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Abstract—This paper describes the design, implementation
and results of the image-based ego-motion estimation algorithm.
As a source data the images captured from the bike platform
are used. The device is supposed to be a part of a mobile
mapping system prototype. Firstly the feature detection and
matching is carried out providing the set of characteristic points
in all images in the sequence. The 5-point solution based on the
Gröbner basis is used to solve for essential matrices and to reject
outliers. Least-square relative pose model fitting is accomplished
using quaternion-based bundle adjustment. In the next step the
modified Horn formula is used to recover bike trajectory up
to the absolute orientation. Within this step the scene structure
recovery is provided in the form of a point cloud. Finally ground
control information is used to obtain data geo-referencing and the
accuracy analysis. Obtained results provide satisfying robustness
and accuracy. However some improvements and development
scenarios are suggested.

I. INTRODUCTION

C
URRENTLY imaging sensors are extensively used as
components of mobile mapping systems (MMSs), mobile

robots and unmanned aerial vehicles. Each camera is a source
of usually large number of images, captured with the specified
frequency. Acquired image sequences may be processed to
provide automatically extracted mapping information using al-
gorithms refered as a dense point cloud generation or structure
from motion (SFM). Additionally images may be utilized to
estimate motion trajectory of the vehicles. Such application is
often called the visual odometry. The real-time trajectory esti-
mation is applied in the navigation. The visual navigation can
take place autonomously or together with the inertial/GNSS
sensors, completing a multi-sensor navigation system. Parallel
navigation and mapping are sometimes combined together in
the SLAM procedure.

Basically mapping applications do not require real time
computation of a trajectory. The accurate trajectory compu-
tation is conducted in the post processing and is a crucial step
in the mobile mapping workflow as it greatly influences the
accuracy of final products. Processing of the image sequences
can be divided into two main steps:

- feature detection and matching
- ego-motion estimation, based on the detected features
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In the machine vision feature detectors try to imitate humane
vision to search for some characteristic points (keypoints), that
are suitable to be traced in subsequent images. The feature
correspondence is tested using descriptors and detectors that
try to simulate the mental process [1]. Corners are a typical
example of features suitable for tracing. The result of a feature
detection is a list of keypoints’ IDs and their coordinates
provided in the image 2D coordinate frame. Evaluation of
particular feature detectors are not within the scope of this
work, but generally a set of automatically measured keypoints
has a large number (sometimes over 50%) of outliers i.e.
missmatched features. The first approach to deal with outliers
is to prevent false matches using the external information about
image geometry. This information can come from positioning
sensors such as GPS/INS systems [2], [3]. If the orientation of
two images acquired with calibrated camera is approximately
known, location of corresponding features is held down to the
neighborhood of epipolar lines associated with those points
(Fig. A1). However more robust approach to prevent false
matches is to use multi-view camera configuration providing
multi-view image sequences [4], [5], [6]. Commonly two
cameras are applied. As a result of a system calibration the
accurate orientation of the second camera in the coordinate
frame of the first camera is known. This enables the accurate
epipolar line location for a certain keypoint (Appendix A).

In the case of single-view sequences, the keypoint match-
ing cannot really benefit from the epipolar constraint (Ap-
pendix A). If no GPS or IMU are available, only the ap-
proximate motion characteristic is known, constraining corre-
sponding keypoint searching to region of interests (ROI) rather
then lines. As a result a significant number of outliers may
occur. Approaches to the outlier rejection are based on the
epipolar constriant imposed on the fundamental matrix (F )
or the essential matrix (E) (Appendix A). Snavely, Seitz and
Szeliski [7] propose the estimation of the F matrix using the
8-point algorithm inside the RANSAC [8]. As a result a set
of 8 image points that best fit the fundamental matrix model
is found in each image pair. At the same time outliers can
be detected and rejected. Bartelsen and Mayer [9] prefer to
use the essential matrix instead of the fundamental matrix.
In contrast to the fundamental matrix, the essential matrix
estimation requires the knowledge about the camera calibration
but remains robust to the critical configurations met in the
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planar scenes. It also requires smaller number of coresponding
points. The 5-point algorithm developed by Nister [10] and the
locally optimized RANSAC [11] are proposed as a solution
method. Finally the E or F model fitting can by carried out
based on inliers only, using least-square approaches.

Applying the epipolar constraint cannot eliminate badly
matched points that are located near the corresponding epipo-
lar lines. A 3D information is necessary to detect the remain-
ing, relatively small number of outliers. To solve the problem,
the ray intersection (Appendix B) is carried out for each image
model to calculate the spatial coordinates of the tie points
(Fig. A.1). Sequential orientation of the subsequent images [2]
using for example the DLT approach [12] inside the RANSAC
procedure or formation of image triplets [9] allows to complete
the rejection of outliers. Overlapping triplets can be linked to
recover orientation of every image in the sequence. However
the recovered orientation suffers from the drift effect. Besides
it can be determined only up to the absolute scale, rotation
and translation. Aforementioned 7 parameters, if needed, can
be estimated based on ground control information such as
the GPS coordinates of the image projection centers [9] or
coordinates of the control points. Finally to estimate the
orientation of the images more accurately the least square
bundle adjustment can be applied. For the real time scenario
the good solution to the drift reduction is the detection of loop
closures [13].

A terrestrial mobile mapping can be carried out from almost
every vehicle. Cars are used commonly in case of commercial
systems. However data acquisition using cars is restricted to
streets and their surroundings only. To overcome those limi-
tations systems designed for smaller vehicles are developed,
among which bikes seem to fill the gap between hand-held
systems, mobile robots and cars. Bikes can access many more
location than cars and move faster then pedestrians and mobile
robots. Probably the most famous bike system for mobile
data acquisition was developed by Google in the Street View
project. Besides, students from Stuttgart University designed
the prototype of the bike mobile mapping system with the
laser scanner and two-antenna GNSS/INS unit [14].

Similarly to other mapping or visual odometry systems,
bike systems can be a source of image sequences. Automatic
processing of image data acquired from bike can be used to
determine trajcetory and finally to reconstruct the geometry of
objects. However it should be noticed that the bike movement
is different to the car movement. When cycling it is more
difficult to keep constant speed and direction than in case of
driving. The turn rate of bike is small when compared to car.
In case of single-view sequences with no information about
approximate image geo-referencing, motion estimation from
image data is supposed to be much more challenging task than
in case of the multi-view systems and the smoother movement.

Works addressed in this paper aim to provide the solution
to the problem of the automatic orientation of a single-view
image sequences. It is beyond the scope of this study to
examine the hardware potential as well as the achieved pro-
cessing time. However the study offers some important insight

into the analytical approaches and their practical aspects,
providing at the same a kind of overview of the existing
solutions. The following sections describe the consecutive
steps of the algorithm, starting from keypoint detection and
matching proceeding to the relative orientation and finally
to the absolute orientation. The fifth section describes the
experiments. Then the results and discussion are provided.

II. FEATURE DETECTION AND MATCHING

As this step of the algorithm is still under the develop-
ment, only the outline of the matching strategy is provided.
In the urban environment corner points are likely to occur
in almost every image and can be detected using one of
many available detectors. Proposed algorithm uses Kovesi’s
implementation [15] of Noble’s version [16] of Harris feature
detector [17]. After completing the detection, features are
matched using the monogenic phase approach [18], [19] with
the set of parameters proposed by Kovesi [15]. Assume a
certain corner is detected and matched in the initial pair in the
sequence. Matching algorithm searches for the corresponding
point in the third and subsequently in the next images. At the
same time new corners appear in consecutive images. As the
approximate image-to-image distance and the scene depth are
known, some simple geometric constrains like row and column
limits can be imposed on a searching area greatly reducing the
computation time.

Corner points are generally detected as the maxima in the
image that is the result of applying Harris operator. The
absolute maximum value (AMV) constraint can be set to
limit the number of keypoints. However applying this simple
constraint leads to nonuniform distribution of detected points.
This is the result of variations in the scene content. Some
parts of the scene like trees, windows, cars etc. are “rich” in
keypoints, while others like flat walls contain no keypoints at
all. To overcome this problem the image is divided into blocks
of equal sizes. In the addressed case study the 24 blocks (4
× 6) are used . Besides absolute value of Harris maxima, two
other parameters are set to provide more favorable distribution
of detected features: maximum number of points in each
block (PIB) and minimum distance between points (DBP).
Decreasing the AMV and the PIB and at the same time
increasing the DBP leads to the more uniform distribution
of points. Exemplary values of feature detection parameters,
applied in the refereed case study were as follows: AMV =
10 (Kovesi suggested 200 [15]), PIB = 60, DBP = 50.

As the result of matching procedure a list of points and
their pixel coordinates is provided, allowing computation of
the relative orientation of consecutive images.

III. RELATIVE ORIENTATION

A. Essential matrix computation

The relative orientation of two images acquired with cal-
ibrated camera is encoded in the 3 × 3 essential matrix E.
Derivation of the essential matrix from the relative orientation
parameters - translation and rotation (t,R) and the camera
matrix can be found e.g. in Krauss [20], or in the simpler
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form in the Appendix A. However the solution of the inverse
problem is not so trivial as there are 4 possible solutions
that have to be tested for cheirality [21]. The essential matrix
as well as the fundamental matrix satisfies the well known
complanarity constraint [20], [21]:

x′⊤Ex = 0 (1)

where x and x′ are the column vectors of homogenous image
coordinates. The rank deficiency of essential matrix implies
the following constraint:

det(E) = 0 (2)

The E matrix has two non-zero singular values that are equal.
This constraint can be expressed in the algebraic form as [22]:

2EE⊤E − tr(EE⊤)E = 0 (3)

It is advantageous to compute the essential matrix using
one of few available close-form solutions using minimal, i.e.
5, number of corresponding points [10], [23], [24], [25].
Using the close-form solution requires no prior approximation
and can be easily tested for outliers using the RANSAC
procedure. The algorithm developed by Stéwenius, Engels and
Nistér [25] was adopted within proposed solution because of
its relatively simple implementation. Using equation (1) and
finding its four-dimensional null-space, the essential matrix
can be parametrized with three unknowns x, y, z:

E = xE1 + yE2 + zE3 + E4 (4)

Inserting equation (4) into (2) and (3) produces the system of
10 3rd degree polynomial equations in three unknowns. This
system is solved using the Gröbner basis. Up to 10 solutions
for E exist but only the real ones are of the further interest.

B. Detection of outliers

In the proposed approach the essential matrix is estimated
inside the RANSAC procedure. This enables detection of
outliers. Assume that for the subsequent image pairs in the
sequence N samples are chosen, each consisting of 5 point
pairs. As there are up to 10 real solutions for E, in the
worst case there can be 10N possible solutions. According
to the typical RANSAC each point in the image pair is clas-
sified as inlier or outlier according to the specified threshold
value. In the addressed solution a kind of locally optimized
RANSAC [11] is used. All points in each sample get a score
that is inversely proportional to the distance from the model
value. If the distance is higher than the threshold, the score is
zero and the point is classified as outlier. The sample with the
highest total score wins.

The easiest way to score each point is to calculate distance
to the epipolar line using (1) (see Appendix A). However it
may happen that due to mismatching, a point that is projected
near the epipolar line lies behind the camera. To avoid treating
such points as inliers it was decided to recover the rotation
matrix (R) and the translation vector (t) of the second image
from each real E [21] and to calculate coordinates of keypoints
in three dimensional coordinate frame of the first image using

intersection of rays (Fig. A1, Appendix B). Now only the
keypoints with negative Z coordinates are going to be tested
further. Given R, t and estimated 3D coordinates of keypoints,
the projections to images are found so that the 2D euclidean
distances to the measured locations can be computed.

Assume three consecutive image pairs: [k,k+1], [k+1,k+2],
[k+2,k+3]. A certain feature is matched correctly in pair no.
1. Subsequently this feature is matched incorrectly in pair
no. 2. As a result it is classified as outlier. Nevertheless this
keypoint may not be rejected because it could happen that
incorrectly matched feature in image k+2 is correctly matched
with the feature in image k+3. As a consequence this keypoint
is recognized as two separate keypoints and gets separate id’s
in images forming pairs 1 and 3. It won’t be used in relative
orientation of pair no. 2.

C. Estimation by least square fitting

The sample with the best score provides good estimations
of R and t but it does not take into account all inliers. To
utilize all available information, the least square adjustment
can be carried out using all points classified as inliers. The
image coordinates of keypoints are treated as observations
and explicitly related to the parameters in the form of well
known colinearity equations (see e.g. [20]). As a consequence
the system of nonlinear equation is formed. The elements of
R are not treated as parameters directly. To avoid possible
singularities resulting from parametrization in terms of Euler
angles [26], the entries of the R matrix are expressed as
functions of the elements [27] of a quaternion. Both quaternion
and t are assumed to have unit norms that leads to the
additional constrains imposed on the parameters. Finally the
3D coordinates of all tie points complete the set unknowns.
The R, t and 3D coordinates of tie points resulting from the
RANSAC should be accurate enough to linearize the equation
system and subsequently solve it in only one iteration.

IV. SEQUENCE ORIENTATION

A. Model-to-model transformation

As a result of the relative orientation the R and t are
provided for each image pair in the sequence. Such relatively
oriented image pair is called a model. Assume image k

forming the model with image k+1.The consecutive model is
formed by images k+1 and k+2. Common points are now used
to stitch both models. In this way the orientation of a short,
3 image, sequence is recovered. Subsequently the algorithm
proceeds to the transformation of the third model based on the
reference points that appear in the previously created block.
Model stitching is carried out further, until all images are
oriented.

Each model is oriented according to the Horn algorithm [26]
and involves estimation of 7 parameters: 3 for the rotation, 3
for the translation and finally the scale. The Horn approach
consists of the following steps. At first the centroids in both
point sets are calculated. Coordinates of all points are reduced
to respective centroids. Secondly the rotation that maximizes
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the dot product of vectors pointing from centroids to corre-
sponding points is found. The rotation is parametrized in terms
of four elements of the unit quaternion. Once the quaternion
is known, it is possible to align vectors in both frames to
make them nearly parallel. Vectors won’t never be exactly
parallel due to outliers. Finally the scale is recovered using
translated and rotated vectors. Three different approaches to
scale computation are proposed depending on which point
set is assumed to have better accuracy. The approach of
Horn deals with minimal 3-point case as well as with greater
number of points. It fulfills the condition of the least sum of
squared residuals. Finally no approximation of the parameters
is needed.

It should be mentioned that in addition to the terrain points
(keypoints), adjacent models have one additional common
point, namely the projection center of the common image -
k+1 in the later example. This point lies far away from the
rest of points and certainly has a worse reliability. Applying a
standard Horn solution would cause that even a small errors in
3D coordinates of the tie points can result in large residual of
projection center locations incorporating relatively large errors
to the estimated motion. Therefore during the minimization of
the dot product the utilization of the model frame coordinates
is preferred to the usage of coordinates reduced to their
centroids. In fact such modification means that the translation
is simply calculated, not estimated, hence the estimation of
remaining four parameters is more reliable i.e. less sensitive
to the influence of erroneous tie point locations.

During the model-to-model transformation the sparse point
cloud of keypoints is being formed. Besides points used inside
the Horn algorithm, each stitched model incorporates a set
of new points. If this points appear also in the next model,
they are used as the reference. However some points exist
that appear only in one model. The correctness of the location
of such points cannot be fully checked. As a result some
erroneous points in the sparse point cloud appear.

B. Absolute orientation

Until now the image sequence was oriented up to the
scale, absolute rotation and absolute translation. If the missing
parameters are to be recovered, the external information need
to be utilized. Basically there are two approaches to provide
the external orientation to images: direct measurement and
geo-referencing through ground control points (GCPs) referred
as the indirect approach. To measure the external orientation
directly one can use GPS and inertial sensors. If the GPS is
used alone, the estimation of absolute orientation parameters
takes place using the coordinates of projection the centers
recovered in the previous step and the reference trajectory line
recorded by a receiver [9]. Geo-referencing through control
points usually requires the manual measurement of terrain fea-
tures, the coordinates of which are known from other survey.
In case the terrain coordinates of control points are known
from a geodetic survey the indirect approach is assumed to
be more accurate. In the presented study the second approach
was utilized as no GPS measurements were available. After

completing the absolute orientation it is possible to smooth
the results and increase accuracy by performing the bundle
adjustment. In such a case the loop closures, if only present,
can be taken into account for the further accuracy increase.

V. EXPERIMENTS

A. Preparatory works

The accuracy of the motion recovery from single view
sequences strongly depends on the imaging geometry. In
case of corridor sequences, when camera looks forwards or
backwards, the intersection angles between correspondent rays
are narrow, leading to the large errors of tie point locations.
As a result the recovered camera orientation tends to drift
quickly. In contrast to the corridor sequences a sequences
with camera looking perpendicular to the moving direction
(aside-looking sequences) should allow to achieve a better
accuracy. In the following tests only the motion recovery from
the aside looking sequences is covered, however the algorithm
is supposed to deal with the geometry of any kind.

To test the proposed approach the decision was made to
acquire the image sequence of the test-field area located at the
AGH University Campus (Fig. 1). This test field is equipped
with the number of natural GCPs, that are to be used to
evaluate the accuracy. GCPs are located mostly at the building
fac̨ades. It was decided to use the wide angle camera to be
able to capture the fac̨ades from top to bottom. In addition
to the large overlap, even in case of wide baseline, the wide
angle lens provides increased accuracy of depth component
of the tie point location in space. This is of the fundamental
importance for the process of model stitching as the drift is
supposed to accumulate slower. Besides, the obtained sparse
point cloud would have better accuracy than in case of using
the narrow angle lenses. In addition to better accuracy the
wide angle lens performs better when imaging in motion. It
guarantees a large depth of field allowing imaging with small
aperture and short exposure time. Taking all the above into
consideration the Nikon D5200 camera with the Sigma 10-20
mm f/3.5 rectilinear lens was chosen as the imaging sensor. In
addition to the acquisition of a high resolution 24 megapixel
(4000 × 6000) images the sensor of the camera allows HD
video recording. The focal length was set to 12 mm providing
the horizontal viewing angle about 90 ◦. The principal distance
was fixed by blocking the focusing ring. The camera was
calibrated to determine the interior orientation parameters and
the distortion.

B. Data acquisition

Initially the tests involving acquisition of HD videos were
made, but because of low quality of extracted frames it was
decided to switch the camera to the time-lapse mode, choosing
the highest possible frequency of 1 Hz. However it came out
quickly that capturing images with the 1 Hz frequency makes
the camera buffer stuck - the shutter is not released until
the last image is saved. Lowering the frequency would either
lengthen the imaging base, possibly leading to the problems
with feature matching or force decreasing the cycling speed
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Fig. 1. Planned trajectory line imposed on the image of the test-field

resulting in extension of the overall acquisition time. The
reasonable solution to avoid the above mentioned effects was
to switch to the lower resolution of 13.488 megapixel.

The camera was fastened to the bike using a specially
constructed device consisting of the 3 DOF head, allowing
sequence acquisition from freely selectable viewing angle.
The camera was inclined to look slightly upwards and per-
pendicular to the cycling direction. The test sequence was
acquired in the aperture priority mode. The aperture value
was set to 5 resulting in the exposure time between 1/2000
and 1/1000 second. The planned trajectory line is shown in
the Fig 1. The test sequence was to have the shape of a
loop. With the aim of comparison a part of the loop was
to be cycled twice. The decision had to be made which
side the camera should look at. Choosing the right direction
provides convergent image configurations within all the turns
and a good overlap. However in the case of the test-field
the test were carried out in (Fig. 1) it was better to look
left as to capture the fac̨ades lying closely to the trajectory
line, providing advantageous distribution of keypoins. The
disadvantages of such configurations are the occurrence of the
divergent images within the turns leading to decrease in the
overlap and occurrence of the narrow angles of intersecting
rays.

After applying all the above mentioned settings the sequence
of 195 images was acquired.

C. Data processing

After collecting the data, the keypoint detection and match-
ing algorithm was tested. The rough motion characteristic was
known allowing to restrict the location of possible matches to
the ROIs of a fixed size. The imposed constraint was supposed
to reduce the number of possible outliers. The keypoint match-
ing is followed by the relative pose estimation of consecutive
image pairs. The least square relative orientation was tested but
due to a very long computation time it was not applied in the
final solution. Four image pairs, each located within the turns
were not oriented properly due to the very high outlier rate

and improper keypoint distribution. In this case the problem
was fixed by adding some tie points manually.

Having the relative pose of the subsequent models es-
timated, the sequence formation was carried out. The first
model in the sequence was chosen as a starting model. As the
relative pose estimation constrains the base vector to equal
1, all the linear quantities calculated within this stage such
as translations, residuals, errors are expressed in the unit of
the length of the first base. The threshold parameter of the
RANSAC procedure, i.e. the linear residual of the tie point,
was set to 0.1.

For now the orientation of all of the images in the sequence
was estimated up to the absolute quantities (translation, rota-
tion, scale). To solve for the missing parameters and provide
the accuracy analysis the 26 natural control points were used.
Each control point was measured in the selected model (image
pair). The accuracy assessment was provided by the residuals
of the control point coordinates. Finally the sparse point cloud
provided in the global coordinate frame was examined visually
to look for previously undetected mismatches. The extent of
the inconsistencies observed as a result of cycling the same
part of the loop twice were to be analysed deeply.

VI. RESULTS

Despite applying the ROI-restricted matching a large num-
ber of outliers was observed in almost all image pairs (Fig. 2).
During the RANSAC-based estimation of the relative pose it
came out that the number of outliers considerably exceeds
50%. Besides the limitations of the monogenic phase matcher
the reason of such a high outlier rate could be simply the
content of the scene. For instance a number of corners appear-
ing on the similar windows’ frames are hard to be matched
correctly. In addition the epiploar lines are nearly parallel to
the horizontal edges of windows’ elements so that even solving
for relative pose cannot eliminate some outliers. It can also
be noticed that there are quite a lot of trees in front of the
fac̨ades (Fig. 1, Fig. 2, Fig. 3). As a results a number of a
false keypoints is detected at the intersections of branches and
twigs. Some of them are also incorrectly matched. The similar
happens for keypoints detected in the reflections appearing in
the window panes (Fig. 2). Also a lot of corner points detected
at the grainy structure of the asphalt are matched incorrectly.
Using the 5-point algorithm inside the RANSAC allows to
eliminate most of the outliers. Fig. 2 and Fig. 3 are provided
as an example.

It was decided to examine the influence of the drift (accumu-
lation of the errors within the sequence formation stage) on the
accuracy of the absolute orientation. The results are provided
in the table 1. At the beginning the sequence of 10 images was
oriented using four GCPs. The centimeter-level errors were
obtained. Afterwards the number of images was increased until
the appearance of a next group of available control points.
Finally the sequence of 158 images was oriented. As no GCPs
were measured in the further images, the last row of the
table 1 represents the accuracy of the absolute orientation of
the whole sequence. Performed analysis shows that generally
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Fig. 2. One of the images from the southern part of the sequence and the
vectors showing the displacement of the keypoints to the the next image.
Results before applying the 5-point relative pose estimation algorithm inside
RANSAC.

Fig. 3. One of the images from the southern part of the sequence and the
vectors showing the displacement of the keypoints to the the next image after
automatic rejection of outliers

while increasing the length of the sequence errors tend to
increase, however not in the regular way. The worst results
were obtained for the Y coordinate and the best for the Z.

Fig. 4 shows the sparse cloud of tie points obtained as a
result of the sequence formation. The colour of points changes
from blue to red as to show the inconsistencies in the point
cloud resulting from the orientation drift. The first matched
keypoint in the first image pair is coloured in blue. The last
matched keypoint in the last model is coloured in red. The
black spots represent the location of projection centres. The
black line represents the trajectory. The total length of the
trajectory is 232.58 m. The arrows show the cycling direction

The fac̨ades are clearly visible in the cloud as well as
the kerbs and the trees. During the data acquisition there
was not as many cars parked as it can be seen in the Fig.
1. Few of them can also be visible in the cloud. There are
also quite a lot of points that seem to be located inside the
buildings. This tie points may represent mismatched keypoints
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B

Fig. 4. The trajectory line and the point cloud. The arrows point the cycling
direction. Green rectangles A and B mark the areas that will be referenced
further. Orientation: north, units: meters.

located only in two images, occupying consistent epipolar
lines. Such points pass the RANSAC testing, carried out
within the model formation, but cannot be tested in the model
stitching procedure. As a result of capturing certain parts of
the scene twice, the inconsistencies in the resultant point cloud
appear. To show them in details two parts of the cloud bounded
by green rectangles are shown in the greater scale in the Fig. 5
and Fig. 6.

The thickest strip of points in the Fig. 5 represents the front
edge of the hedge, part of which is visible at the bottom of the
Fig. 1. Points forming four segments parallel to the hedge are
likely to be located at the crowns of the trees and the items
used to shape them in the espalier-like form - see the very
bottom of the Fig.1. In front of the hedge there are some points
at the pavement. Some of them form a linear features that
may represent kerbsides. Two linear features that lie behind
the trees represent the railings of the ramp that belongs to the
building the image in the Fig. 1 was captured from. Looking
at the points located at the hedge it can be noticed that the red
points are shifted with respect to the blue ones. The shift is
about 40 cm in the south-north direction. When looking at the
trees and railings and finally at the fac̨ade (Fig. 4) this shift
seem to decrease.
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TABLE I
ACCURACY OF THE ABSOLUTE ORIENTATION OF THE SEQUENCES OF A DIFFERENT LENGTH. THE LAST COLUMN PROVIDES THE RMS ERRORS OF THE

3D CONTROL POINT LOCATION.

Num. of images Distance [m] Num. of points RMSEX [mm] RMSEY [mm] RMSEZ [mm] RMSEP [mm]

10 15.31 4 6 16 12 21

34 42.94 7 63 33 30 77

55 75.82 9 87 71 60 127

73 95.48 12 99 111 60 160

89 107.46 16 212 224 83 320

107 126.83 16 290 265 103 406

141 177.39 23 272 403 126 502

158 193.56 26 267 405 240 542
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8248
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Fig. 5. Inconsistency of the point cloud within the area A
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Fig. 6. Inconsistency of the point cloud within the area B

In the Fig. 6 the points located at the car body can be
observed as well as linear features representing kerbs. There
are groups of points representing trees that grow in the front
of the building the fac̨ade of which can be seen in the bottom

right corner of the figure. Looking at the points representing
the car one can notice a considerable inconsistency in the point
cloud. The red points are shifted about 2 meters with respect to
blue points. The reason why the shift increased to such a high
value can be the unfavourable imaging geometry (divergent
camera axes, decreased overlap) at the north-east turn. Finally
it can be found quite unexpected that no drift in the heading
component of the angular orientation can be noticed - the blue
and red linear features visible in Fig. 5 and Fig. 6 stay almost
exactly parallel.

VII. DISCUSSION

In this paper the new solution to the automatic orientation
of single-view image sequences is proposed and the results of
the tests conducted based on the data acquired from bike are
presented. The solution assumes the calibrated camera case
to achieve more robust performance in outlier detection and
better accuracy. Modifications to the model-to-model stitching
procedure are proposed as to achieve better reliability of the
sequence formation, which result in more robust trajectory
estimation.

The conducted tests allow the examination of certain steps
of the proposed solution. The first step i.e. the feature detection
and matching seem to perform quite well for images with a
similar angular orientation. However it tends to fail for images
captured within turns so that even the manual point measure-
ment was to be carried out to fix the problem. To improve
the keypoint matching firstly a more robust feature descriptors
and matcher can be applied. Secondly the matching should be
integrated with the relative pose solution. The E matrix is
quite accurately estimated using the proposed method, even in
the presence of outliers, so that the equations of epipolar lines
can be used to impose a stronger constraints for the feature
re-matching (Appendix A). Afterwards features can be re-
matched after solving for the essential matrix. Then the refined
essential matrix is to be estimated and the solution can proceed
in the iterative manner. Having the robustness improved one
can think about improving the accuracy by using the sub-pixel
corner measurement. Additionally the motion recovered within
the process of model stitching can be smoothed using the
bundle adjustment, however this approach may take quite a
lot of computation time.
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Assuming no real time application it is also better to select a
different starting model for the sequence formation. Probably
choosing the model near to the middle of the sequence would
reduce the error as the drift is to accumulate on distances of
about the half distance of the sequence.

The improvement of the orientation procedure is going to be
followed by integration of other sensors like GPS or IMU. It
would demand changing the imaging sensor from SLR to the
industrial camera. Besides providing the time synchronization
interface the industrial camera allows imaging at the higher
frequency and at the same moment allowing real-time image
data processing. Generally at this stage of the research the
obtained results can be found satisfactory and consist a good
starting point for developing a bike MMS equipped with
the visual orientation unit. There exists a field to improve
the robustness, accuracy and operational performance of the
solution by improving both algorithms, implementation and a
hardware.

APPENDIX

A. Essential matrix the and epipolar constraint for a cali-

brated camera

Assume that the two images of approximately the same
scene were taken with calibrated camera (Fig. A.1). Assume
this two images form photogrammetric model. Relative ori-
entation of the second image with respect to the first image
can be parametrized by the orthonormal rotation matrix (R)
of the second camera frame and translation vector (t) of the
second camera projection center (O’). The translation vector
simply equals the base vector (b). The relative orientation can
be estimated up to scale factor. Usually b is assumed to be the
unit vector.

Fig. A.1. Two metric images forming the model

Point P is located in the scene and projected into images
to form points p and p′. Assume two vectors x and x′ that
originate in projection centers O and O′ and point at points p

and p′. Cooridinates of those vectors are given in the reference
frame of respective cameras so that the third coordinate is
equal to the principal distance of camera with the minus sing
and for metric images is assumed to be the same, i.e.:

x =





ξ

η

−c



 , x′ =





ξ′

η′

−c



 (A.1)

Now the coplanarity constraint reads as follows:

x⊤(b×Rx′) = 0 (A.2)

Coordinates of b fill the elements of skew-symmetric matrix
B:

B =





0 −bz by
bz 0 −bx
−by bx 0



 (A.3)

so that:

x⊤BRx′ = 0 (A.4)

and consequently:

x′⊤Ex = 0 (A.5)

where E is the essential matrix. The projection center O and
point P define a ray that is projected into second image as
the line l′ (Fig. A1). The equation of this line is obtained
by inserting the coordinates of x into equation (A.5). In the
similar way the equation of the epipolar line l can be derived.

B. Intersection

Assuming the R and t are known, it is now possible to
estimate the coordinates of point P in the model coordinate
frame, i.e. the coordinate frame of the first camera (Fig. A.1).
If points p and p′ represent two correctly matched keypoints,
theoretically both rays should meet in point P . However due to
measurement errors rays are not going to intersect. Knowing
the x and x′ vectors (A.1) the location of point P can be
determined by least square solution. Collinearity equations for
two corresponding keypoints are as follows:





X

Y

Z





P

= λ1





ξ

η

−c



 (B.1)





X

Y

Z





P

=





bx
by
bz



+ λ2R





ξ′

η′

−c



 (B.2)

where λ1 and λ2 are unknown scale coefficients. After elimi-
nation of λ1 and λ2 from (B.1) and (B.2) followed by term’s
rearrangement the observed 2D coordinates of the keypoint can
be written using explicitly elements of the relative orientation
as the functions of unknowns:









ξ

η

ξ′

η′









=











−cXP

ZP

−c YP

ZP

−c
R1,1(XP−bx)+R2,1(YP−by)+R3,1(ZP−bz)
R1,3(XP−bx)+R2,3(YP−by)+R3,3(ZP−bz)

−c
R1,2(XP−bx)+R2,2(YP−by)+R3,2(ZP−bz)
R1,3(XP−bx)+R2,3(YP−by)+R3,3(ZP−bz)











(B.3)

This system of equations can be rewritten in the linear form.
The solution provides coordinates of point P . In case of erro-
neous measurements in x and x′ the projection of estimated
P point into images won’t coincide with points p and p′ so
that the residual vectors will appear.
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