms. We proposed a formal method –

factoring out of free expressions – based on higher-order

functions rewriting. Its essence is to avoid unnecessary

recurring calculations. Factoring out of a free expression

that is complex to calculate generally produces a robust

performance gain. Such optimisation can be fully automated

and does not require any interference or implementation-

specific knowledge from a programmer. Using simple

examples, we emphasise the significance of the order of

evaluation implied by semantics of functional-style

operators. Finally, we elaborate general and safe

optimisation, considering characteristics of functional-style

querying in imperative programming languages.

In contrast to the Nectar system [12], which also uses

term rewriting to increase sharing of computations, our work

addresses functional-style queries in general, i.e. without

context of application which would limit our optimisation.

We take advantage of the similar approach to optimisation as

Steno [21], LinqOptimizer [22], or SkyLinq [23]. However,

we make an attempt to explore more aggressive, global

optimisations comparable to optimisations of database query

languages.

The presented approach was verified in Microsoft .NET

environment and its Language-Integrated Query technology.

However, the automated solution has not been

straightforward to elaborate due to necessity of considering

several variants implied by execution strategies of constructs

comprising LINQ queries and complexity of implementing

LINQ providers.

Our optimisation for LINQ can be combined

automatically with other ones as long as they preserve

queries in an expression trees form. In other cases, fusion of

optimisations has to be done manually. For example, PLINQ

enables to take advantage of multiple cores and achieve

several times better efficiency in processing of large

collections. Moreover, the optimiser in some cases could

automatically (or by a programmer’s decision) resign from

suspending evaluation of a factored out expression and

remove overhead that it imposes. The tests showed that it

results in further improvement of performance, up to ~18%.

Finally, it seems that transformations would be the most

profitable if incorporated in a compiler. Considering source-

to-source transformations already performed by the C#

compiler on LINQ query expressions [33] this solution

imposes itself.

We believe that our work is as a real step towards genuine

declarative language-integrated queries. We conduct further

RADOSŁAW ADAMUS ET AL.: A STEP TOWARDS GENUINE DECLARATIVE LANGUAGE-INTEGRATED QUERIES 945

works on optimisation of functional-style constructs

processing collections. One branch of our research concerns

the elaboration of methods that are aware of operators

semantics, e.g., addressing complex queries taking

advantage of the selection operation, which exposes a huge

potential for optimisation (e.g., pushing selection [37]). We

also consider adapting other methods, such as revealing

weak dependencies within queries that enable performing

further factoring out [38].

REFERENCES

[1] E. Meijer, “The world according to LINQ,” Commun. ACM, vol. 54,
no. 10, pp. 45–51, Oct. 2011. http://dx.doi.org/10.1145/2001269.
2001285

[2] Oracle, Java API docs, “Package java.util.stream”,
http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-
summary.html, accessed: December 2014.

[3] M. Fowler, “Collection Pipeline”, 28 July 2014,
http://martinfowler.com/articles/collection-pipeline/, accessed:
December 2014.

[4] Hudak, "Conception, Evolution, and Application of Functional
Programming Languages". ACM Computing Surveys 21 (3), pp. 383–
385, 1989. http://dx.doi.org/10.1145/72551.72554

[5] Chaudhuri, “An Overview of Query Optimization in Relational
Systems”, Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of data-base systems, Seattle,
Washington, United States, pp. 34-43, 1998. http://dx.doi.org/10.1145/
275487.275492

[6] M. Jarke, and J. Koch, “Query Optimization in Database Systems”,
ACM Computing Surveys 16(2), pp. 111-152, 1984. http://dx.doi.org/
10.1145/356924.356928

[7] W. Kim, “On optimizing an SQL-like nested query”, ACM Trans. on
Database Systems, 7(3), pp. 443–469, 1982. http://dx.doi.org/10.1145/
319732.319745

[8] J. Plodzien, and A. Kraken, “Object Query Optimization through
Detecting Independent Subqueries”. Information Systems 25(8), pp.
467-490, 2000.

[9] S. Cluet, and G. Moerkotte, “Nested Queries in Object Bases”, In
DBPL'93, pp. 226-242, 1993.

[10] N. May, S. Helmer, and G. Moerkotte, “Strategies for Query
Unnesting in XML Databases”, ACM Transactions on Database
Systems (TODS), Volume 31 Issue 3, September 2006, pp. 968-1013,
2006. http://dx.doi.org/10.1145/1166074.1166081

[11] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey, “DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language”, Symposium
on Operating System Design and Implementation (OSDI), San Diego,
CA, December 8-10, 2008.

[12] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang.
“Nectar: Automatic Management of Data and Computation in
Datacenters”, In OSDI, 2010.

[13] L. Fegaras, and D.Maier, “Optimizing object queries using an
effective calculus”, ACM Transactions on Database Systems (TODS),
Volume 25 Issue 4, pp. 457-516, 2000. http://dx.doi.org/10.1145/
1166074.1166081

[14] S. Jones, A. Tolmach, and T. Hoare, “Playing by the Rules: Rewriting
as a practical optimisation technique in GHC”, Proceedings of the
2001 Haskell Workshop, pp. 203-233, 2001.

[15] S. P. Jones, W. Partain, and A. Santos, "Let-Floating: Moving Bindings
to Give Faster Programs", Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, 1996.
http://dx.doi.org/10.1145/232629.232630

[16] J. Hughes, “The Design and Implementation of Programming
Languages”, Oxford University, D.Phil. Thesis, 1983.

[17] A. Biboudis, N. Palladinos, and Y. Smaragdakis, “Clash of the
Lambdas”, 9th ICOOOLPS (Implementation, Compilation,

Optimization of OO Languages, Programs and Systems) workshop,
Uppsala, Sweden, 2014.

[18] T. Grust, J. Rittinger, and T.Schreiber, “Avalanche-safe LINQ
compilation”, Proceedings of the VLDB Endowment, Volume 3 Issue
1-2, pp. 162–172, 2010. http://dx.doi.org/10.14778/1920841.1920866

[19] J. Chaney, S. Lindley, and P Wadler, “A practical theory of language-
integrated query”, ICFP '13 18th ACM SIGPLAN international
conference on Functional programming, ACM SIGPLAN Notices -
ICFP'13, Volume 48 Issue 9, pp. 403-416, 2013. http://dx.doi.org/10.
1145/2500365.2500586

[20] i4o, “i4o - Indexed LINQ”, http://i4o.codeplex.com, accessed:
September 2014.

[21] D. G. Murray, M. Isard, and Y. Yu, "Steno: Automatic Optimization of
Declarative Queries", PLDI’11 June 4–8, San Jose, California, USA,
2011. http://dx.doi.org/10.1145/1993498.1993513

[22] N. Palladinos, and K. Rontogiannis., “LinqOptimizer: an automatic
query optimizer for LINQ to objects and PLINQ”,
http://nessos.github.io/LinqOptimizer/, accessed: December 2014.

[23] Sky LINQ, “Sky LINQ”, https://skylinq.codeplex.com, accessed:
December 2014.

[24] The Reactive Manifesto, “The Reactive Manifesto”,
http://www.reactivemanifesto.org, 23 September 2013, accessed:
December 2014.

[25] E. Meijer, “Your mouse is a database”, Commun. ACM, 55(5), pp. 66-
73, 2012. http://dx.doi.org/10.1145/2160718.2160735

[26] I. Maier, and M. Odersky, “Higher-Order Reactive Programming with
Incremental Lists”, ECOOP 2013 – Object-Oriented Programming,
Lecture Notes in Computer Science Volume 7920, pp. 707-731, 2013.
http://dx.doi.org/10.1007/978-3-642-39038-8_29

[27] G. Schueller, and A. Begrend, “Stream fusion using reactive
programming, LINQ and magic updates”, 16th International
Conference on Information Fusion (FUSION), pp. 1265-1272, 2013.

[28] Y. Wang, and X. Zhang, “The Research of Multi-source heterogeneous
Data Integration Based on LINQ”, Computer Science and Electronics
Engineering (ICCSEE), 2012 International Conference on Computer
Science and Electronics Engineering, pp.147-150, 2012. http://dx.doi.
org/10.1109/ICCSEE.2012.437

[29] C. Reichenbach, Y. Smaragdakis, and N. Immerman. PQL, “A purely-
declarative java extension for parallel programming”. ECOOP ’12,
LNCS 7313, pp. 53–78, 2012. http://dx.doi.org/10.1007/978-3-642-
31057-7_4

[30] E. Wcislo, P. Habela, and K. Subieta, “Implementing a Query
Language for Java Object Database”, ADBIS 2012, pp. 413-426,
2012. http://dx.doi.org/10.1007/978-3-642-33074-2_31

[31] R. Adamus., P. Habela, K. Kaczmarski., M. Lentner, K. Stencel, and
K. Subieta, “Stack-Based Architecture and Stack-Based Query
Language”, ICOODB Proceedings of the First International
Conference on Object Databases. Germany, Berlin, pp. 77-95, 2008.

[32] K. Subieta, “Stack-Based Approach (SBA) and Stack-Based Query
Language (SBQL)”, http://www.sbql.pl, 2011, accessed: December
2014.

[33] G. M. Bierman, E. Meijer, and M. Torgersen, “Lost In Translation:
Formalizing Proposed Extensions to C#”, Proceedings of the 22nd
annual ACM SIGPLAN conference on Object-oriented programming
systems and applications, pp. 479-498, 2007. http://dx.doi.org/10.
1145/1297105.1297063

[34] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers -
principles, techniques and tools”, Pearson Education, Inc., 2006.

[35] O. Eini, “The Pain of Implementing LINQ Providers”, ACM Queue -
Mobile Devices in the Enterprise, Volume 9 Issue 7, 2011.
http://dx.doi.org/10.1145/1978542.1978556

[36] T. Petricek, “Building LINQ queries at runtime in C#”,
http://tomasp.net/blog/dynamic-linq-queries.aspx/, 2007, accessed:
December 2014.

[37] M. Drozd, M. Bleja, K. Stencel, and K. Subieta, “Optimization of
Object-Oriented Queries through Pushing Selections”, ADBIS 2012,
pp. 57-68, 2012. http://dx.doi.org/10.1007/978-3-642-32741-4_6

[38] M. Bleja, K.Stencel, and K. Subieta, “Optimization of object-oriented
queries addressing large and small collections” IMCSIT 2009, pp.
643-650, 2009. http://dx.doi.org/10.1109/IMCSIT.2009.5352770

946 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

