

Abstract–Steadily increasing complexity of software systems

makes them difficult to configure and use without special IT

knowledge. One of the solutions is to improve software systems

making them “smarter”, i.e. to supplement software systems with
features of self-management, at least partially. This paper

describes several software components known as smart

technologies, which facilitate software use and maintenance. As

to date smart technologies incorporate version updating,

execution environment testing, self-testing, runtime verification

and business process execution. The proposed approach has

been successfully applied in several software projects.

Keywords-Autonomic computing, smart technologies, self-

managing systems, software maintenance

I. INTRODUCTION

Rapid development of information technologies has

created systems of unprecedented complexity; some authors

[1] refer to as „computing systems with complexity
approaching boundaries of human ability”. They indicate that
the ultimate dream of a pervasive computing – billions of

computing systems simultaneously connected to the internet

– can quickly become unmanageable and may soon turn into

evil “nightmare”. The authors predict even further increase of

information systems’ complexity that would almost eliminate

human ability to perform software installation, configuration,

optimization and maintenance.

Solution to this problem certainly lies within prospects of

information technologies. In complex systems operations that

are too sophisticated to be managed by a regular user should

be entrusted to the system itself. This can be executed by

implementing respective components into software and

setting environment, in which the system is used.

IBM has proposed a solution described in its autonomic

computing manifesto in 2001. The main statement implies

targeted development of information systems that were able

to self-management thus overcoming gap between users and

increasingly complex world of information technologies.

 The research leading to these results has received funding from the

research project “Information and Communication Technology Competence
Center” of EU Structural funds, contract nr. L-KC-11-0003 signed between

ICT Competence Centre and Investment and Development Agency of Latvia,

Research No. 1.5 “Platform for business process description and modelling

in event-oriented systems”.

The manifesto listed four aspects of autonomic computing:

• Self-configuration - automated configuration of
components and systems follows high-level policies,
rest of system adjusts automatically and seamlessly;

• Self-optimization - components and systems
continually seek opportunities to improve their own
performance and efficiency;

• Self-healing - system automatically detects,
diagnoses, and repairs localized software and
hardware problems;

• Self-protection - system automatically defends
against malicious attacks or cascading failures.

Achievements of autonomic computing movement during

its first decade after publication of the manifesto have been

explicitly demonstrated in [2], as well as in [3]. As of now,

manifesto’s targets have been met only to some extent.
The concept of smart technologies was created by authors

[4], and its main objectives are similar to those of autonomic

computing. The approach contains a set of practically

applicable improvements of non-functional features to

simplify the maintenance and daily use of information

systems. Below are described five types of smart

technologies, which need was identified in real software

development projects. The proposed smart technologies

cover only part of requirements outlined in the autonomic

computing manifesto. Nevertheless they are suitable for

practical implementations and can serve as valuable

improvement of new and existing software systems.

The second chapter of this paper deals with related

research and solutions. The third chapter describes the

proposed architecture of smart technologies.

II. RELATED WORKS

The autonomic computing manifesto declares a vision of

fully independent computer systems (not just software) that

are able to self-management. It also defines evaluation

criteria to check the maturity of autonomic systems [5] -

from basic level (manually maintainable information systems)

to completely autonomic systems that are able to function

operate accordingly to guidelines set by humans.

The manifesto does not include any instructions about

implementation issues, but some authors discuss ideas about

essential components of autonomic systems. For instance R.

Sterritt [6] describes an autonomic environment consisting of

autonomic elements, which are mutually connected via

Smart Technologies for Improved Software Maintenance

Zane Bicevska

DIVI Grupa Ltd

Riga, Latvia

Email: Zane.Bicevska@di.lv

Janis Bicevskis

University of Latvia

Riga, Latvia

Email: Janis.Bicevskis@lu.lv

Ivo Oditis

DIVI Grupa Ltd

 Riga, Latvia

 Email: Ivo.Oditis@di.lv

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1533–1538

DOI: 10.15439/2015F170

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1533

autonomous channels. Every autonomic element has a kernel,

so called manageable component (the component

implementing the business logic), and it is controlled by an

“autonomous supervisor”. The supervising component uses

sensors and effectors, and its main functions are monitoring

of internal and external states, accumulation of knowledge

base and communication with other autonomic components

using autonomous communication channels. A separate

component in this system is so-called “heartbeat monitor”
which communicates with any existing system components

through autonomous communication channels and supervises

the system as a whole.

The autonomic computing approach has also been

criticized [7], and the main reasons are as follows:

• the lack of precise definitions;
• avoidance of the real complexity of the problem;
• ignoring of inter-componential links.

Despite these criticisms, autonomic system objectives are

so attractive that there seemed to be no reason to abandon

the ideas. In 2003 IBM extended the list of autonomic

aspects to eight characteristic aspects [1]. The initial

autonomic characteristics were enhanced by system’s ability
to "know itself" and manage its resources in a proper way.

An autonomic system should know its environment as well as

the context surrounding its activity and act accordingly – to

adjust and operate in heterogeneous environment accordingly

open standards - , as well as anticipate the optimized

resources needed while keeping its complexity hidden. Some

years later the, so called, self-management features were

supplemented with new self-properties reaching a total of 24

features [3]. Continuing efforts on autonomic systems include

both, theoretical research and practical implementation [2].

The concept of smart technologies created by authors [4]

is consistent with the primary objective of autonomic

computing. Unlike the traditional implementation of

autonomic computing where universal autonomous software

components are built, the smart technologies approach deals

with embedding of specific system features into information

systems directly but in a uniform way.

Although the smart technologies approach and the

autonomic computing approach seemingly share some

similarities, it should be emphasized that the smart

technologies approach was developed independently. The

practical results gained in IT projects provide evidence of the

usefulness of the approach.

III. COMPONENTS OF SMART TECHNOLOGIES

There are five fields of smart technologies where practical

results were gained: embedded software versioning and data

syncing, embedded dynamic business model, testing of

external environment, self-testing, and runtime verification.

A. Software Versioning and Data Syncing

Every successful software solution is being used and

improved significantly longer than the development of its first

version has taken. Information systems are in use for many

years, and the software is gradually modified, updated with

new features, improved to approximate to user needs.

To ensure reliability of software in long-term, the system

should already in its initial development time include not only

the required (customer specified) functionality, but also

supporting mechanism – “updater” (see Fig. 1) for software,

data structures and templates upgrading.

Fig. 1 Software versioning

The supporting mechanisms should be built into systems,

and they should include features for deploying of new

versions without any user intervention. The following should

be ensured automatically during deployment process:

• check the compliance of the new software version
with the external environment

• download and install a new software version
• update configuration and information about data

structures, screen forms, report templates etc.
• migrate stored data into the new data structures of

the database as well as the personalization and
configuration data

• perform self-testing of the new system’s version to
check correctness of the essential system’s
functionality

• create backups to be able to recover the system in
case of incidents

The majority of information systems today support some

of the characteristics listed above, but in most cases - to a

limited extent only. Authors of this paper have prototyped

the characteristics in some projects, the research results are

described in [8].

B. Execution environment testing

One of the most spectacular smart technology solutions is

described by the authors in [9]. It is quite common that

programs have specific requirements for their successful

operation at a given environment – the computer, network,

operating system, etc. The proposed solution implies

gathering these requirements in a “software profile” to be

able to validate the execution environment before starting the

information system. Such validation should be performed on

1534 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

demand, for instance, before each session; however, some

authors propose validation during installation. Validation of

execution environment allows avoiding failure in business

processes in case the information system relies on properties

of the environment.

Quite often, software is developed based on assumptions

about other component’s work, not on their specification
[10], [11]. Similarly, developers sometimes assume that

software, which works in development environment, will

keep working after it is deployed elsewhere, hence encoding

some assumptions about the environment into the program.

As a result, when the software is installed in other

environment, which is different from the development

environment, the software may fail or work only partially

correct.

The authors [12] propose a technology, which allows

independent environment checks, performed by the software

in order to validate if the execution environment is suitable

for normal execution (see Fig. 2). Unlike the built-in test

method, which validates the ability of software itself to fulfill

its “contracts”; this technology measures livability of the

external conditions. Only if the results of all checks are

satisfactory, the program can be considered prepared for

work at a given environment, otherwise the session is

stopped, giving the user an explanation, why it is not possible

to perform work.

A program execution profile is a document achieved when

all the requirement descriptions of software are combined

together. The profile can be formalized as a separate

document and supplemented to typical software deliverables

such as code and documentation. The main, but not the only

use of the profile is validation of execution environment

during program use.

The practical environment testing task is carried out by

environment validation modules. Each module is an atomic

unit, which enforces validation of a single type of

requirement; this is done by reading information from the

environment and comparing it to reference values. In a simple

scenario, each requirement describes required value of some

resource’s attribute (for instance, data base server must be

reachable). When the testing functionality of the module is

invoked, it uses the information available in execution

environment to do the “inspection”.
To be able to modify the set of checks to be performed

without modifying the program code, information about the

checks (both the algorithms and reference values) must be

stored outside the code. This concept is different from other

approaches used in practice – both from the ones, which

validate the environment straightaway after installation or

updating, and from the others, which try to “hide” the checks
in source code.

To be able to describe requirements regarding execution

environment, a formal language is required to encode the

requirements, moreover, the language must be extendable,

when new kinds of requirements are defined. Such aspect

complicates the construction of test coordinator, since it has

to be compatible with a language, which is not fully defined

during development of coordinator. The problem is solved by

assigning the coordinator only the role of language syntax

analysis, but the semantic analysis of requirements is

performed in environment validation modules.

Fig. 2 Execution environment testing

The practical implementation showed that development of

the proposed approach requires relatively little programming

resources.

C. Self-testing

The research of the authors [13] offers an original

approach to software testing, named as self-testing. Self-

testing is a software’s ability to test itself automatically prior

to operation, and it can be performed even in a productive

environment. The self-testing feature in software is similar to

hardware self-tests that are executed every time after the

device is turned on. Instead of traditional testing that verifies

correctness of software in testing environments using testing

tools, the self-testing property is built-in software component

that executes accumulated test cases using means of the

information system. It helps to perform tests not only in

testing environment, but also to verify software correctness

in action with real data in production environment.

Self-testing contains two main components:

• test cases that are designed for checking of critical
functions of the software

• built-in automated testing mechanism providing
automatic execution of tests and result comparison
with benchmark values.

Designing of test cases covering the critical functionality

(lack of these essential functions causes inoperability of the

whole system) is a part of requirement analysis.

Implementation mechanism of self-testing approach uses

software instrumentation, and it has been offered quite a

while ago [14], [15]. The idea is to supplement the source

code with extra routines for self-testing purposes that are

executed if the software is run in the testing mode. The

points in source code where the routines are included are

named as test points. Testing routines allow to monitor

values of variables and to compare them with benchmark

values therefore checking the correctness of the information

IVO ODITIS, ZANE BICEVSKA, JANIS BICEVSKIS: SMART TECHNOLOGIES FOR IMPROVED SOFTWARE MAINTENANCE 1535

system. Unfortunately, this solution is usable only for those

information systems whose development is in the testers’
influence sphere.

Fig. 3 Self-testing

Self-testing can be used in four modes (see Fig. 3):

1. test-capturing – running of software instrumented by
test points and capturing of new test cases into test
data base or editing of the existing ones;

2. self-testing – automated self-testing of software by
automated execution of the captured test cases;

3. normal usage – running of information system
without any testing activities;

4. demo mode – running of information system using
pre-captured demo scenarios.

Comparison of self-testing implementations with

automated testing tools leads to the following conclusions:

• Unlike the majority of globally recognized testing
support tools, the self-testing approach offers some
additional options: testing of external interfaces to
other information systems and database management
systems, testing in production environment, testing
with the white-box method, possibility for users
without IT knowledge to capture tests.

• The self-testing technology makes possible to test
software throughout the whole life cycle of an
information system – from early stages of software
development till maintenance activities, because it is
suitable for testing in all development, testing and
production environments.

• The self-testing functionality should be integrated
into software already during development of the
software.

• The self-testing requires additional work to include
the self-testing functionality in the software and to
design test cases; on the other hand, self-testing
saves time as repeated (regression) testing of the
existing functionality is available

• Implementation of the self-testing functionality is
useful in incremental life cycle models, in particular if
information systems are improved gradually and
maintained for many years; it is less useful in linear
(waterfall) life cycle models.

Empirical studies show that 60% of information systems’
problems would be possible to identify and rectify by self-

testing approach [13].

D. Embedded business processes

Development of software engineering tends to devote

more attention to precise modelling and designing of

information systems instead of extensive programming. Some

researchers are even predicting development of information

systems without programming at all in very near future.

Business process modelling is a compulsory initial phase of

every information system development project according to

this concept [16].

Workflow based information systems is the area where

business process modelling is an essential component for

functioning of information systems. Business process of

organization is described by a workflow model containing

sequential business process steps – activities - together with

performers of the activity, deadlines, the actual state of the

object in the workflow etc. Documents and reports can also

be created during the workflow execution, and this should be

included in business process descriptions.

It is common to describe business processes using

modelling languages. There can be used universal modelling

languages or domain specific languages (DSL). When DSL is

chosen, it must ensure two important features: a) the

language should be easy understandable for the majority of

users, b) it should include all necessary information for

automated execution of workflow steps.

The first step in development of information systems is to

describe business processes to be supported (see Fig. 4). A

set of graphical diagrams are created using DSL, and it

serves as business process model. After the model is created

the information from the diagrams can be transferred to the

database of an information system. The business process

descriptions are embedded into the information system, and

the engine of the information system can interpret

information from the diagrams. Embedded business processes

ensure that the information system behaves according to the

business process model.

Fig. 4 Embedded business process

As practice shows [17], it is possible to create a special

tool for transfer of model’s data to executable application
relatively quickly. The API of the graphical editor can be

used to access the model’s repository, to gather the

information and to transfer it to applications database. This

guaranties that the application operates according to the

model developed in a graphical DSL. And the overall quality

of the application – usability, reliability, performance etc. – is

dependent on the application itself, not on the hypothetical

1536 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

ability of a code generator to create an application in the

desired quality.

The authors have created the domain specific language

BILINGVA [18] that is convenient for description of

workflows. The approach was tested in practice, and

particularly surprising was the positive feedback from users

about the graphical representation and implementation of

business processes. The diagrams served as some kind of

information system’s user manual that explained functioning

of the information system in a more precise and

understandable way than the conventional (written) user

manuals.

E. Business process runtime verification

From the beginnings of information systems the topical

issues were: does the information system operate correctly?,

are the system's results adequate?, and is the information

system in the correct state in terms of the relevant business?

Sometimes processes must be stopped as soon as possible

after inadequate situation has occurred, otherwise more

serious problems could rise [19].

Inadequate situations can be caused by many conditions.

They can be caused by heterogeneous systems, which are

developed at different times and used in a variety of

companies. Problems can arise due to poor software quality

and lack of testing. Problems may also occur due to incorrect

user actions: incorrect execution of business functions, a

breach of the input restrictions, or the timing and sequence of

process steps.

For example, if warehouse system is not updated with

payment information from accounting system timely, goods

cannot be issued to customer. On the other hand, this

situation is unacceptable for the customer, who has done

payment according business process. Obviously, in this case

there is no reason to look for errors in information system,

but a person should monitor that payment data are imported

timely. This is basic task of runtime verification – to verify

systems execution in their runtime.

The authors [19] propose a solution for business process

runtime verification (see Fig. 5). The basic idea of the

solution is to run a separate verification process for each

controllable business process (further – base process).

Verification processes are described in DSL that has been

developed in conjunction with the solution. A base process

typically is executed by information systems, while

verification processes should be executed on the basis of

independent and external controlling software (further – a

controller). The steps of the verification process are linked to

base process steps and are described by events that

acknowledge the execution of the each base process step.

Base processes can be executed manually or automatically

by computer, and verification processes are executed

independently. Each of base process steps makes some

changes in the process “memory” (usually stored in database
or file system). The verification controller receives

acknowledgement from event agents about base process

memory modifications, therefore identifying inconsistencies

between the received information and the description of the

verification process. If inconsistencies are detected, then they

are reported to the support staff.

Fig. 5 Runtime verification

The solution provides a number of interesting possibilities,

which bring us closer to the goal defined by ideas of

autonomous computing:

• runtime verification can be done without
modifications of the base process

• process verification can be added dynamically to
legacy systems

• verification does not depend on modelling language
used for process description, it depends only on
possibility of verification agents to identity events of
the base process.

Likewise, some solution limitations must be taken into

account: verification mechanism can detect only those base

process steps which leave some modifications in the systems

„memory”. Otherwise verification agents cannot work as
external process, but must be incorporated into the base

process.

However, it must be stressed that the proposed solution

can significantly reduce monitoring load of information

systems’ operational staff. It automates business process
runtime verification that typically is done manually and not

continuously.

IV. CONCLUSION

There were spent several years on research to achieve

goals similar to autonomic computing – facilitating the use,

maintenance and development of systems by including

support components in them. The conclusions are as follows:

• several components, created using smart
technologies, can provide good support in use,
maintenance and development of information systems
which are easy enough to implement for a
small/medium size organization;

• there are quite many functions, which could be
supported by respective smart technologies, for
instance, data quality control, confidentiality control,
built-in privacy protection [20], performance
monitoring, availability monitoring, selecting
environments for software compatibility testing [21],
automatic testing of WEB services [22] and others;

• smart technology enabled systems are currently not
very common due to the fact that these ideas are not
popular enough yet; with increasing complexity of
information systems, smart technologies will surely

IVO ODITIS, ZANE BICEVSKA, JANIS BICEVSKIS: SMART TECHNOLOGIES FOR IMPROVED SOFTWARE MAINTENANCE 1537

grow in importance and will help to deal with
complex system development and maintenance
issues.

REFERENCES

[1] Kephart J., Chess D. The Vision of Autonomic Computing. Computer

Magazine, IEEE, 2003, DOI=10.1109/mc.2003.1160055

[2] KEPHART, Jeffrey O. Autonomic computing: the first decade. In:

ICAC. 2011. p. 1-2., DOI=10.1145/1998582.1998584

[3] Lalanda P., McCann J. A., Diaconescu A. Autonomic Computing:

Principles, Design and Implementation. Springer, 2013, 288 p., DOI=

10.1007/978-1-4471-5007-7

[4] Bičevska Z., Bičevskis J. Smart Technologies in Software Life Cycle.
In: Proceedings of Product-Focused Software Process Improvement.

8th International Conference, PROFES 2007, July 2-4, 2007 (Münch,

J., Abrahamsson, P., eds.), Riga, Latvia, vol. 4589/2007, 2007. pp.262-

272, DOI= 10.1007/978-3-540-73460-4_24

[5] Nami M. K., Bertels. A. Survey of Autonomic Computing Systems. In:

ICAS '07: Proceedings of the Third International Conference on

Autonomic and Autonomous Systems, 2007. p.26, DOI=

10.1109/conielecomp.2007.48

[6] Sterritt R., Bustard D. Towards an autonomic computing environment.

In: Proceedings of 14th International Workshop on Database and

Expert Systems Applications (Marík, V., Retschitzegger, W.,

Stepánková, O., eds.), Prague, Czech Republic, 2003. pp.694 – 698,

DOI= 10.1109/dexa.2003.1232103

[7] Herrmann K., Muhl G., Geihs K. Self management: the solution to

complexity or just another problem? Distributed Systems Online, 2005,

1, vol. 6, DOI= 10.1109/mdso.2005.3

[8] Bičevska Z., Bičevskis J. Application of Smart Technologies in

Software Development: Automated Version Updating. In: Scientific

papers, vol. 733 (Bārzdiņš, J., Freivalds, R.-M., Bičevskis, J., eds.),
University of Latvia, 2008, pp.24 -37.

[9] Rauhvargers, K. On the Implementation of a Meta-data Driven Self

Testing Model. In: Software Engineering Techniques in Progress

(Hruška, T., Madeyski, L., Ochodek, M., eds.), Brno, Czech Republic,
2008, pp.153-166.

[10] Arnautovic E., Kaindl H., Falb J., Popp R., Szep A. Gradual transition

towards autonomic software systems based on high-level

communication specification. In: Proceedings of the 2007 ACM

symposium on Applied computing, 2007, pp.84-89., DOI=

10.1145/1244002.1244024

[11] Orso A., Jean M., Rosenblum D. Component Metadata for Software

Engineering Tasks. In: EDO '00: Revised Papers from the Second

International Workshop on Engineering Distributed Objects, London,

vol. 1999, 2001, pp.129-144, DOI= 10.1007/3-540-45254-0_12

[12] Rauhvargers K., Bicevskis J. Environment Testing Enabled Software –

a Step Towards Execution Context Awareness. In: H.-M. Haav, A.

Kalja (eds.), Databases and Information Systems, Selected Papers from

the 8th International Baltic Conference, vol. 187, IOS Press, (2009),

pp. 169–179.

[13] Diebelis E., Bičevskis J. Software Self-Testing. In: Proceedings of the

10th International Baltic Conference on Databases and Information

Systems, Baltic DB&IS 2012, July 8-11, 2012, Vilnius, Lithuania. IOS

Press, vol. 249, 2013, pp. 249 – 262

[14] Bichevskii YY, Borzov YV. Prioriteti v otladke bolsih programmnih

sistem Programmirovanie, 1982, vol. 3, pp. 31-34 (in Russian).

[15] Chengying M., Yansheng L., Jinlong Z. Regression testing for

component-based software via built-in test design. In: Proceedings of

the ACM symposium on Applied computing, March 11 - 15, 2007,

Seoul, Korea, 2007. pp.1416-1421, DOI= 10.1145/1244002.1244307

[16] Draheim D. Business Process Technology: A Unified View on

Business Processes, Workflows and Enterprise Applications. Springer

Berlin Heidelberg ISBN: 978-3-642-01587-8 (Print) 978-3-642-01588-

5 (Online), www.springer.com (2010), DOI= 10.1007/978-3-642-

01588-5

[17] Bicevskis J., Cerina-Berzina J., Karnitis G., Lace L., Medvedis I.,

Nesterovs S. Practitioners View on Domain Specific Business Process

Modeling. In: Databases and Information Systems VI. Selected papers

from the Ninth International Baltic Conference DB&IS 2010, IOS

Press, 2011, pp. 169-182.

[18] Cerina-Berzina J., Bicevskis J., Karnitis G. Information systems

development based on visual Domain Specific Language BiLingva.

Selected Papers from the 4th IFIP TC 2 Central and East Europe

Conference on Software Engineering Techniques, CEE-SET 2009,

Krakow, Poland, LNCS 7054 Springer, 2011, pp. 124-135., DOI=

10.1007/978-3-642-28038-2_10

[19] Oditis I., Bicevskis J. Asynchronous Runtime Verification of Business
Processes. In Proceedings of the 7th International Conference on
Computational Intelligence, Communication Systems and Networks
(CICSyN), Riga, 2015, pp. 103-108.

[20] Nai-Wei L, Alexander Y. Danger Theory-based Privacy Protection
Model for Social Networks In Proceedings of the 2014 Federated
Conference on Computer Science and Information Systems, Warsaw,
2014, pp. 1397–1406., DOI= 10.15439/2014f129

[21] Pobereznik L. A method for selecting environments for software
compatibility testing In Proceedings of the 2013 Federated Conference
on Computer Science and Information Systems pp. 1343–1348

[22] Bluemke I., Kurek M., Małgorzata Purwin M. Tool for Automatic
Testing of Web Services In Proceedings of the 2014 Federated
Conference on Computer Science and Information Systems pp. 1553–
1558., DOI=10.15439/2014f93

1538 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

