Pedestrian tracking in video sequences:
a particle filtering approach

Mateusz Owczarek, Przemysław Barański, Paweł Strumiłło
Institute of Electronics, Lodz University of Technology
Email: {mateusz.owczarek, przemyslaw.baranski, pawel.strumillo}@p.lodz.pl

Abstract—In this work we study the methods for pedestrian tracking in video sequences and indicate various applications of these methods ranging from surveillance systems to aiding the visually impaired persons. First, we define the general problem of object tracking that comprises the tasks of object detection, identifying the flow of object location in consecutive video images and finally analysis of the tracked trajectory data. We review the well known object tracking techniques i.e. the Mean-Shift and the CAMSHIFT algorithm and discuss their properties. Then we introduce the computational technique known as particle filtering (PF) and explain how we have applied it to the tasks of pedestrian tracking. We compare the PF approach against the Mean-Shift and the CAMSHIFT algorithms in terms of tracking robustness and the required computational demand. We conclude, that on the tested video sequences, the PF tracker outperforms the Mean-Shift and by a small margin the CAMSHIFT algorithm. The PF tracker requires more computational power, however, its tracking performance can be flexibly adjusted to the application requirements.

I. INTRODUCTION

HUMAN BEINGS, whether in a standstill or in motion, have an extraordinary visual capability of detecting objects and tracking them in the environment. This powerful property of the human visual system allows people, e.g. to manoeuvre in crowded pavements without bumping into other pedestrians. Implementation of object tracking functionality in computer vision systems is a challenging task and has attracted researchers’ interest for decades. This is because there are numerous applications in which object tracking is important. They range from civilian applications (human-computer interaction, robotics, surveillance systems, crowd sourcing systems) to military applications (guided missile systems) [1], [2], [3]. Tracking of objects in video sequences is a particularly difficult task due to the following reasons:

1) Object detection in a scene and determining its location (i.e. applying methods for segmenting out the object of interest from the background).
2) Identifying object position changes in consecutive image frames, termed object tracking.
3) Analysis of the object tracking data (e.g. determination of the motion trajectory, path prediction, etc.).

The latter processing step strongly depends on the application. Our research goal is to develop a system that would serve as a vision based travel aid for the visually impaired. Although, a number of GPS-based navigation systems or remote guidance systems were designed especially for the visually impaired, they are expensive and offer poor position accuracy in urban environments [4]. Also, electronic travel aids in which ultrasound or laser sensors are embedded into white canes and also more advanced sensory substitution solutions (e.g. using auditory display techniques) have not found wider acceptance among the visually impaired users [5]. Our approach to aiding the visual impaired in mobility and travel is to track the position of a blind pedestrian in a city environment on the basis of video sequences. Then the positioning data will be integrated with the digital map data to work out the navigation instructions for the blind user. Such a solution does not require any additional hardware to be carried by a blind pedestrian except for a mobile phone that would serve as a communication device between the system and the user.

In this communication we report on our preliminary studies aimed at developing and testing robustness of the vision based object tracking methods with special focus on systems used for pedestrians’ tracking. In Section II we review the related work and highlight the widely used Mean-Shift and CAMSHIFT object tracking algorithms. In Section III we introduce the particle filtering algorithm and explain how we apply this powerful computing technique to person tracking. In section IV we describe the experimental tests of the algorithms and evaluate their performance on example object tracking tasks.

II. REVIEW OF RELATED WORK

A. Object detection methods

Every tracking method requires an object detection technique to distinguish the tracked object from the background and/or other objects. The result of tracking strongly relies on the applied object detection method. These methods can be subdivided into four categories [1]:

1) Object detection in a scene and determining its location (i.e. applying methods for segmenting out the object of interest from the background).
2) Identifying object position changes in consecutive image frames, termed object tracking.
3) Analysis of the object tracking data (e.g. determination of the motion trajectory, path prediction, etc.).
– **Point detectors** are used to detect characteristic points in a processed image (i.e. corners, edges). Among the most commonly used methods are: the Moravec’s operator, the Harris point detector and the Scale invariant Feature Transform (SIFT). A comparative survey [6] provides more information on the topic.

– **Segmentation** leads to partitioning an image into characteristic regions (i.e. perceptually similar regions that can be used for tracking). The Mean-shift clustering [7], [8], the Graph-cuts and Active contours are within the most relevant image segmentation techniques.

– **Background modelling** is based on an assumption that moving objects appear on a very largely stable background [9], therefore the foreground can be obtained by “subtracting” the estimated background image from the current frame.

– **Supervised classifiers** that are based on a large collection of labeled samples composed of feature vectors. Samples are used as training data for the supervised learning method to generate a function that maps inputs (e.g. object features) to the desired outputs (e.g. class labels) unambiguously binding the object with given features. These methods include neural networks, adaptive boosting (e.g. Viola-Jones object detection framework used to detect pedestrians [10]), decision trees and Support Vector Machines (SVM) in many variations [3].

Among the image features commonly used in object tracking are [1], [11]:

– **Color** is used as a feature in histogram-based methods, where the object is represented by its appearance. Color spaces such as $L*a*b$ and HSV (Hue, Saturation, Value) are more preferred in image processing, due to more perceptual uniformity.

– **Edges** are strong changes in the intensity or color in an image generated by object boundaries. Edges are less sensitive to illumination changes than color features.

– **Optical flow** defines the apparent motion of an object by a dense field of displacement vectors across consecutive image frames.

– **Texture** of an object described by a number of properties (such as lightness, density, regularity, linearity, directionality, smoothness, etc. [12]) is an excellent feature to track.

B. Approaches to object tracking

Object tracking techniques can be subdivided into the three major categories:

– **Point Tracking** relies on the positions and motion of points representing the target object in consecutive frames. Therefore, object tracking can be defined as the problem of finding points’ correspondences (Fig. 1a).

– **Kernel Tracking** relies on the shape or appearance of the target object (referred to as kernel), which is represented by a geometric primitive (e.g. a rectangular patch or an ellipse), see Fig. 1b. The most popular representative of this category is the Mean-Shift [7], [8], [13] and its modification, the CAMSHIFT (Continuously Adaptive Mean-Shift) algorithm [14] (see Fig. 2).

– **Silhouette Tracking** relies on the information encoded inside the region of a tracked object which usually, due to the complexity of its shape, cannot be described well using simple geometric primitives (Fig. 1c).

The idea of applying particle filtering to object tracking was independently proposed by several research groups and is described in [15], [16] and [17] among others. Although the computational and probabilistic origins of the particle filter usually remains (more or less) the same, different approaches use different features to define the target model. Typically, edge-based image features are used [18], [15], [19], but color-based image features are also an option. The latter is even more robust against the out-of-plane rotations (e.g., when a person turns around), scale and rotation invariant [20], but more sensitive to the illumination changes (as indicated in Section II-A). For this reason, the color-based particle filter has become the object of our study.

III. APPLICATION OF PARTICLE FILTERING TO PERSON TRACKING

A. Particle filter basis

Particle filtering, also called the Sequential Monte Carlo (SMC) [21] method, is a simulation-based technique which stems from the Monte Carlo method. The latter is a simple,
yet effective, way of finding an optimal solution for multidimensional problems by randomly generating a large number of possible system states. This enables to observe the overall system behaviour and select the best solution.

In the particle filter approach, the distribution of the s_t is approximated by a set of so called particles. Every particle is represented by the vector:

$$c^{(n)}_t = \begin{bmatrix} s^{(n)}_t \\ \pi^{(n)}_t \end{bmatrix}^T$$

(1)

where the superscript (n) denotes a particle number ranging from 1 to N being the size of the particle set and t denotes a time instant. Hence, the vector $s^{(n)}_t$ represents the system state, that is the variables of interest, $\pi^{(n)}_t$ is a particle weight, i.e. a value that reflects how accurately a given particle approximates the system state.

The posterior distribution of s_t is approximated by the probability mass function:

$$p(s_t | y_{0:t}) \approx \sum_{n=1}^{N} \delta(s - s^{(n)}_t) \cdot \pi^{(n)}_t$$

(2)

where $\delta(\cdot)$ is the Dirac delta function.

The algorithm can be summarized in its basic form as follows [22]:

1) **Initialization.** At the algorithm’s outset, all particles’ states $s_t^{(n)}$ are randomly initialized according to a given distribution. The weights $\pi^{(n)}_0$ are assigned equal values of $\frac{1}{N}$.

2) **Prediction.** New particle states are predicted on the base of the transition equation:

$$s^{(n)}_{t+1} = f(s^{(n)}_t, u_t, w^{(n)}_{t-1})$$

(3)

where u_{t-1} is a driving vector and $w^{(n)}_{t-1}$ is the noise vector introduced to the state due to the measurement error of u_{t-1}. Each particle is perturbed with an individually generated vector $w^{(n)}_{t-1}$; $f(\cdot)$ is the transition function that calculates a new state on the base of the previous one and the driving signals.

3) **Measurement update.** Each measurement z_t updates the weights of the particles by the equation:

$$\pi^{(n)}_{t+1} = \frac{\pi^{(n)}_t}{\pi^{(n)}_t} \cdot p(z_t | s^{(n)}_t)$$

(4)

where $p(z_t | s^{(n)}_t)$ is a conditional probability density of measuring z_t given the particle state $s^{(n)}_t$. Particles that diverge in the long run from measurements will have small weights $\pi^{(n)}_t$.

4) **Weights’ normalization.** For the sake of the next steps, the weights need to be normalized so that they sum up to 1:

$$\pi^{(n)}_t := \frac{\pi^{(n)}_t}{\sum_{i=1}^{N} \pi^{(n)}_i}.$$

(5)

5) **State estimation.** The system state is the weighted average of all particles’ states:

$$s_t = \sum_{i=1}^{N} s^{(n)}_t \cdot \pi^{(n)}_i.$$

(6)

6) **Resampling.** After a number of algorithm iterations, all but a few particles have negligible weights and therefore do not participate in the simulation effectively. This situation is detected by calculating the so-called degeneration indicator, expressed by:

$$d_t = \frac{1}{N \sum_{i=1}^{N} \left(\pi^{(n)}_i \right)^2}.$$

(7)

As the weights start to differ, the d_t indicator decreases. If d_t falls below a given threshold, then a process called resampling is evoked and a new set of particles is created. Resampling causes that the probability density function of s_t is refined in the next iterations of the algorithm. Thus, a better estimate can be found.

7) **Go to point 2**

B. Implementation of particle filter for person tracking

The implementation of the particle filter tracker described herein is based on the idea behind the ConDensation Algorithm [15], once implemented in the OpenCV library, yet presently deprecated due to some imperfections in the resampling part.

Target object is represented by a rectangular patch (Fig. 4a). Such representation is suitable for representing simple non-rigid targets and works well in terms of kernel-based tracking methods [1]. Target model is defined by a $(8 \times 8 \times 4$ bins) HSV histogram of the target object’s representation and an initial size of the representation rectangle (during the tracking process it is scaled in relation to its initial size). Reduced number of levels for the V-component of the histogram makes the method less sensitive to the changes in lighting conditions. The use of HSV histogram may, however, make the method more sensitive to noise [1]. Current version of the algorithm does not update the target model automatically, but a new target model can be built on-the-fly.

Due to the fact that the principle of operation of the particle filter was described in the preceding section, in the subsequent paragraphs we would like to limit ourselves just to the adjustments which make use of particle filter in object tracking.
a) Initialization: A set of N-samples is generated. Each sample represents the quantities of the target object’s representation and is defined by a state vector and an initial weight:

$$s = [x, y, \frac{dx}{dt}, \frac{dy}{dt}, k]^T$$

$$s^{(n)}_0 = [x, y, 0, 0, 1]^T \text{ for } n = 1, ..., N \quad (8)$$

$$\pi^{(n)}_0 = \frac{1}{M} \text{ for } n = 1, ..., N$$

where (x, y) are the coordinates of the center of the representation rectangle, $(\frac{dx}{dt}, \frac{dy}{dt})$ represents velocity vector (motion model), k is the scale of the representation rectangle in relation to its initial size and N is the number of samples.

b) Evolution of the samples: In every new frame a state of each sample is generated by a second order linear difference equation based on prior observations:

$$s^{(n)}_t = A \cdot s^{(n)}_{t-1} + w^{(n)}_{t-1} \quad (9)$$

where $w^{(n)}_{t-1} \sim N(0, Q_t)$ is a vector of multivariate normally distributed random variates (stochastic component) and A is a transition matrix (deterministic component) defined for state vector (8):

$$A = \begin{bmatrix}
1 & 0 & \frac{dt}{dt} & 0 & 0 \\
0 & 1 & \frac{dt}{dt} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix} \quad (10)$$

c) Weighting the samples: Each sample represents a hypothetical location of the tracked object. To weight the sample set, a histogram of each hypothetical target representation is compared to the target model. To quantify similarity between the two histograms, the *Helling distance* is used:

$$d^{(n)}_t = \sqrt{1 - \frac{1}{M \cdot H_1 H_2} \sum_{u=1}^{M} H_1(u) \cdot H_2(u)}$$

$$H_k = \frac{1}{M} \sum_{u=1}^{M} H_k(u),$$

where H_1 and H_2 are the histograms to be compared and M is a total number of histogram bins. The result is a score in range $[0,1]$, where the first value indicates a perfect match and the latter a complete mismatch. The distance is used in the measurement equation to update the weights of the samples, according to:

$$\pi^{(n)}_t = \pi^{(n)}_{t-1} \cdot p(z_t|s_t) \quad (12)$$

$$\pi^{(n)}_t = \pi^{(n)}_{t-1} \cdot \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(d^{(n)}_t)^2}{2\sigma^2} \right), \quad (13)$$

where σ is the standard deviation. The higher the weight, the higher chance that the particle will be drawn during the next iteration (particles with the lowest weights are to be replaced).

d) Re-initialization: The process of propagation of samples is being continued until the mean state moves off the image or the probability of the mean state drops below a certain threshold. It usually means that the target object has been lost due to a mismatch between the predicted and actual motion. In such scenario, particles are redistributed in accordance with the continuous uniform distribution to re-acquire the target:

$$s^{(n)}_t = E \left[s^{(n)}_t \right] = \sum_{n=1}^{N} \pi^{(n)}_t \cdot s^{(n)}_t \quad (14)$$

The state of the tracked object at a time-step t can be therefore estimated as the mean state [15]:

$$\bar{s}_t = E \left[s^{(n)}_t \right] = \sum_{n=1}^{N} \pi^{(n)}_t \cdot s^{(n)}_t \quad (15)$$

<table>
<thead>
<tr>
<th>Table I</th>
<th>DETAILS OF THE TEST VIDEO SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>Format</td>
<td>320×240 at 25 frames/s</td>
</tr>
<tr>
<td>Length</td>
<td>1017 frames (\sim 41 sec.)</td>
</tr>
<tr>
<td>Target object</td>
<td>person</td>
</tr>
<tr>
<td>Keywords</td>
<td>moving cam, moving target, non-rigid target, rotation, similar distractors, full occlusion, outdoor</td>
</tr>
<tr>
<td>Link to dataset</td>
<td>[23] /datasets/sq1.zip</td>
</tr>
</tbody>
</table>

The implemented PF tracker has been tested and evaluated on a few short video sequences from the BoBoT benchmark on tracking dataset [23]. Here we present results obtained for one of the particularly difficult sequence which shows an individual walking along a pavement and is being followed by a camera (Fig. 4a). Ever and again a different person appears and passes by, shadowing the tracked pedestrian (so-called occlusion, cf. Fig. 4b), or is dressed in the same manner (so-called similar distractor, cf. Fig. 4c), trying to confuse the algorithm. Table I provides more details on the dataset.

The basic evaluation of the tracking algorithm relies on the overlap rate calculated every frame of the video sequence and defined as $\frac{\text{area}(R_T \cap R_G)}{\text{area}(R_T)},$ where R_T is the rectangular region of the tracking result and R_G denotes the ground truth [3]. If the overlap is larger than or equal to 1/3, it is considered a hit (as shown in Fig. 5), otherwise a miss of target is denoted. Tests with a various number of particles show that $N = 100$ particles seems to be a good trade-off between accuracy and on tracking dataset [23]. Here we present results obtained on a few short video sequences from the BoBoT benchmark. In such scenario, particles are redistributed in accordance with the continuous uniform distribution to re-acquire the target:

$$s^{(n)}_t = E \left[s^{(n)}_t \right] = \sum_{n=1}^{N} \pi^{(n)}_t \cdot s^{(n)}_t \quad (14)$$

The state of the tracked object at a time-step t can be therefore estimated as the mean state [15]:

$$\bar{s}_t = E \left[s^{(n)}_t \right] = \sum_{n=1}^{N} \pi^{(n)}_t \cdot s^{(n)}_t \quad (15)$$

The implemented PF tracker has been tested and evaluated on a few short video sequences from the BoBoT benchmark on tracking dataset [23]. Here we present results obtained for one of the particularly difficult sequence which shows an individual walking along a pavement and is being followed by a camera (Fig. 4a). Ever and again a different person appears and passes by, shadowing the tracked pedestrian (so-called occlusion, cf. Fig. 4b), or is dressed in the same manner (so-called similar distractor, cf. Fig. 4c), trying to confuse the algorithm. Table I provides more details on the dataset.

The basic evaluation of the tracking algorithm relies on the overlap rate calculated every frame of the video sequence and defined as $\frac{\text{area}(R_T \cap R_G)}{\text{area}(R_T)},$ where R_T is the rectangular region of the tracking result and R_G denotes the ground truth [3]. If the overlap is larger than or equal to 1/3, it is considered a hit (as shown in Fig. 5), otherwise a miss of target is denoted. Tests with a various number of particles show that $N = 100$ particles seems to be a good trade-off between accuracy and processing time of the algorithm (cf. Fig. 3). An interested reader is referred to the video sequence published at [25], which shows how the result of the tracking algorithm depends on the number of particles.
Fig. 3. The mean of ground truth and the tracking result overlap for $N = 100$ particles is equal to 0.62, which seems to be a trade-off between accuracy and processing time. Gray region is the standard deviation.

Fig. 4. PF tracker in action — tracked person is being followed by “particles” (each particle represents a hypothetical location of the tracked object). The tracking result is an outline around the target. Blue semi-transparent rectangle is the ground truth (source: [24]).

Fig. 5. Two examples of the ground truth (blue rectangle in the middle) and the tracking result (red dashed rectangle) overlap of 1/3.

Fig. 6a shows the overlap for each frame of the test video sequence (mean of 100 iterations) using $N = 100$ particles. At the beginning the overlap reaches up to 92% and oscillates around 80% for most of the time. Each drop below 1/3 (a miss) is caused by a full occlusion, when the algorithm has lost the target and needed to be re-initialized. Slightly worse results in the last quarter of the video sequence are caused by the out-of-plane rotation of the tracked individual. After the person turned right, his right side is visible on the video instead of his back, on which the target model used to be built (as it was mentioned before, current version of the algorithm does not update the target model automatically, yet an adaptive approach is within the further work). Notwithstanding, the results are satisfactory — the PF tracker copes well with similar distractors and occlusions. A non-rigid target and motion of both the camera and the target also pose no problem.

B. PF based tracker vs. the MeanShift and the CAMSHIFT

As indicated in Section II-B, color-based image features are robust against the out-of-plane rotations, scale and rotation changes. Additionally, the use of histogram matching results in relatively low computational cost. For this reason, color-based segmentation and tracking methods such as Mean-Shift and its extension CAMSHIFT (Continuously Adaptive Mean-Shift, cf. Fig. 2 upon the differences between these two methods), both within the OpenCV library, gained great popularity over the years.

CAMSHIFT is a parameter-free1 tracking technique. It re-

\[\mu = 0.53 \sigma = 0.06 \]

\[\mu = 0.62 \sigma = 0.10 \]

\[\mu = 0.62 \sigma = 0.10 \]

1In the OpenCV library user can, however, define the maximum number of Mean-Shift iterations to converge.
requires a probability image of the target object (i.e., the back-
projection of the object histogram) and an initial search
window. Our test CAMSHIFT-based pedestrian tracker was
based on the sample from the OpenCV library source code. It
utilizes the HSV histogram of the target object masked with
a binary image resulting from the thresholding of the initial
image of the target object with different boundaries of colors.
The purpose of masking was to extract as much of the target
object from the background as possible to avoid false positives.
A total number of over 270,000 different masks were used and
only first one hundred results in terms of mean overlap were
taken into account. The results are presented on Fig. 6a and
tabulated in Table II.

As one can note, in several cases the CAMSHIFT-based pedes-
trian tracker performs marginally better than the implemented
PF tracker, although the mean overlap and hit ratio of the
former one are clearly lower. The CAMSHIFT-based tracker
is also firmly faster. Please bear in mind though, that the result
of the CAMSHIFT tracker strongly relies on the probability
image of the target object. In this context it was selected
carefully so as to correspond strictly to the video sequence
used.

Finally, we encourage the reader to watch our short compari-
on video sequence available at [24].

V. CONCLUSIONS

In this study we have undertaken the problem of object
tracking in video sequences with a special focus on pedestrian
tracking. Our objective was to compare the performance of the
Mean-Shift and Camshift trackers to the powerful computation
 technique known as particle filtering. We have explained the-
toretical background of the PF and shown how we have adapted
it for the purpose of pedestrian tracking. From the tests of the
compared trackers on example video sequences (shot from a
camera in motion) we conclude that the PF can outperform the
Mean-Shift and Camshift trackers. This is, however, at the
cost of higher computational demand (cf. Table II summarizing
quantitative comparison of the performance of the compared
trackers). We argue, however, that the PF can be employed to
track multi-modal distributions, i.e. that are not confined to
Gaussian distributions. Finally, the strong advantage of the
PF is that its computing implementations can be mapped to
parallel processing architectures with a flexibly chosen number
of particles. Our intention is to employ the developed tracking
technique in a multi-camera video system aimed at aiding the
visually impaired in mobility and navigation.

ACKNOWLEDGMENT

This work was supported by the European Union’s Horizon
2020 Research and Innovation Programme under grant agree-
ment No 643636 “Sound of Vision.”

REFERENCES

vey,” ACM Computing Surveys, vol. 38, no. 4, dec 2006. doi:
http://dx.doi.org/10.1145/1177352.1177355
view of recent research trends,” in Pervasive Computing (ICPC),
2015 International Conference on, Jan 2015. doi: 10.1109/PERVA-
in 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition, Portland, OR, USA: IEEE, June 2013. doi: 10.1109/CVPR.2013.312
pp. 2411–2418. [Online]. Available: http://dx.doi.org/10.1109/CVPR.
2013.312
terrain by fusing data from a GPS receiver, inertial sensors, stereo-
camera and digital maps for pedestrian navigation,” Sensors, vol. 12,
no. 6, pp. 6764–6801, 2012. doi: http://dx.doi.org/10.3390/s12066764
mobility aid for auditory presentation of three-dimensional scenes to
the visually impaired,” Journal of the Audio Engineering Society, vol. 60,
cal descriptors,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 10, pp. 1615–1630, Oct 2005. doi:
http://dx.doi.org/10.1109/cvpr.2003.1211478
objects using mean shift,” Computer Vision and Pattern Recognition,
vol. 2, no. 1, pp. 142–149, 2000. doi:
http://dx.doi.org/10.1109/cvpr.2000.854761
[8] D. Comaniciu and V. Ramesh, “Mean shift and optimal predic-
tion for efficient object tracking,” in Image Processing, 2000. Pro-
http://dx.doi.org/10.1109/icicip.2000.899297. ISSN 1522-4880 pp.
70–73.
patterns of motion and appearance,” in Computer Vision, 2003. Pro-
3, July 2014. doi: http://dx.doi.org/10.5121/ijit.2014.3304
Technical University of Lodz, Institute of Electronics, Brussels, Tech.
[13] A. Yilmaz, K. Shaﬁque, N. Lobo, X. Li, T. Olson, and M. A. Shah,
“Target-tracking in ﬂir imagery using mean-shift and global motion
compensation,” in Workshop on Computer Vision Beyond the Visible
[14] G. R. Bradski, “Real time face and object tracking as a compo-
ment of a perceptual user interface,” in Proceedings of the Fourth
IEEE Workshop on Applications of Computer Vision, 1998. doi:
http://dx.doi.org/10.1109/acv.1998.732892
[15] I. Michael and B. Andrew, “Condensation — conditional density prop-
agation for visual tracking,” International Journal of Computer Vision,
[16] N. Gordon and D. Salmon, “Bayesian state estimation for track-
ing and guidance using the bootstrap filter,” Journal of Guidance,
Control and Dynamics, vol. 18, no. 6, pp. 1434–1443, 1995. doi:
http://dx.doi.org/10.2514/6.1993-3701

\begin{table}[h]
\centering
\caption{Comparison of the CAMSHIFT and the implemented PF tracker.}
\begin{tabular}{|c|c|c|}
\hline
 & CAMSHIFT & PF tracker \\
\hline
Mean of ground truth and tracking result overlap & 0.53 ± 0.06 & 0.62 ± 0.10 \\
\hline
Mean of hit ratioa & 0.79 ± 0.02 & 0.87 ± 0.04 \\
\hline
Mean number of Mean-Shift iterations per frame & 1.90 ± 0.52 & n.a. \\
\hline
Mean execution time per frameb & 0.73 ± 0.03 ms & 5.55 ± 0.00 ms \\
\hline
\end{tabular}
\end{table}

aHit ratio is the percentage of overlaps greater or equal to 1/3.
bIt should be noted that both the PF tracker and the evaluation script
for the CAMSHIFT were implemented in Python, which tends to be slow.

