
Source Code Annotations as Formal Languages
Milan Nosál’, Matúš Sulír, and Ján Juhár

Department of Computers and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Email: milan.nosal@gmail.com, {matus.sulir,jan.juhar}@tuke.sk

Abstract—Attribute-oriented programming (source code anno-
tations) is a program level marking technique that enables enrich-
ment of program elements with custom metadata. In this paper
we hypothesize that there is a correspondence between source
code annotations and conventional formal languages in general.
We analyze our observations about source code annotations from
three aspects of language description: concrete syntax, abstract
syntax, and semantics. The discussion provides evidence of the
hypothesized correspondence and we use it as a basis for our
definition of an annotation-based language (abbreviated: @L).
However, the analysis also shows that compared to conventional
formal languages, source code annotations have some specificities
mainly connected to their binding to host program elements.
The presented analysis contributes to the field of attribute-
oriented programming by discussing the relationship between
annotations and conventional formal languages, and by surveying
relational idioms in annotations’ usage that can be inspirational
for annotations’ authors.

I. INTRODUCTION

A
TTRIBUTE-ORIENTED PROGRAMMING (abbrevi-
ated: @OP) as a technique of marking source code

elements with source code annotations [1], [2] became quite
popular during the last decade, as is manifested by multiple
frameworks, such as the Spring Framework. The annota-
tions as a metadata format found the same popularity in
the academic environment as well. As an example we can
mention an annotation-based parser generator YAJCo, which
uses annotations with an object-oriented language model for
syntax [3] and references definition [4]. We can also recognize
a research field dedicated to annotations. Most important
examples include a book about attribute-enabled software
development by Cepa [5] that summarizes his research in the
field, multiple research articles about enforcing annotations’
dependencies in source code such as work of Noguera et al.
[1], or one of the first articles on the topic of how to use (or
how not to use) annotations by Correia et al. [6].

In our previous work [7] we analyzed the correspondence
between annotations and XML in the scope of configuration
languages. The main manifestation of the correspondence was
the discovery of a set of mapping patterns between annotations
and XML. Using the discovered mapping patterns we showed
that annotations and XML can be considered equivalent in
terms of their expressibility. Based on our previous work, in

This work was supported by VEGA Grant No. 1/0341/13 "Principles and
Methods of Automated Abstraction of Computer Languages and Software
Development Based on the Semantic Enrichment Caused by Communication".

This paper shares contents with the first author’s dissertation thesis.

this paper we want to examine the relationship of annotations
and formal languages deeper. A formal language is defined by
an alphabet and a set of formation rules (grammar1). We will
try to show that the same can be applied to annotations.

Our work presented in [7] can be considered a case study
on correspondence between annotations and a representative
of a generic language, XML. It indicates that there is probably
a correspondence between annotations and formal languages
in general, as well. Therefore in this paper we hypothesize
that there is a correspondence between annotations and con-

ventional formal languages. We will provide an analysis of
our observations supporting this hypothesis and discuss the
annotations from three language description aspects, concrete
syntax (abbreviated: CS2), abstract syntax (abbreviated: AS),
and semantics. The evidence presented in this work indicates
that we can use the formal language theory when we are
working with annotations. In consequence, the application
of the approaches from the language theory can provide
benefits for annotations’ authors and users. In related work in
section IX we will discuss several other works that connected
annotations with languages, however, none of them considered
this correspondence a hypothesis and tried to prove it. We will
conclude the paper in section X with a brief discussion of
consequences of proving this hypothesis.

The contributions of this work are as follows:

• observations of corresponding characteristics between
source code annotations and formal languages (sec-
tions III, VI, and VII),

• discussion of discrepancies between annotations and
formal languages (and thus identification of the main
specificity of annotations in comparison with formal
languages, section IV),

• survey (overview) of relational idioms between annota-
tions and between annotations and their host language
that can help annotations’ authors during designing the
annotations (sections III-B, IV-B, and IV-D),

• discovery of reversed code-wise relations between anno-
tations and their target program elements that emphasize
the significance of annotations relation to their host
language (section IV-C), and

1Grammar [8] described by concrete syntax (including also the lexical syn-
tax) and abstract syntax. Abstract syntax describes the structural restrictions
between language concepts (words). Concrete syntax describes the actual
representation of the language sentences in the given alphabet.

2Not to be confused with Counter-Strike.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 953–964

DOI: 10.15439/2015F173
ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 953

• definition of annotation-based language (abbreviated:
@L) and its aspects from the viewpoint of formal lan-
guage theory (throughout the whole paper with a sum-
mary in section VIII).

II. SOURCE CODE ANNOTATIONS

Before going into discussion about the correspondence we
will clarify several essential terms connected with source code
annotations. An annotation-enabled language (abbreviated:
@EL) is any formal language that supports attribute-oriented
programming. A language supports the attribute-oriented pro-
gramming if its grammar (and therefore its parser too) allows
adding custom declarative tags to annotate standard program
elements. These tags have to be structured and therefore
parsable by the parser (or by some additional tool, as in case
of XDoclet3 technology). An example of an @EL is Java
programming language from version 1.5. In previous versions
the attribute-oriented programming was supported by a 3rd
party tool XDoclet. This means that if we add these tags to
a valid host language sentence, it still has to be a completely
valid host language sentence without any preprocessing or
other manipulations. In other words, the @EL parser has to
have an extension point, a grammar rule, that enables these
tags. In case of Java annotations, they are a part of the Java
language. In case of XDoclet, the XDoclet annotations are part
of standard Java comments.

Annotations do not directly change the source code se-
mantics. They only add metadata to source code. Annotations
can be queried and processed on demand by frameworks or
tools, or the program itself, thus indirectly changing program
semantics.

Custom declarative tags supported by @EL are source code

annotations (abbreviated: annotations). An annotation anno-
tates an annotation-enabled program element4. E.g., a program
element can be a method, a function, a class, a statement, etc.,
depending on language’s programming paradigm. We will call
the program element annotated by an annotation the target

host program element (abbreviated: target element) of that
particular annotation.

Source code annotations can be also dynamic as discussed
by Noguera et al. [9] and Cazzola et al. [10]. Dynamic
annotations can have properties that are evaluated dynamically
when the annotations are processed (conventional static anno-
tations are evaluated during compilation, just as constants).
A dynamic annotation can have a property that is bound to
some code property, e.g., a property that is bound to count
of loop iterations cannot be evaluated during compile time.
During runtime, when the loop is evaluated, the annotation
will remember the iteration count and it can be queried.
However, dynamic annotations cannot directly change program
semantics as well.

3http://xdoclet.sourceforge.net/xdoclet/index.html
4Annotation-enabled program element is a program element that can be

annotated. In some cases not all program elements can be annotated. E.g.,
in the Java language the if program element cannot be annotated by Java
annotations (statements in general).

The relation between an annotation and its target element
has to be expressed by in-place binding. In-place binding
requires that an annotation is placed next to or directly into
its target program element declaration. The placement has
strict rules that are dependent on the host @EL grammar. In
General-Purpose Languages (abbreviated: GPL) it is usually
expressed by prepending an annotation directly before the
program element declaration. Our definition of annotations is
presented in Definition 1.

Definition 1. Annotations are custom declarative structured

tags in host @EL that are bound to host program elements

using in-place binding. Annotations have to be parsable by

standard @EL parser (or a 3rd party tool) that allows

implementing semantics in form of a plug-in.

What follows is an analysis of the correspondence between
annotations and formal languages.

III. ABSTRACT SYNTAX CORRESPONDENCE

The main idea of the correspondence between a formal
language and a set of related annotations stems from the fact
that we can observe a structure (abstract syntax) in using
annotations from the given set. The observed regularities are
not accidental, and in all cases they are even enforced by the
processing tools.

A. Structural Correspondence Example

Let us begin with an illustrative example based on Java
Persistence API (abbreviated: JPA) annotations. JPA is an
object-relational mapping specification for Java. In JPA anno-
tations are used to specify mapping between Java classes and a
relational database. In a simple example presented in Figure 1
an @Entity annotation is used to specify that the Person

class is going to be a persisted entity, and @Column anno-
tations specify the mapping of fields to table columns. JPA
specification requires the user to use the @Entity annotation
to include the class in the persistence management setup5.
Without the @Entity annotation all the @Column and the
@Id annotations would not be processed by any JPA compliant
object-relational mapping (ORM) tool. This relationship is
represented by green arrows in Figure 1. Another requirement
is that each entity marked with the @Entity annotation has
to be annotated by the @Id annotation to specify which of the
fields represent a primary key. This relationship is highlighted
in orange in Figure 1.

Considering the example from Figure 1 one can easily
notice that the @Entity annotation and the @Column an-
notations mimic an abstract syntax tree (abbreviated: AST).
Annotations and their properties are nodes, thus modelling a
tree. A sketch of such an AST is shown in Figure 2. We also
added a simplified AST of the host language to illustrate the
binding of annotations to their target elements.

5One can alternatively use @Embeddable, or @MappedSuperclass,
but those have slightly different semantics and are not important for the
discussion.

954 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

@Entity(name = "PERSON")

public class Person {

 @Id

 @Column(name = "PER_ID")

 private int id;

 @Column(name = "NAME")

 private String name;

id of the entity

columns of the table

Fig. 1. Mapping of the Person entity class to database using JPA annotations

Now when we look at the given AST, we can easily devise a
simple external domain-specific language6 (abbreviated: DSL)
that would to a degree copy the structure of these annotations.
Snippet in Listing 1 can be an illustration of an external DSL
that expresses the same information as annotations. Here we
can see by an example that there is a correspondence between
annotations and formal languages.

Listing 1. Person entity definition
Entity "PERSON" {

Id Column "PER_ID"

Column "NAME"

}

B. Idioms in Structural Relations

The example shown in section III-A is just an illustrative
example. In practice, however, we can find multiple struc-
tural stereotypes (idioms) in annotations’ usage that support
our hypothesis. Each idiom specifies common structural re-

lationship between annotations (annotation-based language
concepts) and as such defines a part of the annotation-based
language’s grammar. In this section we will provide a survey
of commonly known and recognized structural idioms of
annotations’ usage. Although for the sake of the discussion
about the correspondence a single example would be enough,
this overview can be useful for annotations’ authors in the
process of designing an annotation-based language.
Vectorial annotation idiom described by Guerra et al. [12]
enables us to add multiple annotations of the same type to
the same target program element. An example showing vector
of multiple @Alternative annotations is presented in List-
ing 2. Annotation @Alternatives has a single parameter
of array of @Alternative annotations.

Listing 2. Vectorial annotation idiom example
@Alternatives(

{@Alternative(B.class), @Alternative(C.class)})

public class A { ... }

6A language focused on, and usually also restricted to a particular problem
domain [11].

Composite annotation idiom described by Guerra et al. [12]
has annotations as its parameters as well. It allows creation
of a tree-like structure of annotations, however, bound to the
same target program element. A composite annotation example
is shown in Listing 3. In the example there is the @Author

annotation nesting @Name and @Contact annotations.

Listing 3. Composite annotation idiom example
@Author(

name=@Name(firstName="Milan", surname="Nosal"),

contact=@Contact(email="milan.nosal@gmail.com")

)

public class Person { ... }

Inside relation idiom requires an annotation @A to be inside
scope of another annotation @B. E.g., if @A annotates a field
of a class then a class (or its outer class or package) has to
be annotated by @B. This idiom was described by Noguera
et al. in [1] and also by Ruska et al. in [13], where they call
it the Parent-child relation. This idiom is a special case of the
Required attribute (annotation) idiom described by Cepa et al.
[14] specifying that an annotation requires a usage of another
annotation to be valid. In the Required attribute (annotation)
idiom the scope is arbitrary. We have already seen an example
of the Inside relation idiom in Figure 1 and it is reiterated
in Listing 4. In it, the @Id and @Column annotations had
to be used to annotate fields of a class annotated by the
@Entity annotation. Annotated fields are inside the scope
of the @Entity annotation annotating the enclosing class.

Listing 4. Inside relation idiom example
@Entity(name = "PERSON")

public class Person {

@Id

@Column(name = "PER_ID")

private int id;

@Column(name = "NAME")

private String name;

...

Neighbor idiom specifies that a valid usage of annotation
@A is only in case when its target program element is
also annotated with another annotation @B. This does not
necessarily mean that usage of @B requires @A (this relation
is not commutative). This idiom is also a specialization of the
Required attribute (annotation) idiom described by Cepa et al.
[14]. Noguera et al. [1] describes this idiom as the Requires
idiom. A variation of this idiom is described by Ruska et
al. in [13] as the Occurrence of multiple annotations idiom
that is commutative. In the following example in Listing 5
the @Table annotation requires the @Entity annotation
annotating the same class in order to be considered for
processing by the annotations semantics implementation. In
this example only an entity class can be mapped to database.

Listing 5. Neighbor idiom example
@Entity

@Table("PERSON_TABLE")

public class Person { ... }

MILAN NOSÁL’ ET AL.: SOURCE CODE ANNOTATIONS AS FORMAL LANGUAGES 955

@Entity

@Column @Id

class

[Person]

field

[id]

field

[name]
@Column

annotates

Fig. 2. AST model of the Person entity definition using JPA annotations

Mutual exclusivity idiom prohibits usage of an annotation
@A if the target program element is annotated with @B (@A
and @B are mutually exclusive). The idiom is described by
Ruska et al. in [13]. Noguera et al. [1] call the same idiom
the Prohibits idiom. This idiom is a specialization of the
Disallowed idiom described by Cepa et al. [14] that can specify
exclusivity on various scopes, not only on the same target
program element. Following code sample from Listing 6 shows
an example of invalid use of annotations that are mutually
exclusive. In our annotation-based language a field cannot be
annotated both by both @Id and @Basic because a column
cannot be both identifier and regular column at the same time.

Listing 6. Mutual exclusivity idiom violation example
// incorrect usage of @Id and @Basic

@Id

@Basic

private String name;

Unique annotation occurrence idiom requires that only one
instance of an annotation type can be present in a given scope
of the host @EL. The idiom is described by Ruska et al. [13].
A variation of the idiom is mentioned by Noguera et al. [1] as
the Unique idiom that can be applied to annotation parameters.
This way an annotation-based language designer can specify
that the parameter value of the annotation can occur only
once in a given scope. In the example from Listing 7 there
is a violation of the Unique annotation occurrence for @Id in
the scope of the class. In this language there cannot be two
identifiers for the same entity.

Listing 7. Unique annotation occurrence idiom violation example
@Table("PERSON")

public class Person {

@Id

private int id;

// cannot be defined again

@Id

private String name;

...

Refers to idiom requires an annotation parameter to be
a reference (usually implemented as a simple string) to a

parameter value of another annotation. The idiom is described
by Noguera et al. [1]. The code snippets in Listing 8 show
a Refers to idiom where the @Author annotation from class
A is reused for class B by using a reference. @AuthorRef’s
value parameter7 refers to the id parameter of the @Author
annotation.

Listing 8. Refers to idiom example
@Author(

id="milan.nosal",

name=@Name(firstName="Milan", surname="Nosal"),

contact=@Contact(email="milan.nosal@gmail.com")

)

public class A { ... }

@AuthorRef("milan.nosal")

public class B { ... }

IV. ANNOTATIONS’ ABSTRACT SYNTAX SPECIFICITIES

We discussed an important observation about correspon-
dence between a set of annotations and a formal language
in terms of abstract syntax. However, there are also dis-
crepancies between annotations and a common standalone
formal language definition. These discrepancies stem from the
very nature of annotations. Annotations are meant to annotate
program elements of their host @EL. We have already seen
it in the example from Figure 1. The @Entity annotation
annotated the Person class. The @Id annotation annotated
the id field. And so on. In Figure 2 these relations based on
annotating are represented by dashed arrows from the AST
of annotations to the simplified AST of the host @EL. The
use of annotations in context of the host language creates
an unusual aspect of abstract syntax that is not present in a
standalone language – relations between annotations and host

program elements that are annotated. In general, grammar de-
fines restrictions for relations between concepts of the formal
language. However, in case of an annotation-based language,
there are also restrictions on relations between annotations
(@L concepts) and host language elements (not @L concepts).

7If an annotation type declares a value parameter then the name of
the parameter can be omitted from the annotation instance as in case of
@AuthorRef.

956 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

These restrictions are characteristic for annotations and in
language theory they correspond to language composition.

We distinguish two types of relations between annotations
and host language program elements, based on the relation
direction:

• code-wise relations define annotations’ requirements
posed on their target elements and the program they are
used in, and

• reversed code-wise relations specify host language’s re-
quirements for the annotations to be used in a context of
a given host program element.

In the following sections we will discuss in detail both types.

A. Code-wise Relations

Code-wise relations are relations defining restrictions by
annotations to their target program elements. Each annotation
may specify some requirements for its target program element.
These annotations cannot annotate arbitrary host language
element, because the given restrictions have to be kept. Basi-
cally, code-wise relations specify on which program elements
annotations can be used.

As a standard example of enforcing existing code-wise rela-
tions we can mention Java’s @Target metaannotation (anno-
tation that annotates annotation types). Using the @Target

metaannotation we can specify what types of Java program
elements can a given annotation annotate. E.g., we can use
@Target(ElementType.METHOD) to restrict annotations
to annotate only methods. In C# the support for this type of
restrictions is even of a finer grain. However, there are still
many useful restrictions that cannot be defined by standard
tools. E.g., we cannot restrict an annotation to annotate only
an implementation of some interface, such as restricting the
@WebServlet annotation to annotate only an implementa-
tion of the Servlet interface.

To illustrate it on a real world example, we can take a look
back at the JPA annotations. The code snippet in Listing 9
replays the Person entity mapping with an added field for the
person’s age. However, JPA does not allow mixing annotating
fields and getters/setters. In this case, the last @Column

annotation will not be processed by the JPA implementation. In
case of the age field, the JPA @Column annotation annotates
the setter method, not like in the case of the other fields, which
violates JPA specification (we could say it violates the JPA
annotations abstract syntax).

Listing 9. Incorrect JPA mapping
@Entity(name = "PERSON")

public class Person {

// an annotated field - OK

@Id

@Column(name = "PER_ID")

private int id;

// another annotated field - OK

@Column(name = "NAME")

private String name;

private int age;

// an annotated setter - incorrect

// (it should annotate the field)

@Column(name = "FIRST_NAME")

public void setAge(int age) { ... }

...

B. Idioms in Code-wise Relations

There are common structure stereotypes in code-wise rela-
tions as well. They indicate that this aspect of annotations
usage structure has to be considered a part of annotations
abstract syntax. Again, listed idioms are not only an evidence
of the discussed aspect of the abstract syntax, but also can
be inspirational for annotations’ authors. Following is a list of
known code-wise relations idioms.
Target restriction idiom specifies which types of target pro-
gram elements can be annotated by the annotations. This idiom
is implemented both in Java and C# as a standard validation.
Noguera et al. [1] introduces finer-grained validations of
the Target restriction idiom on Java platform that they call
AvalTarget. Kellens et al. [15] focus on designing a framework
for declaring arbitrary requirements on annotations’ target
program elements. Code sample in Listing 10 shows a standard
Target restriction implementation in Java. The @Override

annotation can annotate only methods, because only methods
can override a behaviour. In addition we would want to restrict
@Override to methods that really override inherited meth-
ods. In Java this checking is implemented in standard compiler
for the @Override annotation, but in general checking like
this is left to the annotations author.

Listing 10. Target restriction idiom example
// compile-time error

@Override

public class Clazz {

// valid use (toString overrides inherited method)

@Override

public String toString() { ... }

}

Refers to element idiom specifies that an annotation param-
eter is a reference to program element from @EL (other than
annotations target program element). The idiom is described
by Ruska et al. in [13] as Annotation values referencing other
elements idiom. A specialized version of the idiom where the
annotation refers to a class is described by Guerra et al. [12]
as an Associative Annotation idiom. Code sample from List-
ing 11 shows a usage of the Refers to element idiom to refer
to a specific validation implementation class for an annotation
type through a parameter of the @Validator metaannota-
tion. The Validation interface defines validation operation
for a given annotation annotated by the @Validator metaan-
notation. The concrete OverrideValidation defines spe-
cific validation for the @Override annotation.

Listing 11. Refers to element idiom example
public @interface Validator {

Class<? extends Validation> value();

}

...

@Validator(OverrideValidation.class)

public @interface Override { }

MILAN NOSÁL’ ET AL.: SOURCE CODE ANNOTATIONS AS FORMAL LANGUAGES 957

Type idiom requires that target program element yields or
conforms to a specific runtime type in host @EL. An example
might be the type of the field, or the interface of the class. This
idiom is described by Noguera et al. [1]. One of the uses for
the Type idiom is using annotations as type modifiers (e.g.,
@NotNull annotating only reference types). The following
code in Listing 12 shows a valid use of @WebServlet.
The @WebServlet annotation registers a servlet to the web
container. Therefore the annotation is supposed to annotate
only an implementation of the Servlet interface.

Listing 12. Valid Type idiom example
@WebServlet(urlMappings={"/MyApp"})

public class MyAppServlet implements Servlet {

...

C. Reversed Code-wise Relations

Reversed code-wise relations pose restrictions on the host
language according to the annotations that are present in the
code. E.g., the same way as we can specify the type of the
field of a class is the Person class, we could also require
that the field type (in this case the Person class) has to be
annotated by a particular annotation (e.g., @Entity). Or, we
may want an argument of a method to be of a type that is
annotated by a particular annotation. Basically, reversed code-
wise relations specify how can host language use annotated
program elements.

Such requirements we call reversed code-wise relations
because they revert the direction that we use to look at
annotations and their binding with the host language. Code-
wise relations specify in which cases the annotations are not
correctly used. Reversed code-wise relations specify in which
cases the host language source code is not correctly used
with respect to annotations. According to code-wise relations
the annotation is invalid if its target program element (or
some other program element of the host language) does not
exhibit some characteristics. According to reversed code-wise
relations the program element is incorrectly used if it or some
related program element misses a particular annotation (or has
an incorrect one). This kind of relations increases integration
of annotations into the host language.

As an example of an error caused by violating this type
of requirements is a quite common error in using dependency
injection in Enterprise Java. Code sample in Listing 13 shows
an invalid use of dependency injection. Both classes are
marked as stateless beans and therefore should be managed
by a container. @EJB annotation marks a server of a mail
service implementation to be injected. However, then the
Notifications class takes control of the MailService
instantiation by using the new keyword. When the objects are
created like this, the dependency injection annotations will not
take effect and the server will not be injected. This is a case
of reversed code-wise relation, because the annotations are
used properly, however, the code that uses annotated program
elements is not correct. The MailService instance should
be obtained through the InitialContext to be correct.

Listing 13. Using @EJB for dependency injection
@Stateless

public class MailService {

@EJB

private Server server;

public void sendMail(String mail) {

server.send(mail);

}

...

}

@Stateless

public class Notifications {

public void notify() {

MailService ms = new MailService();

ms.sendMail(

"This will throw NullPointerException.");

}

}

D. Idioms in Reversed Code-wise Relations

We have recognized and identified following two reversed
code-wise validations:
Annotated type idiom poses a restriction upon entities8 of the
host @EL. It requires that an entity type has to be annotated by
an annotation. E.g., a method argument might require an object
of a type annotated with a specific annotation. This idiom
can enhance the object-oriented dynamic binding of the @EL.
Using this idiom a method could require object of any type
but annotated with a particular annotation, or with particular
annotations in its scope. In the code sample from Listing 14
we use the serialize method to serialize an object of the
Person class. However, using the Annotated type idiom the
method serialize requires that the type of the object to be
serialized to be annotated by the @Serializable annota-
tion (e.g., instead of Serialize marker interface). Therefore the
Person class has to be annotated by the @Serializable
annotation for the example to be valid.

Listing 14. Annotated type idiom example
public class Serializer {

// serialize requires argument with

// type annotated by @Serializable

public static void serialize(

@AnnotatedType(Serializable.class)

Object object) { ... }

}

...

public static void main(String[] args) {

Person person = new Person("Milan");

Serializer.serialize(person);

}

...

// for program to be valid, the Person

// class has to be annotated with @Serializable

@Serializable

public class Person { ... }

8Method argument, variable, etc.

958 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Annotated program element idiom requires that the program
elements which exhibit some particular characteristics must be
annotated by a particular annotation. This idiom is very close
to the work of Kellens et al. [15] that uses dependencies like
these for co-evolution of annotations with source code. As an
example we can use the @Override Java annotation in List-
ing 15. If a method is overriding a method from a superclass
it has to be annotated by the @Override annotation. If the
annotation is not used the program should be incorrect (as in
case of the override keyword in C#). Code in Listing 15
shows examples of both valid and invalid program elements.

Listing 15. Annotated program element idiom example
public class A {

public void a() {}

public void b() {}

}

public class B extends A {

// invalid program element

public void a() {}

// valid program element

@Override

public void b() {}

}

V. ABSTRACT SYNTAX CORRESPONDENCE SUMMARY

According to the presented discussion we can summarize
our conclusions as follows. Considering the abstract syntax
(AS) of a language defined by source code annotations we
have to consider following components of annotations’ AS:

• relations between annotations – structural restrictions,
• annotations’ requirements on @EL concepts – code-wise

restrictions, and
• @EL concepts’ requirements on annotations – reversed

code-wise restrictions.

While the relations between annotations match the standard
abstract syntax of a standalone formal language, the other two
are specific for annotations. The code-wise and reverse code-
wise restrictions can be in general compared to embedding
as a form of language composition, but annotations tend to
come with more complex constraints on their usage and in case
of an embedded language the embedded portions are usually
not dependent on each other (without structural restrictions).
And, from the implementation viewpoint, embedded languages
usually have own parser.

If we consider a set of related annotations an annotation-

based language, then based on our discussion we will define
the abstract syntax of an @L as in Definition 2. So far there
is not a standard formal apparatus for describing the full AS
of @L. However, there are several approaches to this problem
in the academy that we will review in section IX.

Definition 2. The abstract syntax of an @L is a set of

structural, code-wise and reversed code-wise restrictions on

@L annotations’ usage. These restrictions represent formation

rules that specify a valid @L sentence.

VI. CONCRETE SYNTAX CORRESPONDENCE

Of course, the correlation between annotations and formal
languages does not end with abstract syntax aspect of the for-
mal language description. Clearly, the annotations themselves
need to have a concrete way of presentation (and serialization).
In this section we will take a look at how the concrete syntax
of annotations is defined.

@L author can design the @L in terms of the abstract syntax
as we have already discussed. Of course, it is only logical that
she should be also able to specify how the annotations of the
@L will be presented in the source code of the host language.
In most common @EL the apparatus for the concrete syntax
definition are annotations types. A specific of annotations in
terms of concrete syntax when compared to formal languages
is annotations’ binding to target program elements. Both of
these aspects will be discussed in following sections.

A. Annotation Types

Annotations are instances of annotation types the same
way as objects are instances of classes in object-oriented
programming. An annotation type is a definition of a structure
of a set of annotations. It defines what parameters can an
annotation have, what is the name of the annotation, etc. Using
annotation types the @L author can specify what are the @L
terminal symbols – annotations’ and parameters’ names, and
their values’ types. Just for illustration we can take a look at
the code snippet in Listing 16 presenting a simple annotation in
C#. This annotation type defines annotations with name "Con-
figuration" and two parameters, the first an integer identified as
"paramId", and thesecond a string identified as "paramValue".
If the @L consisted only of annotations of this type, we
could easily identify its lexical symbols - "Configuration",
"paramId", "paramValue", integer value and a string. The Java
version of the same annotation type is presented in Listing 17.

Listing 16. C# version of the Configuration annotation type
public class Configuration : System.Attribute

{

public int paramId;

public string paramValue;

}

Listing 17. Java version of the Configuration annotation type
public @interface Configuration

{

public int paramId();

public string paramValue();

}

Another interesting fact the reader might have noticed is that
the annotation types can partially define abstract syntax. If one
of the parameters accepted annotations9, then the annotation
would be an instance of the Composite annotation idiom.

However, even in CS there are discrepancies between an-
notations and formal languages. The CS of annotations is
restricted to follow some rules in order to be parsable by the

9Currently, annotation nesting is not supported in C#, but there are
implementations that allow it, e.g., Java annotations.

MILAN NOSÁL’ ET AL.: SOURCE CODE ANNOTATIONS AS FORMAL LANGUAGES 959

standard @EL parser (or the 3rd party tool). In @EL GPLs
those rules are defined by the GPL grammar.

Let us take a look at a set of grammar rules10 of Java 8
that specify the grammar for Java annotations that are listed
in Listing 18.

Listing 18. Grammar rules for the Java 8 annotations
Annotation ->

NormalAnnotation | MarkerAnnotation

| SingleElementAnnotation

NormalAnnotation ->

’@’ TypeName ’(’ [ElementValuePairList] ’)’

ElementValuePairList ->

ElementValuePair {’,’ ElementValuePair}

ElementValuePair -> Identifier ’=’ ElementValue

ElementValue ->

ConditionalExpression

| ElementValueArrayInitializer | Annotation

ElementValueArrayInitializer ->

{ [ElementValueList] [’,’] }

ElementValueList ->

ElementValue {’,’ ElementValue}

MarkerAnnotation -> ’@’ TypeName

SingleElementAnnotation ->

’@’ TypeName ’(’ ElementValue ’)’

These grammar rules specify CS restrictions on Java an-
notations. As we can see, annotations have to start with the
’@’ sign, followed by the annotation name. Then there are
optional annotation parameters enclosed in parentheses, and
so on. Considering we had an Java annotation type for the
Configuration annotation type presented in Listing re-
flst:javaAnnType, then a concrete Java annotation would look
like the annotation in Listing 19.

Listing 19. Java @Configuration annotation example
@Configuration(paramId=1, paramValue="new")

public class A {

...

Of course, the different attribute-oriented programming im-
plementations might have different restrictions. E.g., in C#
the annotations are not prefixed by the ’@’ but enclosed with
brackets, and have some other minor differences from Java
annotations. The same Configuration annotation in C#
(annotation type in Listing 16) would look like the code in
Listing 20.

Listing 20. C# version of the Configuration annotation
[Configuration(paramId=1, paramValue="new")]

public class A {

...

In a conventional formal language the language author
is usually not restricted by any such rules. In this aspect

10Source: http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

annotations resemble more generic languages11, such as XML
languages, and alike; that are built around a given syntactic
skeleton.

B. Binding Rules

@L CS has another specific aspect – binding rules. Each
annotation marks (annotates) its target program element. This
relationship is expressed by the relative position of annotation
to its target element. Again, the binding rules for a specific
@OP implementations might differ. These rules have to ensure
that for each annotation there will be unambiguous mapping to
its target language element and that for each program element
there will be unambiguous way of finding its annotations. The
most common binding for annotations is using annotations as
prefixes12. E.g., the Java annotations are considered modifiers
and therefore they prefix declarations just as Java modifiers
do. The reader has seen already seen multiple examples of
Java annotations usages. This can be also illustrated by Java
grammar for class modifiers in the Java 8 grammar excerpt13

in Listing 21. The excerpt shows that class annotations prefix
the class declarations.

Listing 21. Grammar excerpt for class modifiers showing in-place binding of
Java 8 annotations
NormalClassDeclaration ->

{ClassModifier} ’class’ Identifier ...

ClassModifier ->

Annotation | ’public’ | ...

Since Java 8, annotations are supported on types, too.
Listing 22 is a grammar rule14 for primitive types that shows
type annotations allowing to annotate types.

Listing 22. Grammar rule illustrating type annotations
PrimitiveType ->

{Annotation} NumericType

| {Annotation} ’boolean’

There might be additional rules for binding, as for example
a restriction in Java requiring that two annotations of the same
type cannot annotate the same target program element.

C. Summary

Each particular @EL defines its own concrete syntax skele-
ton for adding annotations to its source code. While the
restrictions posed by @EL have to be kept, the @L author
can use annotation types to define the rest of the concrete
syntax. Therefore we will define the concrete syntax aspect of
@L by Definition 3.

Definition 3. The concrete syntax of an @L is specified by

restrictions posed by the host @EL in combination with the

11Mernik [16] calls a generic language Commercial Off-The-Shelf (COTS).
We find the generic language term by Chodarev et al. in [17] more intuitive
and therefore we will keep using this term.

12However, in general, annotations do not have to prefix annotated program
elements. It is sufficient to have an unambiguous rule of how to relate
annotations with their target language elements.

13The ellipsis (...) indicates that we have shortened the rules to show just
the relevant parts. Source: http://docs.oracle.com/javase/specs/jls/se8/html/
jls-19.html

14Source: http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

960 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

set of concrete annotation types of annotations that belong to

the @L.

VII. SEMANTICS CORRESPONDENCE

According to Kleppe [18], a sound language description
would not be complete without a semantics description. And of
course, the same applies to annotation-based language. There
are multiple ways of describing semantics of a language. An
annotation-based language is usually described by dynamic
semantics that is defined by the tool processing the annotations
(the reference implementation [18]).

There are two approaches to @L reference implementation:

• compile time processing is implemented as a pluggable
annotation processor plugged to the host @EL compiler,
and

• runtime processing is implemented as a reflection mech-
anism.

Compile time processing is implemented as a pluggable
annotation processor. The host @EL parser creates an AST
with annotations and provides it to all registered annotation
processors. The AST with annotations can be used to generate
code or other software artefacts, to generate documentation
or even to manipulate the AST. E.g., in Java there is a
standard implementation of pluggable annotation processing
API released under JSR 269 specification15. This standard
annotation processing API does not support AST modification
and can be only used to generate new artefacts. An alternative
to JSR 269 is a Spoon API by Pawlak [19] that enables fine
grained source code modifications.

Runtime processing is implemented as an API that allows
some form of runtime reflection for querying annotations.
Runtime processing is usually used to read configuration of
frameworks and programs. Languages such as Java or C#
provide standard Reflection API that can be used to query
for annotations on program elements such as classes, method,
etc. These can be used to find out whether there is a particular
annotation annotating the chosen program element. However,
these APIs do not enable searching for annotations in a
set of program elements (e.g. finding all the occurrences of
specific annotation on all the classes on classpath) and likewise
operations. These types of queries common in compile-time
annotation processors. The need for the same feature in
runtime is reflected by commercial runtime APIs, such as
Scannotation16 or Google Reflections17.

An interesting hybrid of the compile-time and runtime
processing is aspect-oriented programming (AOP) with anno-
tations. Annotations in AOP can be used to bind aspects to
program elements. This way we can add, remove, or modify
the code. The final weaving of the aspect may happen both
during compile-time and runtime, depending on used AOP
implementation.

15https://www.jcp.org/en/jsr/detail?id=269
16http://scannotation.sourceforge.net/
17https://github.com/ronmamo/reflections

Each annotation-based language defines its semantics using
one of the discussed approaches. Thus, we define @L opera-
tional semantics by Definition 4.

Definition 4. The @L semantics is described by reference

implementation using a pluggable annotation processor or a

GPL code using reflection API. Reference implementation may

use convenience frameworks, such as Google Reflections.

VIII. ANNOTATION-BASED LANGUAGE

We presented our observations indicating a close correspon-
dence between source code annotations and formal languages.
We proposed definitions of the three main annotation-based
language definition components - @L abstract syntax, concrete
syntax and semantics. Based on the presented discussion we
propose to define a term annotation-based language to de-
scribe a given set of annotations that are processed by the same
reference implementation with the same goal. For example, if
we have a set of JPA annotations used to describe mapping
of Java classes to relational database that are processed by a
JPA implementation (e.g., Hibernate), we can consider them
an @L. Our formulation of the @L definition is presented
in Definition 5. In it we assume that the same reference
implementation implies the same annotations problem domain
(e.g., object-relational mapping).

Definition 5. Annotation-based language (@L) is a set of all

annotations and their parameters (alphabet) processed by the

same reference implementation. It is defined by the reference

implementation (semantics), structural, code-wise and reverse

code-wise restrictions (grammar – abstract syntax), and their

annotation types (grammar – concrete syntax).

For example, if we have a set of JPA annotations used to
describe mapping of Java classes to relational database that
are processed by a JPA implementation (e.g., Hibernate), we
can consider them an @L. This @L is of course defined by
all three language aspects of CS, AS and semantics according
to definitions we have proposed.

We have also noticed that the main source of the discrep-
ancies between @L and a conventional formal language is the
binding of annotations to target elements of the host language.
Therefore we will emphasize the importance of the binding in
the @L. We can therefore identify two main components of
the @L:

• @L concepts represented by annotations and their struc-
tural relations, and a

• meaningful binding between concepts from @L and host
@EL (represented by code-wise and reverse code-wise
relations).

These two @L components are illustrated on the example
with JPA mapping of the Person class in Figure 3. @L
concepts are the annotations themselves, the binding maps the
annotations to host language program elements.

We expect the binding between annotations and their target
elements to be meaningful. That means that changing the target
element of an annotation should also change the meaning of

MILAN NOSÁL’ ET AL.: SOURCE CODE ANNOTATIONS AS FORMAL LANGUAGES 961

@Entity(name = "PERSON")

public class Person {

 @Id

 @Column(name = "PER_ID")

 private int id;

 @Column(name = "NAME")

 private String name;

@L concepts

host @EL

inplace binding

@L

Fig. 3. Illustration of concepts and binding @L components on JPA example

the @L sentence to which the annotation belongs. E.g., if we
consider the example of JPA configuration in Listing 4, moving
the @Id annotation from the id field to the name field would
define a different object-relational mapping, although the @L
sentence would consist of the same annotations.

IX. RELATED WORK

There are several works that aim at annotations’ relations
definition18. They either provide a framework to define and
validate more-or-less arbitrary dependencies between annota-
tions and their target elements or they provide implemented
common stereotypes in @L structure that can be reused
for validation. These idioms show common stereotypes in
annotation-based abstract syntax definition. Most of the works
were already referred throughout the paper, in this section we
will provide a brief summary.

Darwin [21] devised a DSL for dependencies description.
His aim, contrary to the other works, was to provide a
framework for describing dependencies for third party @Ls.
The author of rules was to be a user of @L and not its author.
Ruska et al. [13] identify several structural idioms and provide
a framework for checking dependencies. In their approach they
store the source code model into a database and run SQL
queries representing constraints. They designed a Prolog-like
DSL for convenient rules writing. Although both of these
works do not explicitly mention the term annotation-based
language (or any synonym) they admit that annotations have
some structured dependencies that we consider a recognition
of abstract syntax of @L.

Kellens et al. [15] introduce so called Smart Annotations.
Smart Annotations declare their sufficient and necessary re-

18We focus solely on the source code annotations defined in section II as a
language implementation strategy. Therefore we will not discuss works such as
Bonenfant et al. [20], which also use the term annotation language. However,
they use it in different context than us. In their work the annotations are any
custom metadata (their annotation language is an XML-based language).

quirements. Necessary requirements declare what character-
istics the annotated element must exhibit so the annotation
usage is valid. Sufficient requirements are dual to necessary
and they declare that if there is an entity in the code exhibiting
characteristics required by it then it should be annotated by the
annotation. Their work is focused on code-wise dependencies
and they aim to provide better control of evolution of annotated
software. Their sufficient requirements exhibit characteristics
of the reversed code-wise dependencies.

Cepa et al. [14] is one of the first works that concerns check-
ing dependencies between annotations and the host @EL.
Although their framework was quite limited in supported
restrictions19, in their work they also look at annotations as a
form of a language framework. They realized that annotations
can be used to enhance the host GPL with domain-specific
concepts thus acknowledging @OP as a form for DSL-like
language extensions.

Noguera et al. [1] went even further than Cepa et al. and
stated that "a set of annotations dedicated to a given domain-

specific concern can be referred to as an Attribute Domain-

Specific Language (AttDSL)". They therefore consider anno-
tations a language and not only a language extension. They
distinguished between structural and code-wise dependencies
(we used their naming).

Song et al. [22] introduce metadata invariants that are
not exclusive for annotations but work for XML languages,
too. They use Metadata Invariant Language (MIL) to write
invariants for annotations or XML documents. MIL can be
used to check structural and code-wise dependencies. Their
work assumes that for an @L there can be a standalone exter-
nal language that shares part of the @L semantics (multiple
concrete syntaxes). We have utilized the same property of a
subset of @Ls in our previous work [23]. We designed a tool
that is able to create AST for @L and combine it with concepts
from a separate XML-based language that is an alternative
notation for the @L. The tool takes a mapping between the
two formats.

The furthest advance towards @L we consider the work of
Noguera and Duchien [24]. Not only they recognize @L, but
they also designed a method for creating Annotation Model,
a UML model of annotation-based language. They use this
model and its binding to code model (AST of the host @EL)
to check annotations restrictions.

Cepa in his book about @OP [5] connects the annotations
to languages too. He mentions that annotations can be seen as
a convenient way of extending the grammar of the language.
With the work of Noguera et al. [1] Cepa’s ideas were the main
inspiration for this work. However, in his work he considers
the annotations only as an extension of the grammar and
as an alternative for adding domain-specific abstractions to
the source code, and only briefly mentions annotations as a
restricted form of embedded DSL. He does not further examine
the correspondence between annotations and languages.

19E.g., it cannot check dependencies between annotations on program
elements in the same scope in program model.

962 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

From the viewpoint of existing @Ls, we could find multiple
sets of annotations defined for the same domain and processed
by the same semantics reference implementation. There are
sets of annotations defining GUI from data model [25], an-
notations used for plugin extension definition [26], @L for
design patterns definition [27], @L for model checking [28],
and so on.

There are not many works concerning @L design, however,
one can find some inspiration in analysis provided by Mancini
et al. [29]. They discuss options of using annotations and
their design for data validation definition. All the above
mentioned works about annotations usage restrictions define
some annotations AS idioms that can be used for @L design as
well. Guerra et al. [12] discuss solely annotations idioms both
in CS and AS. Correia et al. [6] discuss bad smells that can
be result of bad annotations design or their usage. They also
provide a set of possible solutions to remove them. Correia
et al. [6] show that annotations syntax can be as important as
their domain usability [30].

X. CONCLUSION

This paper presented our observations about correspondence
between source code annotations and formal languages. The
correspondence was illustrated on three definition aspects
of formal languages – abstract syntax, concrete syntax and
semantics. For each of these aspects also the discrepancies
were discussed. While the correspondence indicates that we
should look at annotations as a form of language (and therefore
we define the term annotation-based language for a set of
domain-specific annotations), the discrepancies identify the
main specificity of annotations that separates it from con-
ventional formal languages. This specificity is the binding of
annotations to their host annotation-enabled language.

Realizing the correspondence between annotations and for-
mal languages we can draw some consequences for future
research directions. For example, XML generic language pro-
vides several mechanisms to define an abstract and concrete
syntaxes of concrete XML languages, e.g., XML schema
definition, Document Type Definition, etc. In practice we
can notice notorious lack of similar mechanisms for @Ls.
Annotation types are usually not sufficient to describe the
relations that are common in @L. A common practice is to
describe the grammar using natural language documentation.
Considering the presented correspondence, then instead of nat-
ural language documentation, the formal methods of abstract
syntax definition can be applied. Methods such as EBNF are
commonly known and therefore their application can make
the annotation-based language syntax more comprehensible.
In section IX we discussed several academic works that
implement frameworks for @L abstract syntax definition, but
so far none of them became industrial standard. So a logical
consequence of the correspondence is the need for standard AS

definition formalism/mechanism for annotations. In this matter
there was a small step further in Java 8 type annotations.

The standard AS definition formalism/mechanism for an-
notations cannot be restricted to mere @L AS validation.

Another important feature is the ability to create a fully
annotated AST. In Figure 2 we have sketched the AST with
annotations’ relations in mind. However, currently the @EL
implementations do not support @L AS and therefore the AST
nodes representing annotations have no explicit relations with
other annotations (unless annotation types support it, such as
in case of Composition annotation idiom in Java). Supporting
these relations explicitly could prove beneficial for @L authors
and their semantics implementation.

Another observation that is related to our discussion is the
lack of unified API for semantics reference implementation
in runtime and in compile time. Currently, standard @EL
implementations provide two distinct APIs for annotation
processing and for runtime reflection. This observation was
authored by Cepa [5] quite a long time ago, but to our best
knowledge no real advance was made in industry in this matter.

In general we can consider annotations a generic embedded

language. They provide a syntactic skeleton that on one hand
restricts @L author in concrete and abstract syntax, but on the
other hand provides standard tools for their parsing (either the
host language parser or a third party tool). But in contrast to
generic languages they are restricted to embedding into the
host language; they have to annotate its program elements.
Based on this observation, in our future work we want to
analyze options of using annotations for language composition.
From the observations presented in section IV we learned
that annotations’ specificity is their binding to host language.
In the future work we want to examine types of language
composition that can utilize annotations as an implementation
technique.

REFERENCES

[1] C. Noguera and R. Pawlak, “AVal: an extensible attribute-oriented
programming validator for Java: Research Articles,” Journal of Software

Maintenance and Evolution, vol. 19, no. 4, pp. 253–275, Jul. 2007.
http://dx.doi.org/10.1002/smr.349

[2] R. Rouvoy and P. Merle, “Leveraging Component-Oriented Program-
ming with Attribute-Oriented Programming,” in Proceedings of the 11th

International ECOOP Workshop on Component-Oriented Programming,
ser. WCOP 2006, 2006.

[3] S. Chodarev, D. Lakatoš, J. Porubän, and J. Kollár, “Abstract
syntax driven approach for language composition,” Central European

Journal of Computer Science, vol. 4, no. 3, pp. 107–117, 2014.
http://dx.doi.org/10.2478/s13537-014-0211-8

[4] D. Lakatoš, J. Porubän, and M. Bačíková, “Declarative specification
of references in DSLs,” in 2013 Federated Conference on Computer

Science and Information Systems, ser. FedCSIS 2013, Sept 2013, pp.
1527–1534.

[5] V. Cepa, Attribute enabled software development: illustrated with mobile

software applications. Saarbrücken, Germany: VDM Verlag, 2007.
[6] D. A. A. Correia, E. M. Guerra, F. F. Silveira, and C. T. Fernandes,

“Quality Improvement in Annotated Code,” CLEI Electron. J., vol. 13,
no. 2, 2010, article ID 7.

[7] M. Nosál’ and J. Porubän, “XML to Annotations Mapping Definition
with Patterns,” Computer Science and Information Systems, vol. 11,
no. 4, pp. 1455–1477, 2014. http://dx.doi.org/10.2298/CSIS130920049N

[8] J. Kollár, I. Halupka, S. Chodarev, and E. Pietriková, “pLERO: Language
for grammar refactoring patterns,” in 2013 Federated Conference on

Computer Science and Information Systems, ser. FedCSIS 2013, Sept
2013, pp. 1503–1510.

[9] C. Noguera, A. Kellens, D. Deridder, and T. D’Hondt, “Tackling
Pointcut Fragility with Dynamic Annotations,” in Proceedings of

the 7th Workshop on Reflection, AOP and Meta-Data for Software

MILAN NOSÁL’ ET AL.: SOURCE CODE ANNOTATIONS AS FORMAL LANGUAGES 963

Evolution, ser. RAM-SE ’10. New York, NY, USA: ACM, 2010, pp.
1:1–1:6. http://dx.doi.org/10.1145/1890683.1890684

[10] W. Cazzola and E. Vacchi, “@Java: Bringing a richer annotation
model to Java,” Computer Languages, Systems & Structures, vol. 40,
no. 1, pp. 2–18, 2014, special issue on the Programming Languages
track at the 28th ACM Symposium on Applied Computing.
http://dx.doi.org/10.1016/j.cl.2014.02.002

[11] S. Zawoad, M. Mernik, and R. Hasan, “FAL: A forensics aware language
for secure logging,” in 2013 Federated Conference on Computer Science

and Information Systems, ser. FedCSIS 2013, Sept 2013, pp. 1579–1586.
[12] E. Guerra, M. Cardoso, J. Silva, and C. Fernandes, “Idioms for Code

Annotations in the Java Language,” in Proceedings of the 17th Latin-

American Conference on Pattern Languages of Programs, ser. Sugar-
LoafPLoP, 2010, pp. 1–14.

[13] Š. Ruska and J. Porubän, “Defining Annotation Constraints in Attribute
Oriented Programming,” Acta Electrotechnica et Informatica, vol. 10,
no. 4, pp. 89–93, 2010.

[14] V. Cepa and M. Mezini, “Declaring and Enforcing Dependencies
Between .NET Custom Attributes,” in Generative Programming and

Component Engineering, ser. Lecture Notes in Computer Science,
G. Karsai and E. Visser, Eds. Springer Berlin Heidelberg, 2004, vol.
3286, pp. 283–297. http://dx.doi.org/10.1007/978-3-540-30175-2_15

[15] A. Kellens, C. Noguera, K. De Schutter, C. De Roover, and
T. D’Hondt, “Co-evolving Annotations and Source Code through
Smart Annotations,” in 14th European Conference on Software

Maintenance and Reengineering, ser. CSMR 2010, 2010, pp. 117–126.
http://dx.doi.org/10.1109/CSMR.2010.20

[16] M. Mernik, “An object-oriented approach to language compositions
for software language engineering,” Journal of Systems and Software,
vol. 86, no. 9, pp. 2451–2464, 2013. http://dx.doi.org/10.1016/j.jss.
2013.04.087

[17] S. Chodarev and J. Kollár, “Language Development Based on the
Extensible Host Language,” in Proceedings of CSE 2012 International

Scientific Conference on Computer Science and Engineering. EQUI-
LIBRIA, s.r.o., 2012, pp. 55–62.

[18] A. Kleppe, “A Language Description is More than a Metamodel,”
in 4th International Workshop on Language Engineering, ser. ATEM
2007, 2007.

[19] R. Pawlak, “Spoon: Compile-time Annotation Processing for
Middleware,” IEEE Distributed Systems Online, vol. 7, no. 11,
pp. 1–, Nov. 2006. http://dx.doi.org/10.1109/MDSO.2006.67

[20] A. Bonenfant, H. Cassé, M. de Michiel, J. Knoop, L. Kovács, and
J. Zwirchmayr, “FFX: A Portable WCET Annotation Language,” in
Proceedings of the 20th International Conference on Real-Time and

Network Systems, ser. RTNS ’12. New York, NY, USA: ACM, 2012,
pp. 91–100. http://dx.doi.org/10.1145/2392987.2392999

[21] I. Darwin, “AnnaBot: A Static Verifier for Java Annotation Usage,”
Advances in Software Engineering, vol. 2010, p. 7, 2010, article ID
540547. http://dx.doi.org/10.1155/2010/540547

[22] M. Song and E. Tilevich, “Metadata invariants: checking and
inferring metadata coding conventions,” in Proceedings of the

2012 International Conference on Software Engineering, ser. ICSE
2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 694–704.
http://dx.doi.org/10.1109/ICSE.2012.6227148

[23] M. Nosál’ and J. Porubän, “Supporting multiple configuration sources
using abstraction,” Central European Journal of Computer Science,
vol. 2, no. 3, pp. 283–299, Oct. 2012. http://dx.doi.org/10.2478/
s13537-012-0015-7

[24] C. Noguera and L. Duchien, “Annotation Framework Validation Using
Domain Models,” in Proceedings of the 4th European Conference

on Model Driven Architecture: Foundations and Applications, ser.
ECMDA-FA ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp.
48–62. http://dx.doi.org/10.1007/978-3-540-69100-6_4

[25] M. Monteiro, P. Oliveira, and R. Goncalves, “GUI generation based
on language extensions: a model to generate GUI, based on source
code with custom attributes,” in Proceedings of the 10th International

Conference on Enterprise Information Systems, ser. ICEIS 2008, Jun.
2008, pp. 449–452. http://dx.doi.org/10400.8/147

[26] R. Wolfinger, M. Löberbauer, M. Jahn, and H. Mössenböck, “Adding
genericity to a plug-in framework,” SIGPLAN Not., vol. 46, no. 2, pp.
93–102, Oct. 2010. http://dx.doi.org/10.1145/1942788.1868308

[27] P. Kajsa and P. Návrat, “Design Pattern Support Based on the Source
Code Annotations and Feature Models,” in SOFSEM 2012: Theory

and Practice of Computer Science, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, vol. 7147, pp. 467–478.
http://dx.doi.org/10.1007/978-3-642-27660-6_38

[28] G. Ferreira, E. Loureiro, and E. Oliveira, “A Java Code Annotation
Approach for Model Checking Software Systems,” in Proceedings

of the 2007 ACM Symposium on Applied Computing, ser. SAC
’07. New York, NY, USA: ACM, 2007, pp. 1536–1537. http:
//dx.doi.org/10.1145/1244002.1244330

[29] F. Mancini, D. Hovland, and K. Mughal, “Investigating the Limitations
of Java Annotations for Input Validation,” in Proceedings of

International Conference on Availability, Reliability, and Security,

2010, ser. ARES ’10, Feb 2010, pp. 513–518. http://dx.doi.org/10.1109/
ARES.2010.29

[30] M. Bačíková and J. Porubän, “Domain usability, user’s perception,” in
Human-Computer Systems Interaction: Backgrounds and Applications

3, ser. Advances in Intelligent Systems and Computing. Springer
International Publishing, 2014, vol. 300, pp. 15–26. http://dx.doi.org/
10.1007/978-3-319-08491-6_2

964 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

