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Abstract—In the field of data analysis, the use of metrics is
a classical way to assess pairwise similarity. Unfortunately the
popular distances are often inoperative because of the noise,

the multidimensionality and the heterogeneous nature of data.
These drawbacks lead us to propose a similarity index based on
fuzzy set theory. Each object of the dataset is described with the
vector of its fuzzy attributes. Thanks to aggregation operators,
the object is fuzzified by using the fuzzy attributes. Thus each
object becomes a fuzzy subset within the dataset. The similarity
of a reference object compared to another one is assessed through
the membership function of the fuzzified reference object and an
aggregation method using OWA operator.

I. INTRODUCTION

A
SSESSING the similarity between samples is a key of
success in data analysis process. Many methods rely on

similarity indices. Most of clustering ones uses pairwise com-
parisons when aggregating or separating samples [11], [12]. In
the framework of case-based reasoning, solving problem needs
for searching similar cases and assessing their similarities
[10]. Recommender systems also deal with similarity between
objects [18]. Thus the search for pairwise similarity indices
remains an active field of research [2], [14]. The choice of
similarity measures depends on the representation of objects
we compare [5] [6]. In this paper, we restrict the scope of this
study to the comparison of vector data.

When data is described with multidimensional vectors, the
use of metrics remains the classical way to assess pairwise
similarity [19], [6]. Unfortunately, database objects could have
qualitative features making difficult to obtain standardized
quantitative vectors of attributes from the objects. Thus the
popular distances (Euclidean distance, Mahalanobis distance,
Minkowski metric, Cosine distance, Correlation distance,... )
become often inoperative. Moreover noise or vagueness can
corrupt data and the curse of dimensionality is also an obstacle
in processing queries in high-dimensional space [3]. These
drawbacks lead us to propose a similarity index which is not
based on a distance function or a metric in the data space.

To overcome these difficulties, the fuzzy set theory gives a
framework to design similarity indices [17], [20]. In this paper,
the dataset forms the context for our pairwise comparisons
between objects.

Each object Xi of the dataset is fuzzified. Let X̃i be the
fuzzy set obtained from the crisp object Xi, X̃i is the fuzzy
version of Xi. The membership degree of the crisp object Xj

to the fuzzy set X̃i is considered as the similarity value from

Xj to the reference object Xi. Therefore the similarity indices
we propose are only fuzzy membership functions. Note that
such similarity indices based on membership functions do not
necessarily define symmetric relations.

The challenge using our approach becomes to obtain a
fuzzification of an object Xi within the dataset [13]. To achieve
this goal, the attributes of the object Xi are considered as
fuzzy numbers or fuzzy quantities. Then each crisp object Xj

is described with a vector of membership degrees relative to
the fuzzy attributes of Xi. Thanks to fuzzy logic operators, we
aggregate these membership degrees to obtain the aggregated
membership value of Xj to the fuzzy set X̃i. The critical
issue of this approach is the aggregation method we use.
This communication proposes to adapt OWA operators [16]
to define our aggregation method.

The paper is organized as follows.
In The sections 2 and 3 we present our approach for

the fuzzification of the attributes. The section 4 exposes the
methodology we use to evaluate the sensibility and specificity
of each attributes. After the fuzzification of the data, we
present in the section 5 the aggregation procedure used to build
a new similirity index using an Ordered Weighted Aggregation
operator. Before concluding, we present in the section 6 a
comparison of our new pairwise similarity indice with the
popular metrics.

II. DOMAIN OF FUZZIFICATION

Let E be a set of n objects defined by:

E = {Xi / 1 ≤ i ≤ n} (1)

where Xi are the n objects of E.

Each object is described by a vector of p attributes. The
object X is represented by the p-tuple (xik) with 1 ≤ k ≤ p
where xik is the value of the k-th attribute of the object Xi.
These p attributes are either quantitative or qualitative. If the k-
th attribute is quantitative, then its values lie within an interval
[ak, bk] of ℜ. If the k-th attribute is qualitative, then its values
are within a set {v1, v2, v3, ...vl} of l values. In both cases,
we call Dk the set we use to define the k-th attribute.

The domain of definition D of E is defined by:
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D =
∏

1≤k≤p

Dk (2)

Then we have: E ⊂ D with: #E = n. In the following each
object becomes a fuzzy subset of E relatively to its attributes.
Thus E is called domain of fuzzification.

III. FUZZIFICATION OF THE ATTRIBUTES

This section is devoted to the fuzzification of an object Xi

within the dataset E. Although the fuzzification of an attribute
is itself beyond the scope of this document, we firstly describe
the way we used to fuzzify each attribute value of the object
Xi. Thus we obtain k fuzzy attributes for Xi. Then we merge
these fuzzy attributes to build the fuzzy object X̃i defined in
E.

Let Xi be an arbitrary reference object of the data set E.
Let xik be the value of the k-th attribute of Xi. The values of
attributes are often imprecise and the meaning could be vague.
Therefore it is convenient to represent such imprecise or vague
values by fuzzy sets. Thus xik is represented by a fuzzy subset
of Dk. The membership function mi

k of this fuzzy subset is
defined by:

mi
k : Dk −→ [0, 1]

x 7−→ mi
k(x)

(3)

In this paper, these fuzzy sets are normalized with
mi

k(xik) ≤ 1.
In this paper, we propose a simple and empirical approach

of the data fuzzification. Each numeric value is represented
by a conventional trapezoidal membership function defined
by (a, b, c, d) with (cf. fig. 1):

mi
k(x) =































0 if x < ai
x−ai

bi−ai
if ai ≤ x < bi

1 if bi ≤ x < ci
di−x
di−ci

if ci ≤ x < di

0 if di ≤ x

(4)

Let xk and σk be respectively the mean and the standard
deviation of the k-th attribute within Dk. If devik is the
deviation between xik and xk (i.e. devik = |xik − xk|), an
empirical study leads us to propose:



















ai = xik − σk − 0.5 devik
bi = xik − 0.5 σk − 0.1 devik
ci = xik + 0.5 σk + 0.1 devik
di = xik + σk + 0.5 devik

(5)

If the k-th attribute is qualitative, xik is fuzzified using a
degree of membership for each possible value of the attribute.
Then mi

k is defined by l values (mi
k(v1),m

i
k(v2), ...m

i
k(vl))

within Dk.

This paper proposes to use mi
k to fuzzify the object Xi

within E in respect with its k-th attribute. The membership
function of the object Xi is defined by:

µi
k : E −→ [0, 1]

Xj 7−→ µi
k(Xj) = mi

k(xjk) = µi
jk

(6)

with 1 ≤ j ≤ n and 1 ≤ k ≤ p.

If the value of xik is not set, then we propose to define µi
k

by simply µi
k(Xj) = 1

2 in order to ensure the robustness of
the proposed approach.

At this stage of the communication, several points should
be noted. Each object Xi gives rise to p fuzzy subsets of E.

Each subset is associated with an attribute. These fuzzy
subsets are defined with reference to the object Xi. They are
normalized because µi

jk ≤ 1.
We propose to consider the membership degrees µi

jk (with
Xj ∈ E) as similarity values from Xj to the reference Xi

with respect to the k-th attribute. If µi
jk = 1, then Xj and

Xi are considered as similar with respect to the k-th attribute.
In contrast, if µi

jk = 0, then Xj and Xi are considered as
dissimilar with respect to the attribute. The more µi

jk is close
to 1, the larger the similarity from Xj to Xi for the k-th
attribute. Thus the membership function µik (with 1 ≤ k ≤ p)
is considered as a similarity index to Xi with respect to its
attribute xik .

We can see in "fig. 1" that xj3k is considered as similar to
xik but xj1k is not comparable to xik . This similarity value
is asymmetric. In "fig. 2" xj4k is not comparable to xik :
µi
k(xj4k) = 0 but µj4

k (xik) > 0.

The membership functions µik give p indices of similarity
to Xi within the set E. Let us define two characteristics of
these indices that we call the sensibility and the specificity to
the similarity with X .

Let sensik be the mean of µi
jk when Xj ∈ E:

sensik =
1

n

∑

Xj∈E

µi
jk (7)

The value sensik lies between 0 and 1. It assesses an
average similarity between the reference object Xi and the
whole dataset E in respect with the k-th attribute.

If sensik is close to 1, then the n similarity values µi
jk

are also rather close to 1. Then the n objects Xj of E are
rather similar to Xi. In this case, the values µi

jk are sensitive
indicators of the similarity to Xi. Since these values are rather
equal to 1 or close to 1, then the value µi

jk becomes highly
symptomatic of a dissimilarity (non-similarity) with Xi when
the indicator of similarity µi

jk is close to 0. Thus the k-th
attribute is considered as an attribute sensitive to the similarity
with Xi.
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Fig. 1. Fuzzy representation.
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Fig. 2. Asymmetric similarity values.

In contrast, if sensik is close to 0, the n similarity values
µi
jk are also rather close to 0. Then the n objects Xj are

rather dissimilar (non-similar) to Xi. In this case, the values
µi
jk are specific indicators of the similarity to Xi. Since these

values are rather equal to 0 or close to 0, then the value µi
jk

becomes highly symptomatic of a similarity to Xi when the
indicator of similarity µi

jk is close to 1. Thus the k-th attribute
is considered as an attribute specific of the similarity with Xi.

When we consider the k-th attribute, sensik is a coefficient
of the sensibility of this attribute to the similarity with Xi and
1-sensik is a coefficient of the specificity of the attribute for
the similarity with Xi. These two coefficients characterize the
k-th attribute with reference to the object Xi within E.

Let us consider an example (see Table I) to explain these
coefficients. The dataset E has six objects X1, X2, X3, X4,
X5 and X6. Each object is described with four attributes. The
reference object is X1. The four attribute values of X1 are
fuzzified. The four membership functions µ1

1, µ1
2, µ1

3 and µ1
4

indicate the degrees of similarity to X1. In this example, the
sensitivities of the four attributes are respectively 0.767, 0.400,
0.583 and 0.680. The 1st attribute is the most sensitive one.
Only X6 has 1st attribute value dissimilar from the one of
X1. Thus the 1st attribute reveals the dissimilarity with X1.
The specificities of the four attributes are respectively 0.233,

0.600, 0.417 and 0.320. The 2nd attribute is the most specific
one. Only X2 has 2nd attribute value similar to the one of X1.
Thus the 2nd attribute reveals the similarity with X1.

TABLE I
SENSITIVITY AND SPECIFICITY OF THE ATTRIBUTES IN RESPECT WITH

THE REFERENCE OBJECT X1 : EXAMPLE OF 6 OBJECTS WITH 4 FUZZY

ATTRIBUTES, µk ARE THE DEGREES OF MEMBERSHIP TO X1 RELATIVE TO

THE k-TH ATTRIBUTE WITH 1 ≤ k ≤ 4

Fuzzy attributes
Objects µ1

1
µ1
2

µ1
3

µ1
4

X1 1 1 1 1
X2 0.9 1 0.3 0.9
X3 0.9 0.1 0.4 0.7
X4 0.9 0.1 0.5 0.5
X5 0.9 0.1 0.6 0.3
X6 0 0.1 0.7 0.2

sensitivity 0.767 0.400 0.583 0.680
specificity 0.233 0.600 0.417 0.320

IV. AGGREGATION WITH OWA OPERATORS

Let us consider the reference object Xi in E. The fuzzy
subset defined by the membership function µi

jk depends on the
value xik of the k-th attribute of Xi. We propose to aggregate
these p fuzzy subsets taking into account all the attributes. The
goal is to fuzzify the reference object Xi within E defining a
new membership function µi fusing the functions µi

k.
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The aggregation operators give a classical way to merge the
fuzzy subsets in E. Let aggreg be an aggregation operator.
The function µi is defined by:

µi : E −→ [0, 1]
Y 7−→ µi(Xj) = aggreg

1≤k≤p

(µi
k(Xj)) (8)

The aggregation operators are well studied in literature
[7], [8]. The minimum is the reference operator to obtain a
conjunction and the maximum is the one for a disjunction.
The operators used in this paper are a tradeoff between the
conjunction (AND) and the disjunction (OR).

If the similarity index µi
k is very sensitive (sensik close to

1), then the similarity index µi
k should contribute to µi using

a conjunction operator. Indeed, a conjunction seems desirable
because significant information is obtained when µi

k is close
to 0. In contrast, if the similarity index µi

k is very specific
(sensik close to 0), a disjunction operator seems preferable
because significant information is obtained when µi

k is close
to 1.

In this paper, the tradeoff between conjunction and disjunc-
tion is defined using an Ordered Weighted Aggregation (OWA
operators proposed by R. Yager [16]).

Let us describe the function µi obtained when using such
an OWA operator.

For an object Xj in E, the membership degrees µi
k(Xj) are

ordered by decreasing order. We obtain :

µi
(1)(Xj) ≥ µi

(2)(Xj) ≥ µi
(3)(Xj) ≥ ... ≥ µi

(p)(Xj)

The aggregation is defined by:

µi(Xj) =
∑

1≤k≤p

wk × µi
(k)(Xj) (9)

We denote W the weighting vector :

W = [w1, w2, . . . , wp] (10)

with
∑

1≤k≤p(wk) = 1 and wk ∈ [0, 1]

The weights are not associated with attributes but with their
ordered positions. The challenge is to determine the weights.

The conjunction operator (i.e. the minimum) is obtained if :

W∗ = [0, 0, . . . , 1] (11)

The disjunction operator (i.e. the maximum) is obtained if :

W ∗ = [1, 0, . . . , 0] (12)

The ordinary average is recovered if :

W̄ =

[

1

p
,
1

p
, . . . ,

1

p

]

(13)

Pérez and Lamata [15] discuss the weights determination
by means of linear functions that we use in this paper.

To emphasize the conjunction, we propose to use decreasing
weights wmin defined by using the linear orders of Borda [4]
where :

wmin(k) =
2k

p(p+ 1)
(14)

where 1 ≤ k ≤ p.

To emphasize the disjunction, we propose to use increasing
weights wmax defined by increasing linear orders with:

wmax(k) =
2(p+ 1− k)

p(p+ 1)
(15)

where 1 ≤ k ≤ p.

Then we have:

wmin(k) + wmax(k) =
2

p
(16)

For example, if p = 4











Wmin =
[

2
20 ,

4
20 ,

6
20 ,

8
20

]

Wmax =
[

8
20 ,

6
20 ,

4
20 ,

2
20

]

(17)

The membership function µi
k is a similarity index with

Xi in respect with the k-th attribute. sensik describes the
sensitivity of the index. In this paper, sensik is considered
as the ANDness of the attribute and 1-sensik defines the
specificity i.e. the ORness of the attribute. Then the weights
of OWA operator we use are defined by:

wk = C
(

(sens(ik))wmin(k) + (1− sens(ik))wmax(k)
)

(18)
where C is the coefficient for obtaining

∑

1≤k≤p(wk) = 1.

The membership degrees µi(Xj) with Xj ∈ E are obtained
through these weights. Such an OWA operator in E permits
us to define a similarity index simi from the reference Xi to
the other objects Xj of E by:

sim(Xi, Xj) = µi(Xj) (19)

Note that the similarity index we propose is not necessarily
symmetrical (cf. fig:fuzzy2). In fact sim(Xi, Xj) is not always
equal to sim(Xj , Xi).

V. COMPARISON WITH POPULAR METRICS

The way we describe to design pairwise similarity between
multidimensional data leads us to propose a new pairwise
similarity index based on fuzzy logic operators. This section
is devoted to the assessment of the new similarity index we
propose. First we define a criterion to compare the similarity
indices. Second we apply this criterion for comparing our new
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pairwise similarity index with more classical indices based on
the popular metrics.

A. Assessment of a similarity index

Such a pairwise similarity indices are often used in the
context of data clustering [9]. In this paper, we take the
problem upside down using the clusters for assessing the
similarity indices. The clusters define a partition of E, we
call CXi

the cluster to which the object Xi belongs and we
call sim a similarity index between two objects of E.

Let us consider all pairs of objects (Xi, Xj) within the
sample data E. If the two objects Xi and Xj belong to the
same cluster, then an optimal similarity index from Xi to Xj

should be equal to one (i.e. Xi and Xj are similar). On the
contrary, if the two objects Xi and Xj belong to two different
clusters, then an optimal similarity index from Xi to Xj should
be equal to zero (i.e. Xi and Xj are dissimilar). Thus we define
the intra-cluster similarity of sim with:

intra(sim) =
1

n1

∑

CXi
=CXj

sim(Xi, Xj) (20)

where n1 is the number of couples (X,Y ) where X and
Y belong to the same cluster. The inter-cluster similarity is
defined with:

inter(sim) =
1

n2

∑

CXi
6=CXj

sim(Xi, Xj) (21)

where n2 is the number of couples (Xi, Xj) where Xi and
Xj belong to two different clusters.

The similarity index sim is optimal for the clusters when
intra(sim) = 1 and inter(sim) = 0. Therefore we define a
criterion to evaluate sim with:

crit(sim) = intra(sim)− inter(sim) (22)

The value crit(sim) lies always between -1 and 1.
The higher crit(sim), the more optimal sim with respect

to the clusters.
We propose to use this criterion to assess our new pairwise

similarity index.

B. Applications

This paper proposes a new way to evaluate the similarity
between multidimensional vector data. The most classical way
consists in using the popular metrics when data are quantita-
tive. In this paper we consider Euclidean distance, Manhattan
distance, Chebyshev distance, Canberra distance and Maha-
lanobis distance (see Table II). In fact, these distances are
dissimilarity indices that we transform into similarity indices
with:

simil(X,Y ) = 1−
dist(X,Y )

max
A,B∈E

dist(A,B)
(23)

where dist is the distance that we use.

Then we have five similarity indices we call Euclidean,
Manhattan, Chebyshev, Canberra, and Mahalanobis
which are based on their three respective popular metrics.

We compare these similarity indices based on distances with
two indices we propose based on the aggregation operators of
membership functions. The first one is called simOWA that
is the index which is described in this paper. It is based on
OWA operators. The second one replaces the OWA operator
with the arithmetic mean of the membership functions. This
second one is called Arithmetic.

The similarity indices are computed using the databases
from Machine Learning Repository of UCI [1].

In this paper we propose to use six numerical multivariate
clustering databases that are iris, wine, ecoli, glass, seeds
and haberman. The number of attributes lies between 3
and 15. The number of objects lies between 100 and 500.
The number of clusters lies between 3 and 10. iris is the
classical database that has 150 iris plants with 4 attributes and
three clusters. The wine recognition database has 178 objects
with 13 attributes and three clusters. ecoli is the database
of sites of protein localization, it has 336 objects with 7
attributes and eight clusters. The glass identification database
has 214 objects with 9 attributes and seven clusters. The seeds
database of wheat varieties has 210 objects with 7 attributes
and three clusters. Haberman’s survival database has 306
objects with 3 attributes and two clusters.

The results obtained are in Table III. We can see that
the similarity indices proposed in this paper (SimOWA and
Arithmetic) are better than the others in 5 cases and ranked
second for one of them (glass Database). In 5 cases of 6, the
similarity indice based on the OWA operator gives us better
results than the one based on the arithmetic mean.

VI. CONCLUSION

The approach we propose has a significant advantage, it
allows us to deal with imperfection that is a general case with
real data. In medicine and biology, data is often imprecise
mainly due to the inherent variability of biological data. In
physics, data is also imperfect and it is usual to assign a
value from a sensor with the accuracy of the measurement.
Qualitative data is also imprecise or vague. Thus the use of
the fuzzy set theory is relevant in this context of imperfect
data.

In this paper we propose a simple method of fuzzification
for imperfect multidimensional data. With this fuzzification
we define a new similarity indice that will allow us in future
works to identify the main features of the dataset and build a
robust classification. We can also use this approach to compare
a new object with the existing data, for example by finding
the nearest objects.
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