

Abstract—The widespread use of the HTTP and hypertext

makes it possible to freely publish new information and expose

it in the context of its description. Unfortunately, this is

a human-centric environment that cannot easily be adapted to

an application-centric approach, which is required to provide

distributed enterprise management and real-time process

control. In this article new architecture is presented that can

provide a generic solution for publishing and updating

information in the context that can be used to describe and

discover it. It is proposed to distribute the publisher (server)

tasks to three classes: (a) information context management

using the object oriented programming paradigm, (b)

a predefined fixed set of services to access data and meta-data,

and (c) a pluggable custom process data binding mechanism. It

is also proposed to implement this architecture using the OPC

Unified Architecture - a new emerging industrial integration

standard.

I. INTRODUCTION

EFORE commencing discussion about how to use the

Internet the question “What is it?” must be addressed.
Usually we can hear a definition like that: “the public
worldwide computer network system that carries a vast array

of information resources and services”. It seems to be too

broad for further discussion. From the definition, it is

networking technology providing access to information

resources and services. “To get access”, the information
transfer must be carried out between the Internet users, i.e. a

resource or service provider and its consumers. To enable

this, the following assertions must be made:

 Communicating parties must use the Internet protocol

(IP) [1];

 All access points to the Internet communication

infrastructure must have globally unique addresses;

 Users must be attached to those access points.

As long as the above rules are obeyed the communicating

parties use Internet communication – colloquially, they are

connected to the Internet. Reversing this sentence, we can

say that the Internet is an infrastructure connecting any

entities following the above principles. From the user point

of view that is all, but to traverse information over the

network the Internet infrastructure must be smart enough to

locate the access points.

From any ICT solution we would expect information

processing rather than having only interconnection between

the Internet access points. To meet this requirement the

Internet users must be processing engines rather than hosting

applications responsible for this work. Application to

application connectivity is, therefore, required that can be

provided by an additional transport protocol. Examples of

such protocols are TCP (connection oriented) and UDP

(connectionless). It is worth stressing that we can use a

variety of protocols as the transport protocol and the above

assertions still hold true.

On the other hand, any user expecting information

processing from the communicating party is interested in

selecting appropriate functionality, but not a particular

application instance. Therefore, we can distinguish three

meanings of the transport protocol address, called a port:

 Functionality selector – for a consumer interested in

utilizing a particulate information resource or service;

 Functionality publication end point – for servers

offering resources or services;

 Address to identify sending and receiving application

end-points – for the protocol stack.

The TCP and UDP protocols share the same address space

with a capacity of 64k end points. Even today, having so

many applications hosted on any network node is impractical

and hard to manage. Unfortunately, mapping between

functionalities and their identifiers is static, which means that

the majority of available port numbers are globally unique

functionality identifiers governed by the Internet Assigned

Numbers Authority (IANA). The others called

dynamic/private ones are not assigned and used to identify

sending and receiving application end-points only.

Using a global dictionary instead of a description,

discovery and integration mechanism results in a fully

exhaustion of transport protocol address space and the

registration of new functionality becomes very difficult.

Therefore, to communicate over the Internet, users need to

select one from the 49152 existing options.

The selection should be based on well-defined

requirements, but how to define the requirements having

only the general assumption that we expect access to the

B

Object Oriented Internet

 Mariusz Postol
Technical University of Lodz

Institute of Computer Science

ul. Stefanowskiego 18/22, budynek

A14, 90-924 Łodź, Poland

Email: postol@zsk.p.lodz.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1069–1080

DOI: 10.15439/2015F160

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1069

information resources or services. Many aspects may be

taken into consideration. For the above assumptions

a solution that allows server to freely publish new resources

and services is needed. A globally acceptable discovery and

integration mechanism is a possible option. Alternatively,

another protocol must be selected on the following

assumptions:

 The publishing server is responsible for managing the

address space;

 The protocol provides an infinite address space

capacity;

 The protocol is transparent for the payload transported.

The above assumption make the Internet a publication

platform containing countless resources, but, to be useful,

consumers must be allowed to find the appropriate ones

using a description and discovery mechanism. It requires that

publisher must provide additional information (meta-data),

which describes the resources to allow the selection.

Additionally, the descriptions must be coupled with

addresses to selectively access them. For human-centric

solutions a graphical interface is an appropriate mechanism.

HTTP [1] as a protocol and HTML [2] (more general a

hypertext) as a description language are the big winners

selected by millions of people and they have led to the

establishment of the World Wide Web.

Unfortunately, for application to application connectivity

a programming interface (API) is required. Because

community acceptance and reuse of the existing solutions is

so important for the Internet evolution, a new solution –

called web services - atop HTTP has been developed by the

World Wide Web Consortium (W3C) [2]. This

specifications suit is commonly referred to as WS-* and

contains:

 Simple Object Access Protocol (SOAP) to use the

services;

 Web Services Description Language (WSDL) to

describe the services;

 Universal Description, Discovery and Integration

(UDDI) to get access to the services description.

To obtain applications interoperability all clients

consuming services provided by a server offering them must

conform to a WSDL specification prepared in advance that

defines a contract between them. Hence, this process

requires software development and, because WSDL cannot

provide complete semantics of the service, the process is

usually manual and requires conformance testing. There are

no good global scope solutions of this issue. Today solution

is for the server publisher organization to provide

complimentary compliant client applications. In this

approach, typical problems like operating system

dependence, software updating and versioning must be

solved. Finally, it leads to a static solution where

functionality is exposed as a fixed set of services.

It seems that the next level of abstraction is needed to

meet the above mentioned goal and allow the server to freely

publish resources and services. Generally speaking, all ICT

systems are expected to provide information processing

capabilities. Information is an abstract knowledge; it cannot,

therefore, be directly processed by physical machines. To

make information capable of being processed, it must be

represented as computer-centric binary data. To propose

a solution that meets those requirements two questions

should be addressed:

 How to get access to (transport) the process data?

 How to represent (model) the information?

To answer the first question we need a globally accepted,

platform-neutral (assuring that the above stated assertions

hold true) communication standard that allows also

addressing the second question, i.e. designing of an

appropriate Information Model.

Fig. 1 OPC Unified Architecture archetype

The OPC Unified Architecture (UA) (Fig. 1) technology

[3], [4], [5], [6] meets all the requirements, because:

 It is Internet based technology;

 It is a platform neutral standard allowing easy

implementation on any system including embedded

systems;

 It is designed to support complex data types and object

models;

 It is designed to achieve high speed data transfers using

efficient binary protocols;

 It is scalable from embedded applications up to the

process control and enterprise management/operation

systems;

 It has broad industry support and is being used in

support of other industry standards such as ISA S95,

ISA S88, EDDL, MIMOSA, OAGiS, etc. [7].

It is a broad class of application domains where business

IT and control systems are converged in a global scope to

make a large whole with the aim to improve performance as

the result of the macro optimization and synergy effect. One

of the main requirements of the Industrial ICT is to provide

a consistent mechanism for the integration of the vast

varieties of systems. This requirement can be met as the

result of employing the OPC Unified Architecture (UA) as

the mechanism for the integration. It is assumed that it

1070 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

should be robust and the implementation should be platform

independent. Fig. 1 illustrates the architecture of the

proposed solution. In this approach three elements are

distinguishable from the typical client server archetype:

 OPC UA: an interface representing invariable Service

Model [8] responsible for providing client/server

connectivity;

 Information Model: application domain unique

description of a context the process data is made

accessible in to the clients.

 Processes: source of exposed information resources and

services hereinafter referred to as process data.

To make systems interoperable, the data transfer

mechanism must be associated with a consistent information

representation model. OPC UA uses an object as

a fundamental notion to represent data and activity of

underlying processes (see Sec. II.B). The objects are

placeholders of variables, properties, events and methods

and are interconnected by references. This concept is similar

to well-known object oriented programming (OOP) that is

a programming paradigm using "objects" – data structures

consisting of fields, events and methods – and their

interactions to design computer programs [9]. The OPC UA

Information Model [10], [11] provides features such as data

abstraction, encapsulation, polymorphism, and inheritance.

The OPC UA object model allows servers to provide type

definitions for objects and their components. Having defined

types in advance, clients may provide dedicated

functionality, for example: displaying the information in the

context of specific graphics.

The OPC UA information modeling concept (Sect. III) is

based on layers, which step by step expand the basic model

provided by the OPC UA Specification [19]. The

Information Model is abstract and hence, in a real

environment, it must be implemented in terms of bit streams

(to make information transferable) and addresses (to make

the data selectively available). To meet this requirement,

OPC UA introduces a node notion as an atomic addressable

entity that consists of attributes (value-holders) and

references (address-holders of coupled nodes). The set of

nodes that an OPC UA server makes available to clients is

referred to as its Address Space [4], [5], [12], which enables

representation of both underlying processes environment and

its behavior. The Address Space exposed by the server

makes up a context the process data is made available in to

the clients (Fig. 1). Creation of this context (Sec. IV)

depends on an application domain unique Information

Model.

Processes in Fig. 1 represents a class of functions

responsible for getting access to business or industrial

processes source of exposed information resources and

services hereinafter referred to as process data.

Basing on the defined typical enterprise systems structure

and requirements [25], a new architecture is proposed (Sect.

IV) where an intermediate component called Process

Observer is proposed. The model allows for significant

reduction of the solution complexity, but the implementation

of this model proves that the architecture additionally could

increase robustness by adding redundancy. The example

(sect. V.B), where the presented model has been used, shows

that the approach can be a platform for multi-enterprise

collaboration to benefit from synergy effect and macro

optimization.

Sect. III, III.C and IV describe novel architectural

proposal and corresponding communication algorithms

allowing building robust real time distributed systems. A

case study where the presented solutions have successfully

been implemented is in Sect. V.

II. OPC UNIFIED ARCHITECTURE KEY FEATURES

A. Service Oriented Architecture

At the very beginning of a new solution development the

question about its fundamental paradigms and architecture

must be addressed. Observing continuous evolution of the

ICT domain, it seems that finding a solution that will

guarantee an unlimited lifetime is a real challenge. However,

decoupling the solution from any base technology increases

the chance of its surviving the disappearance of the base

technology from the market. Fortunately, as mentioned

above, there are many options on how to get applications

interconnected over the Internet. Developing services and

deploying them using Service Oriented Architecture (SOA)

is the best way to utilize ICT systems to meet this challenge.

A service differs from an object or a procedure because it is

defined by messages that it exchanges with other services.

SOA defines the way in which services are deployed and

managed. Adopting of the SOA approach increases reuse,

lowers overall cost, and improves the ability to rapidly

change and evolve systems, whether old or new.

To make systems interoperable, any even brilliant idea is

not enough - a data transfer technology is needed, however –

when defining data exchange in context of messages – we do

not need to bother about different technologies used by the

participants as long as they can absorb the messages.

Today, an ideal platform for the SOA concept

implementation is Web Service technologies. Web Services

are a set of standards based on XML (eXtensible Markup

Language) and developed by W3C (World Wide Web

Consortium) [2] marked with a WS-* symbol. Because the

WS-* standards are developed without any initial assumption

concerning the underlying system platform they are

implemented on, they therefore must precisely define what

must be on the "wire".

The WS-* standards are the basic foundation for OPC UA

but, using them alone, would not be enough to reach the

expected data throughput performance in industrial

applications. To promote scalability, the OPC UA suite of

protocols, therefore, expands the WS-* standards by defining

a few proprietary ones that can be used alternatively. OPC

MARIUSZ POSTOL: OBJECT ORIENTED INTERNET 1071

UA messages may be encoded as an XML text or in binary

format for efficiency purposes.

B. Object Oriented Information Model

OPC UA uses an object as a fundamental notion to

represent data and activity of an underlying processes

system. The objects are placeholders of variables, events and

methods and are interconnected by references. This concept

is similar to well-known object oriented programming (OOP)

paradigm [9]. The OPC UA Information Model [4], [5],

[10], [11] provides features such as data abstraction,

encapsulation, polymorphism, and inheritance.

The OPC UA object model allows servers to provide type

definitions for objects and their components. Type

definitions may be abstract, and may be inherited by new

types to reflect polymorphism. They may also be common or

they may be system-specific. Object types may be defined by

standardization organizations, vendors or end users. Each

type must have a globally unique identifier that can be used

to provide description of the information meaning, i.e.

semantics from the defining body or organization. Using the

type definitions to describe the information exposed by the

server allows:

 Development against type definition;

 Unambiguous assignment of the semantics to the data

expected by the client.

C. Abstraction and Mapping

Interoperability of applications can be achieved if

communicating parties are able to interchange streams of bits

and assign to these streams the same meaning without any

ambiguity. Unfortunately, the representation of information

on the wire, and communication protocols are subject to

continuous evolution, if not revolution nowadays. This could

be dangerous for any long term initiatives. Because it is

impossible to stop the progress of technology changes, some

other precautions must be taken to keep the specification

alive within a long term horizon. It is achieved by clear

separation of definitions provided by the specification from

their actual implementation. It makes OPC UA seamlessly

portable from one technology to another. Mappings defined

in the specification [13] set forth how to implement an OPC

UA feature using a specific technology.

D. Security

Security is the fundamental aspect of computer systems, in

particular those dedicated to enterprise and process

management. Especially in this kind of applications, security

must be robust and effective. Security infrastructure should

also be flexible enough to support a variety of security

policies required by different organizations. OPC UA may

be deployed in diverse environments; from clients and

servers residing on the same hosts, throughout hosts located

on the same operation network protected by the security

boundary protections that separate the operation network

from external connections, up to applications running in

global environments using public network infrastructure.

Depending on the environment and application requirements,

the communication services must provide different

protections to make the solution secure [14].

OPC UA Security is concerned with the authentication of

clients and servers, the authorization of users, the integrity

and confidentiality of their communications and the auditing

of client server interactions. To meet this goal, security is

integrated into all aspects of the design and implementation

of OPC UA servers and clients.

OPC UA relies upon the site cyber security management

system to protect confidentiality on the network and system

infrastructure, and utilizes the public key infrastructure to

manage keys used for symmetric and asymmetric encryption

[15]. OPC UA uses symmetric and asymmetric encryption to

protect confidentiality as a security objective, as well

symmetric and asymmetric signatures to address integrity as

a security objective.

E. Profiles

OPC UA is designed to support integration of wide range

of servers, from plant-floor control devices to enterprise

management and operation systems. All of them are

characterized by a variety of performances, execution

platforms and functional capabilities. Therefore, OPC UA

defines a comprehensive set of capabilities servers may

implement a subset of. These subsets are referred to as

Profiles, and servers may claim conformance to them.

F. Robustness

Because it is to be used in the production environment

including real-time process control applications, OPC UA is

designed especially to provide robustness of the remote

access to the underlying process data. OPC UA provides

mechanisms for clients to quickly detect and recover from

communication failures associated with transfers without

having to wait for long timeouts provided by the underlying

protocols [16].

III. INFORMATION MODEL

A. Concept

The primary objective of the OPC UA server is to expose

information resources and services, which then can be used

by clients to manage an underlying real-time process or the

entire enterprise as a large whole with the main challenge of

integrating systems and management resources into one

homogenous environment. Information describes the state

and behavior of the processes and the server must be able to

transfer it in both directions. The main challenge of the OPC

UA Information Model is to support this transfer by a unique

and transparent means in spite of the process complexity and

roles of clients in the enterprise management hierarchy.

Information is an abstract knowledge; therefore it cannot

be directly processed by physical machines. To make

information capable of being processed, it must be

1072 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

represented as the binary data. To define the relationship

between information and binary data on the one-to-one basis,

syntax and semantics are needed. Syntax defines rules of the

vocabulary usage, and semantics maps valid bits pattern to

the associated piece of information.

An Information Model for OPC Unified Architecture is

such a collection of vocabulary, syntax and semantics. This

collection plays a role similar to high level programming

languages that describe data structures and an algorithm to

be executed by the processor.

Information exposed by the OPC UA server may be

complex. Clients may, therefore, want to obtain the

information definition. Generally speaking, to select

a particular target piece of information we have two options:

random access or browsing. Random access requires that the

target entity must have been assigned a globally unique

address and the clients must know it in advance. We call

them well-known addresses. The browsing approach means

that the clients walk down available paths that build up the

structure of information. For example hypertext document

containing URL’s locating recursively hypertext documents
and other resources.

It seems that, in spite of the access method, we have to

assign an address to all of the accessible items in the

representation of the information structure. Therefore we call

the collection of these items the Address Space [4], [5], [12].

This atomic addressable item is called a node. Each node is

a collection of predefined set of attributes that have values

accessible locally in context of the node. To represent

information about the internal structure, nodes are

interconnected by references.

Accessing information by clients is the first aspect of

controlling the data stream between the clients and the

underlying process environment of the server. Another one is

creating and maintaining the Address Space in real-time.

To create the Address Space, we need to instantiate nodes

and interconnect them by references. Instantiating nodes

operation requires assigning appropriate values to attributes

and adding references. To make information internally

consistent as a large whole, we need rules governing the

creation and modification processes. The Information Model

implies these rules using the following two concepts:

 NodeClass – as a formal description of the node

defining the allowed attributes and references;

 Type – as a formal description of the node defining the

allowed attributes and references values.

For the client to understand the Information Model, it

must be predefined or exposed.

Available NodeClasses are predefined, i.e. the

specification provides a strictly defined non-extensible set of

NodeClasses. Each one is assigned a dedicated function, e.g.

Variable NodeClass defines nodes that provide a value, and

Method NodeClass represents a function.

Like the NodeClass concept, the specification provides a

set of predefined types, which is extensible. According to the

above rule, all not predefined types must be exposed in the

Address Space. To expose predefined and proprietary type

definitions in the Address Space, there are dedicated

NodeClasses, namely ObjectType, VariableType and

ReferenceType. For example, nodes of the VariableType

NodeClass provide clients with definitions of types derived

from the BaseVariableType that is a base type for all

variables. The main role of the types represented by the

above NodeClasses is to provide a description of the

Address Space structure and to allow clients to use this

knowledge to navigate to desired information resources

(represented by the Variable nodes) and services

(represented by the Method nodes) in the Address Space

exposed by the OPC UA server.

DataType NodeClass is also dedicated to describe types.

In this case, the represented types have a special mission,

because they describe underlying process data that client has

access to using a connection to the OPC UA server. For

example, a node of the DataType can provide information to

clients that the data has a numeric value and the clients

reading it can use this knowledge to interpret and process the

obtained value.

Types are called metadata since they describe the data

structure (context) not the actual data values.

Even though the OPC UA specification contains a rich set

of predefined types, the type concept allows designers to

freely define types according to the application needs. New

types are derived from the existing ones. The derived types

inherit all features of the base types but can include

modifications to make the new types more appropriate for

information that is to be represented.

The Address Space concept based on types can be

a foundation for exposing any information that is required.

Clients understand the Address Space concept and have

a browse service to navigate through the Address Space.

Since browsing is based on the incremental and relative

passage among nodes it is apparent that each path must have

a defined entry point, so the question as to “where to start"
must be addressed. To meet this requirement, the Address

Space must have a predefined template containing well

defined nodes that can be used as anchors from which

a client can start browsing the Address Space content. Thus

to design an Address Space and define new types, they must

be derived from the existing ones. At the very beginning the

only existing types are the standard ones defined by the

specification. The available standard types are briefly

described in the Section III.B.

B. Standard Information Model

The primary objective of the OPC UA Address Space is to

provide a standard way for servers to represent objects to the

clients. The Object NodeClass is used to define objects.

Each object in the Address Space has an assigned

ObjectType. The specification has provided a

MARIUSZ POSTOL: OBJECT ORIENTED INTERNET 1073

BaseObjectType from which all other ObjectTypes shall

either directly or indirectly inherit.

Variable NodeClass is dedicated to provide a value to the

clients. To define a Variable two types must be provided:

• VariableType: describes the type of a variable. Each

Variable node has the HasTypeDefinition reference to its

type definition.

• DataType: describes the type of the value of the

variable. It is assigned to the DataType attribute.

The type of data provided by the Variable Value attribute

is defined by the associated DataType. DataType is pointed

out by the DataType attribute of the Variable and

VariableType nodes. In many cases, the value of the

DataType attribute will be well-known to clients and servers.

Well-known data types allow clients to use random

addressing and interpret values without having to read the

type description from the server.

To some standard data types – called built-in types -

special rules apply. Built-in data types are a fixed set that

should be known to all OPC UA products. Examples of

built-in data types are Int32 and Double. Most of the built-in

data types are similar to those in programming languages.

Process data could be complex. Structure is an abstract

data type defined as the base for all structured types. All

complex data, if not defined in the specification explicitly as

primitive, are created by defining of new types derived from

the Structure.

Reference types are used to create interconnections

between nodes. They are not instantiated, i.e. a NodeClass

representing a reference is not defined. Instead of

instantiating the references, they are added to a collection

associated with each node. NodeClass of the node and its

type decide what references are allowed to be added to this

collection.

The base of all references is an abstract References type.

There is no semantics associated with it. There are two

disjoint sets of standard references:

• HierarchicalReferences

• NonHierarchicalReferences

This distinction reflects two fundamental relationship

categories that can be generally distinguished: the

association and the dependency. Associations are used to

build information architecture – nodes hierarchy - that can be

discovered by the clients using the browsing mechanism. An

example of the association is the “parent/child” relationship.

In this case it can be said that the target belongs to the

source. A dependency of a source element (called the client)

on a target element (called the supplier) indicates that the

source element uses or depends on the target element. An

example of dependency is the variable and the variable type

relationship. In this case the target describes the source.

C. Extending OPC UA Information Model

The standard OPC UA Information Model is expandable.

For example, in 2008 the OPC Foundation announced

support for Analyzer Devices Integration into the OPC

Unified Architecture and created a working group composed

of end users and vendors with its main goal to develop a

common method for data exchange and an analyzer data

model for process and laboratory analyzers. In 2009 the OPC

Unified Architecture Companion Specification for Analyzer

Devices was released [17]. To prove the concept a reference

implementation has been developed containing ADI

compliant server and simple client using the Software

Development Kid released by the OPC Foundation [17].

It is an example of how OPC UA standard Information

Model can be expanded by a selected domain application.

Standardized expandability of the metadata used to provide

a context of underling process data is key requirements of

the presented Object Oriented Internet concept.

In this example, the model described in the specification is

intended to provide a unified view of analyzers irrespective

of the underlying device. This Information Model is also

referred to as the ADI Information Model. As it was

mentioned, analyzers can be further refined into various

groups, but the specification defines an Information Model

that can be applied to all the groups of analyzers.

The ADI Information Model is located above the DI

Information Model [18] [19]. It means that the ADI model

refers to definitions provided by the DI model, but the

reverse is not true. To expand the ADI Information Model,

the additional layers shall be provided.

IV. INFORMATION MODEL DEPLOYMENT

The OPC UA is a standard that allows clients to get access

to the server underling processes. To meet this objective,

each server instantiates and maintains an Address Space that

is a collection of data to be exposed to clients. The OPC UA

Address Space consists of nodes and references. The main

role of the nodes is to expose the underlying processes state

and behavior as a selectable, well-defined piece of

information.

To create the Address Space the OPC UA servers must

instantiate all nodes and interconnect them by means of

references.

As it was stated previously, typical implementation

architecture consists of OPC UA Clients, which are

connected to an OPC UA server (Fig. 1). To get access to

underlying Processes data a generic client does not need to

have any awareness of the Information Model used to create

the Address Space exposed by the sever in advance.

However, in the production environment, the Information

Model (types) knowledge may be useful to offer additional

functions, like dedicated data processing, customized control

panels or predefined structure of the database tables. Types

knowledge also simplifies configuration of the clients,

because all of the items composing the complex process

information can be accessed simultaneously – they can have

one single address – identifier.

1074 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

To implement the Address Space two questions must be

addressed [20]:

 How to couple the nodes bi-directionally with the

underling process data sources?

 How to create and maintain it?

Using the instantiated nodes by means of a well-defined

set of services [8] (OPC UA interface), clients get access to

data representing a selected part of the underlying processes

environment. Nodes are divided into classes. The Variable

class is used to represent the values – has the Value attribute.

To be used as the process state representation, the value of

the Value attribute must be bound with a real data source,

e.g. an analog signal or a database item. The Method class

represents a function that can be called by the clients

connected to the server. In this case the real-time process

bindings are responsible for conveying the parameter values,

invoking the represented series of operations and returning

the execution result. In Fig. 1 both classes are the main

building blocks of the architecture that allow the server to

couple the exposed Address Space with the current state and

behavior of the underlying Processes.

Fig. 2 Process Observer archetype diagram

The technique of binding the nodes with process data is

vendor specific, but it must be transparent to the Clients.

Nodes management functionality on the Client part is

standardized by the OPC UA Service Model [8] (OPC UA

interface - as a set of services depicted in Fig. 2). Access to

the values representing the current process state is provided

by the Read/Write functions. The client can also be informed

about changes of the process state using "data change"

notifications. Invoke and event notification functionalities

allow clients to use the Methods.

In Fig. 2 the proposed internal diagram of the OPC UA

Server package is shown. To implement the functionality

presented above, three coupled function classes shall be

distinguished:

 Services

 Nodes Management

 Data Access

The diagram in Figure 2 shows the associations between

the above function classes. In this architecture the Data

Access is responsible for transferring process data up and

down. The Nodes Management function class couples the

Processes data with appropriate nodes instances representing

underling process metadata and provides a homogenous

picture to Services that finally exposes it to all connected

clients.

Real-time process data can be obtained from any

underling process, i.e. file system, database, device or even

large scale highly distributed automation system. For

embedded applications it may directly use internal controller

registers of the device. The Data Access function class is

able to obtain data using the random access or underlying

communication infrastructure and vendor-specific protocols.

To create the Address Space - i.e. to instantiate all nodes

and interconnect them by means of references - the Nodes

Management function class uses a predesigned static

Information Context (dependent on the Information Model –

not shown in Fig. 2) providing a detailed description of all

the nodes, including their attributes and references. Static

means that the model is predefined for the selected

environment, but it does not mean that the exposed Address

Space is static. In this approach, nodes can be instantiated

and linked dynamically, however this operations must

conform to the model definition. Dynamic behavior of the

Address Space can be controlled by the connected clients

using services or by the current state of the process.

Before nodes making up the Address Space can be

instantiated by the server, this Address Space must be

designed first. Model designing is a process aimed at

designing Information Model as a set of nodes and their

associations and, next, creating the Information Context as

its representation in a format appropriate for the

implementation of the Nodes Management function class.

Depending on the OPC UA server implementation, the

Information Model representation and support for the

modeling process varies. The main challenge that must be

faced up is how to prepare Information Context seamlessly

without programming. The designing process can be

supported by the Address Space Model Designer tool [19],

[21], [22] that is intended to help architects, engineers and

developers accomplish Information Context preparation.

Using the tool it could be similar to preparation of

a hypertext document.

The tool developed by a team leaded by the author is very

useful to make the publication of the process data in the

context of metadata straightforward and without

programming, but it is only proof of the solution concept. To

promote the Object Oriented Internet concept in a wider

scope more research is required with the goal to define

a formal, widely accepted representation of Information

Model, semantic validation methods, generation of the

Address Space and custom complex data serialization to

leverage the deliverables to the designers, developers, end

user, etc. and to integrate them into other applications. It is

proposed to carry on this research work as a common effort

MARIUSZ POSTOL: OBJECT ORIENTED INTERNET 1075

using an open source project [23] as the research workspace,

which offers basic work framework and very convenient

project management utilities available on the well-known

GitHub platform. In other words, applications

interoperability is yet granted by the OPC UA standard, the

next step is to work out unification of the

designing/deploying methods and supporting tools to make

people cooperation possible and finally the Object Oriented

Internet a real option.

V. ACCESSING INFORMATION RESOURCES

A. Architecture

According to the definition the Internet is expected to

provide access to information resources and services

hereinafter referred to as data sources. For the architecture

proposed in Fig. 2 the Data Access functional class is

responsible for fulfilling this job. Because the underling

information resources and services are to be exposed in the

context of the Address Space the functional class Nodes

Management is responsible for binding the underlining data

sources with appropriate variable and method nodes

embedded in the Address Space. These variables and

methods are accessible by the remote clients using the

standard OPC UA interface provided by the Services

functional class

In the proposed approach there are no limits regarding

possible data sources that can be coupled by the Data Access

with Nodes Management. Generally, three classes of data

sources can be distinguished:

 Data representing the current state and behavior of the

underling real-time industrial processes;

 Archival data representing the behavior of the underling

processes in time;

 Current processed data obtained from business

supporting applications and other connectivity

standards.

A typical example of the real-time physical processes is

the industrial automation process control system. The

process control contains digital plant floor devices

responsible for measurements, controlling and condition

monitoring of the real-time process locally. Usually, the

predominant function in this case is accomplished using PLC

(Programmable Logic Controller) or DCS (Distributed

Control System) class products. In a distributed process, one

can distinguish autonomous islands of automation, whose

cooperation has to be harmonized by a supervisory system

that is responsible for controlling the process as a larger

whole.

To get access to the plant floor devices and couple them to

the Nodes Management functional class underlying

proprietary communication links must be instantiated.

Although from the design point of view this communication

can be considered transparent, its availability and reliability

is crucial for the final result. Assuming transparency, it

simplifies the problem to a great extent, provided that the

assumption is valid.

To instantiate a link we need a medium. To transfer data

over the medium, we have to use selected protocols

controlling access to the medium and responsible for robust

data transfer. Additionally, the protocol and medium often

limit the bandwidth and medium access. Any of these

requirements can cause that the above assumption and, in

consequence, this approach becomes unreal. Therefore, we

need to look for a compromise between an unacceptable

complexity and unreal assumption.

To make the plant floor device interoperable with the

Data Access functional class, both have to use the same

vendor-specific or standard-compliant protocol. Relying on

vendor-specific solutions limits future solution

expandability. Generally, it is, therefore, not recommended

and vendors usually offer a standard protocol for plant floor

devices. Unfortunately, there are hundreds of “open
standards” defined in the automation marketplace.

For the highly distributed process control systems (like

smart grid, smart heat distribution networks, etc.) assuming

that the whole system uses one common communication

medium is not feasible [24].

Lack of common medium coverage of the whole area that

the controlled process is dispersed over requires engaging

simultaneously many communication infrastructures, and

dealing with a multidimensional communication network.

The main advantage of using many infrastructures is the

possibility of improving robustness of the system by

providing communication redundancy [24] in overlapping

areas provided that it is possible to utilize them alternatively.

To transfer the data, we need a medium, but to use the

medium, we need to engage an infrastructure: a technology

(Internet, GSM, satellite, ISDN, etc.) governed by technical

standards and an organization governed by regulations,

procedures, practice, etc. A platform optimal today may be

useless for future because technology is progressing rapidly

and economical standing of organizations may fluctuate.

To address all issues described above the Data Access

functional class has to be expanded to employ appropriate

communication functionality. It is proposed to implement

Process Observer architecture presented in next section as an

extension to manage the underling communication

infrastructure and transfer process data in real-time in a

systematic manner.

The next example of the underlying data source is a

repository containing manufacturing process information,

like data base or even a data warehouse. Data warehouses

are designed to facilitate reporting and analysis. This kind of

application focuses on data retrieving and analysis, to

extract, transform and load data.

To interconnect with an archival processes data repository

the Data Warehouse extension of the Data Access functional

class has been added to the proposed architecture in Fig. 2.

1076 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Data without context has no meaning, hence metadata is

critical to a data strategy. Designing a data binding

mechanism both data and metadata must be considered. The

Data Warehouse extension is responsible for providing an

appropriate translation (according to the OPC UA

Information Model) between metadata of the underling

process data and the context of the server Address Space

where the data is made available to the clients. Simplicity of

this relationship is crucial to the business, because metadata

exposed by the OPC UA server and metadata describing the

underling repository content must be designed on the basis of

the same semantics rules. In the design process, where the

metadata originates and how to synchronize it should be

addressed first.

Usually, apart from the historical data access mechanism

OPC UA clients use real-time data access subscribing to

current data changes. Therefore, the Data Warehouse must

be smart enough to provide updates by following the

repository modifications.

Business Intelligent (BI) applications are a keystone for

macro optimization at the enterprise level because they

provide an insight into data, which allows analysts and

executives to easily uncover patterns and abnormalities in

the business [26]. In the late 90s organizations also

implemented enterprise resource planning (ERP) and

customer relationship management (CRM) software that can

be candidates for the next data source. There are many other

business level applications (BLA) processing information

and providing results that can be published by the OPC UA

server in the Internet using the Object Oriented approach.

Usually a data warehouse (DW) is a central part of today's

BLA and real-time process control deployment and hence

the archival data may be available also indirectly via the

Business Management or Process Observer data bindings.

The cornerstone of a successful BI application is its

capability to provide business users fast and easy access to

data for analysis. Online analytical processing (OLAP) tools

are a foundation of BI application. In the discussed

architecture, another option is to distribute BI application

over the Internet and couple the OPC server exposing OLAP

functionality to the remote applications.

The implementation of the above described functional

classes requires a dedicated link used to manage data

transfer. Data transfer for the most popular database

management systems are governed using Structured Query

Language [27]. It is a language rather than connectivity, but

can be used together with widely used vendor services to

standardize the data access and simplify the Data Warehouse

implementation.

To make the enterprise more and more beneficial, the

applications supporting automation and business processes

have to be integrated. From integration, we should expect

additional performance improvement as a result of synergy

and real-time macro optimization effects. Enterprise Service

Bus (ESB) [28] is a standard-based concept and hence it is

well suited for integration projects. The ESB provides a

highly distributed, event-driven Service Oriented

Architecture (SOA) that combines Message Oriented

Middleware (MOM), web services, XML data

transformation and intelligent routing based on content.

Using ESB as a foundation for the applications integration

allows for implementation of the OPC UA server data

bindings by interconnecting of the Data Access with this bus.

In the architecture presented in Figure 2 this role is fulfilled

by the ESB extension of the Data Access.

B. Process Observer Architecture

The Process Observer architecture described in [24], [25]

is proposed to be used as a consistent sole representation of a

distributed real-time process (Fig. 3). It is an extension of the

Data Access class (Fig. 2).

In the presented architecture the following classes are

distinguished:

 Cache is a collection of the latest values of the process

data.

 Controller holds the plant-floor device data description.

 Channel is used to represent independent

communication threads conducted simultaneously to

each other.

 Segment represents a single communication path and is

responsible for managing communication resources and

data transfer from a group of devices that is to be

accessed using the same transport connection.

 DataProvider is responsible for providing a stream of

data to the Segment.

 The Pipe is a collection of Ports, where only one of

them is active at any time.

 The Port represents a bidirectional device data

streaming functionality.

The description represented by the Controller is used to

schedule in time all read operations to update the data in the

Cache.

Usually, lower layer communication requires

multidimensional networks. The Channel class allows

creation as many simultaneous communication paths as it is

necessary. To assure mutually exclusive access to common

resources, the Channel activates only one Segment at any

time.

To provide a consistent process data from

multidimensional network environment and using custom

protocols the proposed solution enables to create many

DataProviders instances by a Channel and use them by

a data transfer algorithm realized by the Segment. Each

Segment can use only one DataProvider, but one

DataProvider can be used by many Segments associated

with the same channel.

To provide polymorphism for the environment specific

needs, the DataProvider is located outside the main software

package and inherits an interface ensuring flexible

management of the communication medium and transfer of

the process data. This solution makes it possible to keep the

MARIUSZ POSTOL: OBJECT ORIENTED INTERNET 1077

core software unchanged and adapt a Software Development

Kit to the specific needs. In this scenario, the late binding

approach is supported. Late binding is useful if it is required

to replace a part of software package without recompiling of

the code base. In this case, a variety of protocols might be

supported with a separate module for each protocol

specification. A declarative configuration can be used to tell

the application to use a specific module at runtime. Another

scenario where late binding can be useful is to enable users

of the system to provide their own customization through a

plug-in. Again, the system can be instructed to use a specific

customization by using a configuration setting.

Fig. 3 Process Observer Architecture

In a real environment, apart from accessing underlying

process data, monitoring and management of the recourses

and communication infrastructure are often of the same

importance. Monitor class (Fig. 4) represent this

functionality. To commence factory tests or provide a state

observer a simulation environment is required. Simulator

class is responsible to provide the simulated data and can be

used in place of the Protocol class for testing purpose. This

concept makes it possible to publish all of the mentioned

types of information in the same way using the defined

interface and late binding approach.

Fig. 4 DataProvider functions

In the proposed model (Fig. 3), the Pipe concept is used to

assure redundancy. After detecting a failure of the active

path, another Port belonging to the same pipe is activated

immediately. Segment uses only active Ports and, therefore,

the data is transferred over the network once only. The Pipe

checks availability of non-active paths periodically. Using

paths redundancy additional spare plant-floor devices can be

used seamlessly as the next level of redundancy.

The main job of the communication software is to make

`best effort' to keep the process data fresh and allow clients

to access the data randomly. From the communication point

of view, two independent communication environments can

be distinguished (Fig. 1):

 Processes connecting plant-floor devices to an

intermediate component (server);

 OPC UA Interface connecting the intermediate

component (server) to OPC UA Clients.

Because both are used to transfer the process data, it is

vital how these data transfer processes are related to one

another. To finally design an appropriate sampling

scheduling mechanism on the process side, we need to take

into consideration:

 Needs of the OPC UA Clients.

 Current real-time process state;

 Current communication path load and its throughput;

All of them can change in time and, therefore, it is

proposed to implement the following two unique closely

coupled costs saving algorithms providing process data just

in time and preserving communication bottlenecks:

 Adaptive Sampling Algorithm (ASA): responsible for

adjusting the plant-floor devices sampling rate

according to the current process state.

 Optimal Transfer Algorithm (OTA): responsible for

minimizing the difference between requirements of

client individual process data update rate and current

sampling rate of a process control devices;

To minimize the data transfer costs, the sampling rate is

adapted to the current process needs.

The Process Observer architecture is widely used as

a communication engine in highly distributed systems. The

supervisory control of a metropolitan heating system located

in the city of Lodz – Poland [24],[25] is an example. The

heat distribution network of Lodz (750k citizens) is supplied

from heat and power plants with total thermal output of

2.5GW. It consists of:

 3 heat and power plants,

 2 backbone pumping stations,

 Hundreds of backbone heat chambers

 Thousands of local distribution points.

Their optimal utilization requires a control system to allow

working on common supplying areas. As the system is

distributed geographically (about 800km of pipes), safe

communication between nodes (automation islands) is very

important. An implementation [25] of Process Observer

1078 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Architecture proves the concept in highly distributed

application.

The architecture presented in this section has been already

integrated with the OPC UA services, but further research is

required to integrate it with Information Model designing

methodology consistently. The main challenge is how to

support custom complex data. The complex data must:

 be factored using components gathered from the

underling process,

 follow the DataType declarations in the Information

Model,

 be transparently serialized over the wire.

VI. CONCLUSION

Nowadays, in such a fiercely competitive environment,

modern manufacturing and transportation automation

systems have to be involved. Such systems usually consist of

numerous different ICT systems located at business and

process management levels. They are frequently dispersed

geographically in multi-division organizations.

The Internet is a globally available communication

infrastructure that makes it the first and practically the only

candidate to be used as a platform to build a universal

solution for the above objectives and even to integrate

systems belonging to cooperating organization groups to

benefit from the synergy effect and global optimization.

The freely expandable Object Oriented archetype and its

practical implementation presented in the article prove that

the above goal can be achieved and the final solution offers

the following features:

 It provides application to application robust

interoperability over the Internet;

 On the server side, it makes it possible to freely publish

and update information and services in a contextual

(semantics aware) environment;

 On the client side, it makes it possible to get a

description, discover and finally get access to the

requested information and services;

 Information resources and services exposed by the

server that represent the state and behavior of the

underlying processes allow clients to manage and

control them over the Internet/Intranet;

 Client and server software can be offered by

independent vendors as generic off-the-shelf products;

 The products can be tested for interoperability

independently of each other.

To accomplish this it is proposed to distribute publisher

(server) main tasks to three functional classes:

 A predefined fixed set of services based on the SOA

concept conforming to the OPC Unified Architecture

specification;

 Information context management using the object

oriented programming paradigm;

 A pluggable proprietary data binding mechanism.

Development of generic communication software that can

be interoperable requires specification compliance testing. It

is proposed that OPC Unified Architecture, a new emerging

industrial standard that fulfils requirements derived from this

architecture should be used because it provides a definition

of an appropriate: set of services and Information Model

concept dedicated to formally describe the Address Space –

context for the exposed information resources and services.

It has wide industrial support and a well defined compliance

test procedure governed by the OPC Foundation.

Available reference applications and commercial products

pointed out in the article prove that the data binding concept

can be successfully implemented as dedicated application-

dependent pluggable components. The components must be

able to couple the proprietary underling data access

mechanism with the server mechanism managing the context

where the data is embedded and made available to connected

clients.

The approach to represent the underlying data processing

environment as presented in the paper can be used for

countless applications, from exposing the representation of

measurement devices to building multi-enterprise

management and remote process control systems. Smart

networks, i.e. smart grid, smart district heat distribution

networks, utility distribution, oil distribution, railways, etc.

are an example of applications like that.

It is worth nothing that to promote the Object Oriented

Internet concept in a wider scope more research is required

with the goal to define a formal, widely accepted

representation of Information Model, semantic validation

methods, generation of the Address Space and custom

complex data serialization to leverage the deliverables to the

designers, developers, end user, etc. and to integrate them

into other applications. In other words, applications

interoperability is yet granted by the OPC UA standard, the

next step is to work out unification of the

designing/deploying methods and supporting tools to make

people cooperation in this respect possible and finally the

Object Oriented Interned a real option.

It is proposed to carry on this research work as

a community effort using the open source project [23] as

the research workspace on the well-known GitHub platform.

REFERENCES

[1] Network Protocols Handbook, Javvin Press, 2007;

[2] http://www.w3.org/ The World Wide Web Consortium (W3C), 2015.

[3] M. Postol, UA Specifications, in J. Lange, F. Iwanitz, T. J. Burke,

OPC – from Data Access to Unified Architecture, Hüthig Fachverlag,
2010.

[4] http://www.commsvr.com/UAModelDesigner/ OPC Unified

Architecture e-book, 2015.

[5] W. Mahnke, S. Helmut L., M. Damm. OPC Unified Architecture.

Berlin: Springer, 2009.

[6] OPC UA Specification: Part 1 – Concepts, Version 1.0 or later. OPC

Foundation, 2009.

[7] https://opcfoundation.org/, The OPC Foundation - The

Interoperability Standard for Industrial Automation, 2015.

MARIUSZ POSTOL: OBJECT ORIENTED INTERNET 1079

[8] OPC UA Specification: Part 4 – Services, Version 1.0 or later. OPC
Foundation, 2009.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley 1995

[10] OPC UA Specification: Part 5 – Information Model, Version 1.0 or
later. OPC Foundation, 2009.

[11] M. Postol, Information model, in J. Lange, F. Iwanitz, T. J. Burke,
OPC – from Data Access to Unified Architecture, Hüthig Fachverlag,
2010.

[12] OPC UA Specification: Part 3 – Address Space Model, Version 1.0 or
later. OPC Foundation, 2009.

[13] OPC UA Specification: Part 6 – Mappings, Version 1.0 or later. OPC
Foundation, 2009.

[14] OPC UA Specification: Part 2 – Security, Version 1.0 or later. OPC
Foundation, 2009.

[15] C. Adams, S. Lloyd: Understanding PKI: Concepts, Standards, and
Deployment Considerations, Second Edition, Addison-Wesley
Professional, 2002;

[16] http://www.commsvr.com/Products/OPCUA/CommServerUA.aspx-
CommServerUA: Redundant, Multi-protocol, Multi-channel OPC UA
Server For Highly Distributed Systems, 2015.

[17] OPC Unified Architecture Companion Specification for Analyser
Devices. OPC Foundation, 2009.

[18] OPC Unified Architecture Companion Specification for Devices.
OPC Foundation, 2009.

[19] M. Postol, OPC UA Information Model Deployment, CAS, 2015,
http://goo.gl/HqYjvy

[20] M. Postol, Design and Modelling of the Address Space, in J. Lange, F.
Iwanitz, T. J. Burke, OPC – from Data Access to Unified Architecture,
Hüthig Fachverlag, 2010.

[21] http://www.commsvr.com/Products/UAModelDesigner.aspx – OPC
UA Address Space Model Designer software, 2010

[22] M. Postol, UA Address Space Model Designer, in J. Lange, F. Iwanitz,
T. J. Burke, OPC – from Data Access to Unified Architecture, Hüthig
Fachverlag, 2010.

[23] OPC UA Object Oriented Internet, Opc-ua-ooi open source project on
GitHub, http://mpostol.github.io/OPC-UA-OOI/, 2015

[24] M. Postol, Real-Time Communication for Large Scale Distributed
Control Systems; International Multiconference on Computer Science
and Information Technology; Wisła (2007) PIPS, pp. 849–859 ISSN
1896-7094

[25] M. Postol, Large scale distributed process and business management
integration; 14th International Congress of Cybernetics and Systems
of World Organization of Systems and Cybernetics, Wroclaw (2008),
pp. 632-642, ISBN 978-83-7493-400-8

[26] W. A. Giovinazzo: Internet-Enabled Business Intelligence, Prentice
Hall; 2002

[27] T. Connolly, Database Systems (2nd ed.). Addison-Wesley, 1999.
[28] David A Chappell: Enterprise Service Bus, O'Reilly Media, Inc.,

2004;
[29] J. Lange, F. Iwanitz, T. J. Burke, OPC – from Data Access to Unified

Architecture, Hüthig Fachverlag, 2010.

1080 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

