
A Framework for Constructing Correct Qualitative

Representations of Geometries using Mereology

over Bintrees

Leif Harald Karlsen

Department of Informatics

University of Oslo

Email: leifhka@ifi.uio.no

Martin Giese

Department of Informatics

University of Oslo

Email: martingi@ifi.uio.no

Abstract—In this paper we explore how bintrees can function
as a suitable representation for mereological objects, and how
such objects can be used to construct correct representations of
geometries, with respect to qualitative queries constructed from
a given set of mereological relations. We will show how these
correct representations can be stored and queried by a traditional
relational database using relational algebra, or similar tuple-
based databases.

We will define a model theoretic semantics for the bintrees
and show how we can construct these correct representations
as solutions to constraint networks with variables ranging over
bintrees. Furthermore, we make an algorithm for solving the
constraints and prove its correctness.

The framework presented in the paper is not limited to only
constructing representations of geometries, but representations
of any objects where a part-of relationship is natural.

I. INTRODUCTION

G
EOSPATIAL and temporal data is ubiquitous in today’s

software, with a growing number of spatially aware de-

vices gathering and publishing data. Spatial and temporal data

is used in a great number of highly valuable applications, like

route planning, automatic navigation, modelling of physical

processes, etc. However, temporal and especially geospatial

data are normally represented as complex numerical objects

that are difficult to represent in information storing software.

The relationships between objects are in these numerical

representation implicit, and one needs advanced numerical

algorithms for exacting this data. Storing such data with

regards to efficient information retrieval is also difficult, as

indexing these objects are far from easy.

During the last decades, several temporal and geospatial

database systems have been developed, featuring advanced

indexing mechanisms and efficient numerical algorithms for

answering queries over such data (see e.g. [1]). Despite these

advances, geospatial and temporal data is still a lot more

difficult to handle than more traditional data. These data types

also often lag behind when new knowledge representations are

introduced and often need special treatment.

We therefore want to create a framework for constructing

non-numerical representations of numerically represented ge-

ometries (and other numerically represented elements). These

representations should be in a format that we can store and

query in a relational database and other tuple based storage

structures (e.g. a triple store) where properties of the elements

are stored explicitly. In addition to qualitative query answering,

we also want to be able to pose window queries, that is queries

involving geometrical constants, and have efficient insert of

new objects.

The queries we want our system to handle are qualitative

queries, that is, queries that consist of only non-numerical

predicates (e.g. Overlaps(a, b) and Contains(a, b)). Such

relationships tend to be closer to how humans generally

think, and are often sufficient for a geospatial database. These

relations are naturally expressed using the part-of relation (see

example 11). The part-of relation is the base relation in the

theory of mereology in the same way the element-in relation

is the base relation of set theory. We will therefore base our

framework around mereological queries.

Our approach will solve the problem above by using a type

of geospatial index structures called linear bintrees [2], which

is a type of trie. Each node in the tree represents an area,

with the root node representing some universe. Every node

has two children, each representing half of the area of its

parent node. Furthermore, every node is denoted by a bit-

string. The root node is represented with the empty bit-string,

and each left and right child-node of a node is represented

with its parent bit-string s but with a 0 or a 1 appended to the

end of s respectively. A spatial object can then be represented

as a union (i.e. as a set) of bit-strings, which then represents

the union of the areas each node with the given bit-strings

represents.

Bintrees index geometries by constructing a set of nodes

from the bintree that represents an approximation (from above)

of the area of each geometry. Such an index structure can then

be used to quickly compute a complete (but not sound) ap-

proximation of the answers to a query, that can then be filtered

by using the actual geometries. Bintrees have the convenient

property that they can be stored as a regular database relation,

and indexed by normal database index structures, like B-trees,

since they only consists of sets of bit-strings. Another nice

feature of bintrees is that they allow variable resolution, so we

Preprints of the Federated Conference on

Computer Science and Information Systems pp. 21–33

c©2015 21

can have low resolution (small bit-strings) for homogeneous

areas and high resolution (long bit-strings) for homogeneous

areas where more detail is necessary.

We will use bintrees as a representation, but fix the ap-

proximation by constructing mereological constraints over the

bintrees, such that any solution will give correct representa-

tions with respect to mereological queries. The framework we

develop throughout this paper is not restricted to only geome-

tries, but can be used for any type of data that satisfies the

axioms of Classical extensional mereology (see Definition 6).

The paper is organised as follows. Section

II gives a naive approach and explains why this is unfeasi-

ble, and why using an index structure is desirable;

III properly defines the bintrees, the mereological relation ≺
and the models we will be using throughout this paper;

IV introduces the relations we will allow our queries over

the representations to contain;

V defines how our mereological models can be interpreted

geometrically, and defines what correct representations

are with respect to the geometries;

VI introduces mereological constraints that we can use to

state the properties we want our representations to have.

The constraints is our main tool for constructing correct

representations;

VII explains how we can construct constraints that properly

describe correctness, and we will here define functions

for automatic construction of such constraints;

VIII describes an algorithm for solving the constraints, and

contains a proof of correctness of the solver;

IX outlines the details of query answering over our repre-

sentation, and how we can answer mereological queries

in relational algebra, Datalog, and SPARQL;

X examines the time complexity of the solver and the

bounds of the storage space of the representations;

XI contains a summary of the results, and ideas for exten-

sions of the framework.

Throughout this paper, we will assume that G is a finite

set of names of objects that we want to represent. They can

either be temporal, spatial, or other types of objects for which

part-of relationships are natural. We put no restriction on the

number of dimensions these elements have, as long as they all

have the same (finite) number of dimensions.

II. A NAIVE APPROACH AND THE OUTLINE OF A

SOLUTION

Assuming we have a numerical representation of the ele-

ments we want to describe, a naive approach to the problem

could be to simply construct a table for each relation, compute

all possible relations between the elements and store the tuples

in the tables. However, this would require storing tables with

an exponential number of tuples in each. Furthermore, if we

do not have an index structure, every time you insert a new

element you will have to compute all relationships between

the new element and every geometry already in the database.

Furthermore, such a solution would not allow us to pose

window queries.

Hence, a feasible solution needs a spatial index structure

that allows us quickly to look up which objects are potentially

spatially related to the new element. Such a structure could

then also be used for posing window queries, as it gives an

approximate location of each object.

Index structures are complete, so the elements returned from

a look-up for a query q should contain at least all the answers

to q. However, spatial index structures are often not sound.

The main idea behind our approach is to construct sound and

complete index structures, such that we only have to make an

index look-up to answer a query.

III. MEREOLOGY OVER BINTREES

As we saw from previous section, we will use a spatial

index structure for representing the objects of G. As stated in

the introduction, a data structure that is well suited for our use

is the linear bintree [2] index structure.

In this section we will properly define this data structure,

and see how the mereological part-of relation, denoted ≺, can

be defined over bintrees.

Definition 1. Define

• B to be the set of bit-strings called blocks, and where ε
is the empty bit-string (that is B = {0, 1}∗);

• s ◦ s′ to be the concatenation of the bit-strings s and s′

from B, with ε as identity;

• s1 2 s2 ⇔ ∃s(s2 ◦ s = s1), that is, s1 2 s2 states that the

block s2 is a (string) prefix of the block s1;

• two blocks s1, s2 ∈ B to be neighbours if there exists an

s ∈ B s.t. s1 = s ◦ 0 and s2 = s ◦ 1.

Since the prefix relation on strings is a partial order, so is

2.

Definition 2. Define the set of bintrees M be the set of α ∈
Pfin(B) \ {∅} (where Pfin is the set of finite subsets) such

that α contains no neighbours and no two (unequal) elements

s1, s2 where s1 2 s2.

Furthermore, define the depth of an element α ∈ M to be

the length of the longest bit-string in α, denoted ∆(α).

The set B will represent the blocks in a bintree, while

each α ∈ M will be a set of such blocks, representing an

area. Notice that there is no assumption on the number of

dimensions in the representation (except for finiteness). Notice

that disallowing neighbours and pairs of 2-related elements

gives us the optimal representation for each area.

We will need a formal framework for studying the properties

of different representations. First order logic with model

theoretic semantics is a suitable language for studying such

properties. The models we are going to work with and the

model semantics we will use is defined below.

Definition 3. Let a mereological model Q be a first order

model for the language with a binary relation symbol ≺, and

constants G ∪M, such that

(i) the model’s universe is M;

(ii) aQ = a for any a ∈ M, i.e. bintree literals are

interpreted as themselves; and

22 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

(iii) ≺Q= ≺̇ where

a ≺̇ b⇔ ∀s ∈ a ∃s′ ∈ b (s2 s′)

The interpretation of the constants in G is not constrained.

Note that the only difference between two mereological

models is their interpretations of the constants in G, everything

else is fixed. Since our models are just special instances of

first order models we will use the regular notation of first

order logic, such as the satisfaction relation � and first order

formulas.

Definition 4. Let �M be the mereological consequence rela-

tion, such that ϕ �M ψ holds iff for any mereological model

Q we have Q � ϕ⇒ Q � ψ.

Throughout this article we will often use the relation

O(a, b)⇔ ∃v(v ≺ a ∧ v ≺ b), which is the overlaps relation.

We will sometimes abuse notation and state the truth value of

O(a, b) outside a model when a, b ∈ M. In these cases we

will assume that by O(a, b) we mean ∃v ∈M (v ≺̇a∧v ≺̇ b).
We will also use the shorthand a ⊀ b and a ⊀̇ b instead of

¬(a ≺ b) and ¬(a ≺̇ b) respectively.

Example 5. Let’s construct a toy example with three two-

dimensional areas, so let G = {A,B,C}.

A

B
C

A

B

C

The above image is a visualisation of the model Q where

AQ = {000011, 00011, 0011, 00101, 001001},

BQ = {00111, 10010, 1001011, 11, 011111},

CQ = {110011, 110110}

We can see that Q � ∃v(v ≺ A ∧ v ≺ B) (since {00111} is

part of both) and Q � C ≺ B.

We will now take a brief look at the mereological system

our definitions satisfy.

Definition 6. Classical extensional mereology [3] (CEM) has

the following axioms for ≺:

(i) Reflexive:

∀x(x ≺ x);
(ii) Transitive:

∀x∀y∀z(x ≺ y ∧ y ≺ z → x ≺ z);
(iii) Anti-symmetric:

∀x∀y(x ≺ y ∧ y ≺ x→ x = y);

(iv) Top:

∃y∀x(x ≺ y);
(v) Strong supplementation:

∀x∀y(y ⊀ x→ ∃z(z ≺ y ∧ ¬O(z, x)));
(vi) Sum:

∀x∀y∃z∀v(O(v, z)↔ (O(v, x) ∨O(v, y)));
(vii) Product:

∀x∀y(O(x, y)→ ∃z∀v(v ≺ z ↔ (v ≺ x ∧ v ≺ y))).

The framework we will construct in this paper will be

able to construct correct representations with respect to any

relation constructed from a base relation satisfying the axioms

of Definition 6.

Lemma 7. Our definition of ≺̇ over bintrees satisfies the

axioms for CEM.

Proof. We will use the same enumeration of the axioms as in

Definition 6:

(i) Reflexivity: Follows easily from the reflexivity of 2.

(ii) Transitivity: Assume ∀s ∈ x∃s′ ∈ y(s 2 s′) and ∀s′ ∈
y∃s′′ ∈ z(s′2s′′), then we have that ∀s ∈ x∃s′ ∈ y∃s′′ ∈
z(s2s′∧s′2s′′). By transitivity of 2, the result follows.

(iii) Anti-symmetric: If ∀s ∈ x∃s′ ∈ y(s2s) and ∀s′ ∈ y∃s ∈
x(s′ 2 s), we must have that x = y (i.e. they contain

exactly the same elements from B), since, by construction

of M, no element can contain two blocks s1, s2 where

s1 2 s2.

(iv) Top: We have {ǫ} which satisfies this.

(v) Strong supplementation: Assume x, y ∈M where y ⊀ x.

Then we have there must be one s ∈ y where ∀s′ ∈
x(¬s2s′). By definition, there are no neighbours in y, it

must be the case that there is an s′′ 2s s.t. ∀s′ ∈ x(¬s2

s′∧¬s′ 2 s). We then have that {s′′} ≺̇y∧¬O({s′′}, x).
(vi) Sum: Assume x, y ∈ M and let z′ := x ∪ y. Let z

be the element that results from recursively merging all

neighbours of z′ and removing all blocks s where s2 s′

and s, s′ ∈ z′. It should be easy to see that for any v ∈
M, O(v, z) holds iff O(v, x) or O(v, y).

(vii) Product: Assume x, y ∈ M and O(x, y). Let z := {s ∈
B | (s ∈ x ∧ {s} ≺̇ y) ∨ (s ∈ y ∧ {s} ≺̇ x)}. It should be

easy to see that for any v ∈ M we have that v ≺̇ z iff

v ≺̇ x and v ≺̇ y.

From the above lemma, we can see that our definition of ≺
satisfies the axioms of the theory CEM. Since bintrees are easy

to store and index they are a natural choice for representing

mereological objects on a computer.

The three last axioms of CEM states the existence of a

difference, sum and product respectively. In the following

lemma we should that the corresponding operators are well

defined.

Lemma 8. We have that for any x, y ∈M:

(i) if y ⊀̇ x there is a unique ≺̇-maximal element z ∈ M
satisfying z ≺̇ y ∧ ¬O(z, x);

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

(ii) there is a unique element z ∈ M satisfying ∀v ∈
M(O(v, z)↔ (O(v, x) ∨O(v, y)));

(iii) if O(x, y) there is a unique element z ∈ M satisfying

∀v ∈M(v ≺̇ z ↔ (v ≺̇ x ∧ v ≺̇ y)).

Proof. We know from Lemma 7 that such objects exist inM,

we will prove that they are unique.

(i) Let z be the set of 2-greatest elements s ∈ B that satisfy

{s}≺̇y∧¬O({s}, x). It should be easy to see that z ∈M
and that z≺̇y∧¬O(z, x). Assume that there is an element

z′ ∈M that satisfies z′ ≺̇ y ∧ ¬O(z′, x). For any s ∈ z′

we must have {s} ≺̇ y ∧¬O({s}, x). Then, by definition

of z, we have {s} ≺̇ z. Since s was arbitrary z′ ≺̇ z, and

since z′ was arbitrary z must be the ≺-maximum, thus

unique and maximal.

(ii) Assume, for the sake of contradiction, that there are

two unequal elements z, z′ ∈ M that both satisfies the

sentence. Then it follows that ∀v(O(v, z) ↔ O(v, z′)).
Since z and z′ are unequal there must exist an s ∈ B
s.t. either {s}≺̇z∧¬O({s}, z′) or {s}≺̇z′∧¬O({s}, z).
However, both contradicts ∀v(O(v, z) ↔ O(v, z′)), so

there is only one element z ∈M satisfying the sentence.

(iii) Assume that we have two elements z, z′ ∈M satisfying

the sentence. Then ∀v(v ≺̇ z ↔ v ≺̇ z′) which implies

z = z′.

Lemma 8 guarantees that the notions in the following

definition are well-defined:

Definition 9. Let x, y ∈M.

(i) If y ⊀̇ x, we will write x ⊖ y to denote the unique ≺̇-

maximal element z ∈M that satisfies z ≺̇ y ∧ ¬O(z, x).
We call x⊖ y the difference between x and y.

(ii) We will write x⊕ y to denote the unique element z ∈M
that satisfies ∀v ∈ M(O(v, z) ↔ (O(v, x) ∨ O(v, y))).
We call x⊕ y the sum or the union of x and y.

(iii) If O(x, y), we will write x ⊗ y to denote the unique

element z ∈ M that satisfies ∀v ∈ M(v ≺̇ z ↔
(v ≺̇x∧v ≺̇y)). We call x⊗y the product or intersection

of x and y.

In the next section we will define which queries we will be

able to answer over our representations.

IV. MEREOLOGICAL RELATIONS

As we saw in the previous section, bintrees represents

mereological objects in a natural way. Our main reason for

using bintrees is to ease storage and retrieval of information

in a relational or similar tuple-based database. To this end, we

will now introduce the query language we will use over our

structures. It is well known that conjunctive queries have nice

computational properties and are well supported over most

tuple-based databases [4]. Our query language will therefore

have base relations that are conjunctive queries.

Definition 10. Let V be a set of variables, disjoint from G. A

mereological formula is a formula on the form defined by the

BNF grammar:

ϕ ::= ϕ1 ∧ ϕ2 | ∃z . ϕ1 | α ≺ β

where z ∈ V a variable, and α, β ∈ V ∪ M ∪ G. A

mereological relation is an n-ary relation on M described by

a mereological formula. We will write rϕ for the mereological

relation described by the mereological formula ϕ. Let the set

of mereological relations be denoted RM.

Furthermore, we will call a mereological formula with no

free variables a mereological sentence. Whenever we write

ϕ(~p) for a mereological formula ϕ and a vector ~p of elements

from G∪M, we will assume that it is a mereological sentence

(so the length of ~p is equal to the number of free variables in

ϕ.)

Example 11. Below is a list of examples of common relations

expressed as mereological formulas:

• Overlaps2(p1, p2) = ∃z(z ≺ p1 ∧ z ≺ p2),
• Overlapsn(p1, . . . , pn) = ∃z(z ≺ p1 ∧ . . . z ≺ pn),
• Contains(p1, p2) = p1 ≺ p2,

• Between(p1, p2, p3) = p1 ≺ p2 ∧ p2 ≺ p3,

• InIntersection(p1, p2, p3) = p3 ≺ p1 ∧ p3 ≺ p2,

• Underlaps(p1, p2, p3) = p1 ≺ p3 ∧ p2 ≺ p3.

The set of mereological relations might seem inexpressive,

but note that these are only base relations. When we know that

the mereological objects are correctly represented according to

these base relations, we can then use those relations to form

more complex relations in a more expressive query language

(e.g. SQL).

Example 12. Below we have defined the RCC5-relations [5]

in terms of the base relations in the previous example:

• DC(p1, p2) = ¬Overlaps2(p1, p2),
• O′(p1, p2) = Overlaps2(p1, p2) ∧ ¬Contains(p1, p2) ∧
¬Contains(p2, p1),

• PP (p1, p2) = Contains(p2, p1) ∧ ¬Contains(p1, p2),
• PP−1(p1, p2) = PP (p2, p1),
• EQ(p1, p2) = Contains(p1, p2) ∧ Contains(p2, p1).

V. MODELS OF GEOMETRY

To construct correct representations of the geometrical ob-

jects in G, we will need geometrical models that interprets the

elements of G andM as geometrical objects. We will therefore

construct models over the same language, but with a different

domain; the domain of sets of points in Rd (for some finite

number of dimensions d).

Definition 13. Assume that d denotes the (finite) number of

dimensions we are working in. Let a geometrical model N be

a first order model for the language with a binary relation

symbol ≺, and constants G ∪M, such that

(i) the model’s universe is N := P(Rd);

24 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

(ii) the elements ofM are interpreted to elements of N such

that the following holds:

{(s ◦ 0)}N ∪ {(s ◦ 1)}N = {s}N for any {s} ∈ M,

{(s ◦ 0)}N ∩ {(s ◦ 1)}N ⊆ ∅ for any {s} ∈ M,

αN =
⋃

si∈α

{si}
N for any α = {s1, s2, . . . , sn};

(iii) ≺N=⊆.

The interpretation of the constants in G is not constrained.

While mereological models differ only in their interpretation

of the constants from G, geometrical models can differ also

in their interpretation of bintrees from M to point sets in N ,

subject to the constraints given in (ii). We will use standard

first order logic syntax also for our geometrical models.

Definition 14. Let �N be the geometrical consequence rela-

tion, such that ϕ �N ψ holds iff for all geometrical models

N we have N � ϕ⇒ N � ψ.

Theorem 15. For any two mereological sentences ϕ, γ, we

have

ϕ �M γ ⇔ ϕ �N γ

Proof. By the deduction theorem of first order logic, it suffices

to prove �M ϕ → γ ⇔ �N ϕ → γ. We will prove that

�M α ≺ β ⇔ �N α ≺ β for α, β ∈ M, and the rest follows

by standard first order logic.

By property (ii) of Definition 13 (and an easy induction

proof), we have that �N {s} ≺ {s
′} if s2 s′. If we combine

this with property (iii) (and an easy induction proof), we have

{s}N ⊆ {s′}N only if s2 s′, since {s ◦0}∪{s ◦1} partitions

{s}. Then, by standard set theory and property (v), we can

conclude that �N
⋃

i{si} ≺
⋃

j{s
′
j} ⇔ ∀si∃s

′
j(si 2 s′j).

We are now ready to state what we mean with correct

representations.

Definition 16. Given a set of relations R ⊆ RM, we say

that a model Q is R-complete with respect to a geometrical

model N if for any mereological relation rϕ ∈ R and any

tuple ~p ∈ G∗, we have

N � ϕ(~p)⇒ Q � ϕ(~p)

We say that Q is R-sound with respect to N if for any

mereological relation rϕ ∈ R and any tuple ~p ∈ G∗ we have

Q � ϕ(~p)⇒ N � ϕ(~p)

We want to construct a model Q such that it properly

represents the geometries of G according to a set of relations

R ⊆ RM, that is, it should be both R-sound and R-complete.

As stated earlier, we also need our representations to function

as a spatial index structure. For this we must to be able

to determine which objects are spatially related to an upper

approximation of an object. Bintrees as spatial index structures

normally have a maximum depth δ that decides the resolution

of the approximation.

Definition 17. Assume that δ is a natural number denoting

some initial maximal depth and letMδ := {α ∈M | ∆(α) ≤
δ} be the set of elements of M with depth less than or equal

to δ. Let a mereological unary relation overM be called a δ-

index relation if it is described by one of the formulas β ≺ v,

v ≺ β or O(v, β) for some β ∈Mδ and v ∈ V . Define Rδ to

be the set of δ-index relations.

The relations of Rδ can describe an object correctly up

to resolution δ. In other words, any mereological model that

correctly represents the elements of G according to Rδ with

respect to a geometrical model N , will functions as a spatial

index at the depth δ. Therefore, a mereological model that

satisfies the the same sentences constructed from the relations

of both R and Rδ as some geometrical model N , will be a

sound and complete index structure.

In the next section we will introduce mereological con-

straints. These constraints will allow us to state what properties

the elements of G should have. In section VII we will see how

we can use a geometrical model to construct constraints that

will make any model of a solution function as a sound and

complete index structure.

VI. MEREOLOGICAL CONSTRAINTS

With both a data structure to represent our objects and a

query language over them, we can now talk about how we will

construct our representations. To this end, it is natural to be

able to state the properties we want our representations to have,

and then find a representation that satisfies those properties. If

we view the properties as constraints, the process of finding a

proper representation would then be constraint solving.

We will now introduce mereological constraints, that is,

constraints that express mereological relations between mere-

ological objects.

Definition 18. Assume ψ is a mereological formula. Define

V(ψ) to be the set of variables v ∈ V in ψ, G(ψ) to be the set

of elements from G in ψ,M(ψ) to be the set of elements from

M in ψ. Set GV(ψ) = G(ψ) ∪ V(ψ) and E(ψ) = GV(ψ) ∪
M(ψ).

Furthermore, a quantifier-free mereological formula ψ is a

constraint if G(ψ) is nonempty.

By definition a constraint is any formula of the form
∧

i αi ≺ βi, where αi, βi ∈ V ∪ G ∪ M. A constraint is

therefore a formula that constrains the possible interpretations

of the elements of G. Note that even though a constraint is

only one formula, it can be a large conjunction, and therefore

constrain many or all of the elements of G.

We will, in the rest of the paper, in addition to treating

constraints as formulas, treat constraints both as a graph of

≺-edges, and a set of conjuncts. We will also abuse notation

and write (α ≺ β) ∈ ψ to mean that α ≺ β is a conjunct in

ψ.

Definition 19. A solution to a constraint ψ is a function

σ : GV(ψ) → M such that the formula ψ′ resulting from

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

substituting each free variable v in ψ with σ(v), denoted ψσ,

is valid.

Since the domain of σ is GV(ψ), there will only be elements

of M in ψσ. A substitution σ can therefore be verified as a

solution without consulting any models or doing any reasoning

except for computing ≺̇-relationships over constants fromM.

Definition 20. An interpretation Q is a model of a constraint

ψ if σ is a solution to ψ and αQ = σ(α) for any α ∈ G(ψ).

Every model of a constraint ψ must agree with some

solution of ψ on the interpretations of the elements of G(ψ).

Definition 21. We say that a sentence ϕ is entailed by a

constraint ψ and write ψ �M ϕ, if for every model Q of

ψ we have Q � ϕ.

Our relations are going to be evaluated in a specific model

that interprets the elements of G. Because of this, our queries

will be evaluated under the closed world assumption. This

assumption is common to use in relational database systems

and states that anything that is not known (read derivable or

entailed) to be true, is false [4]. It is therefore essential for

our solutions to be solved under the closed world assumption.

Our solutions should therefore induce models that only satisfy

the sentences entailed by the constraints. In other words, we

want the minimal models of the constraints.

Definition 22. A model Q is minimal for a constraint ψ if

for any mereological sentence ϕ, such that G(ϕ) ∪M(ϕ) ⊆
G(ψ) ∪M(ψ), we have

Q � ϕ⇔ ψ �M ϕ

A minimal model is then a model that satisfies exactly the

same sentences as the constraints, if we limit the constants

(both from G and M) to those of the constraints.

Definition 23. Assume that G(ψ) = G for some constraint ψ.

We say that Q is induced by a solution σ of ψ if pQ = σ(p)
for all p ∈ G.

Example 24. Assume we have G = {A,B,C} and that

ψ := {0011, 0110} ≺ A ∧A ≺ {0} ∧A ≺ B ∧

B ≺ {0} ∧ {100, 11} ≺ C ∧ v ≺ C ∧ v ≺ B

We now have that e.g. ψ �M A ≺ B ∧ O(B,C), but ψ 2M

O(A,C). A possible solution σ1 could be

σ1(A) := {0011, 011} σ1(B) := {0}

σ1(C) := {100, 11, 01} σ1(v) := {01}

It is a solution, since

ψσ1 = {0011, 0110} ≺ {0011, 011} ∧ {0011, 011} ≺ {0} ∧

{0011, 011} ≺ {0} ∧ {0} ≺ {0} ∧

{100, 11} ≺ {100, 11, 01} ∧ {01} ≺ {100, 11, 01} ∧

{01} ≺ {0}

is valid. However, a model induced by σ1 is not minimal,

since O(σ1(A), σ1(C)) and {0} ≺̇ σ1(B), neither of which

are entailed by ψ. The following modified solution induces a

minimal model:

σ2(A) := {0011, 011} σ2(B) := {00, 011}

σ2(C) := {100, 11, 000} σ2(v) := {000}

It is naturally important to know when it is possible to find a

solution to a constraint, that is, when a constraint is consistent.

Before we can define consistency of our constraints, we need

a couple of important, albeit technical, definitions.

Definition 25. Assume ψ is a constraint. Let β, β′ be called a

c-pair in ψ if β, β′ ∈M(ψ) and β ≺̇ β′. Let ψc be ψ ∪ {β ≺
β′ | β, β′ a c-pair in ψ}. Let ψ∗ be the transitive, reflexive

closure of ψc with respect to ≺.

So ψ∗ extends ψ with all implicit ≺-relationships that we

have in ψ.

Definition 26. Assume ψ is a constraint and α ∈ E(ψ). Define

Rψ≺(α) := {β ∈ E(ψ) | (β ≺ α) ∈ ψ∗} and Rψ≻(α) :=
{β ∈ E(ψ) | (α ≺ β) ∈ ψ∗}. We will call the elements of

Rψ≺(α) the ≺-successors of α and the elements of Rψ≻(α) the

≺-predecessors of α.

Rψ≺(α) contains all elements that are constrained to be a

part of α in the constraints ψ, and Rψ≻ contains all elements

that is constrained to have α as a part.

Definition 27. Let ψ be a constraint and α ∈ GV(ψ). Define

M(α) :=
⊗

β∈Rψ≻(α)∩M(ψ)

β

if Rψ≻ is nonempty, and {ǫ} otherwise.

M(α) is the element of M which α is bound to be a part

of, that is, it is the upper bound for any solution of α. Note

that the only way M(α) can be undefined, is if we have a

constraint where an α has two non-overlapping ≺-successors.

If this is not the case, it should be easy to see (by looking at

ψ as a graph of ≺-edges) that we can set M(α) to be equal

to the intersection of all ≺-successors that are in M.

Definition 28. Let ψ be a constraint and α ∈ GV(ψ). Define

m(α) :=
⊕

β∈Rψ≺(α)∩M(ψ)

β

m(α) is the element of M which is bound to be a part of

α, that is, the lower limit of any solution to α. If a constraint

has an element α that does not have any ≺-predecessors in

M, then m(α) is undefined. It is, however, always defined if

there is at least one such predecessor.

We are now ready to define consistency of constraints.

Definition 29. We call a constraint ψ consistent if for any

element α ∈ E(ψ) we have that M(α) is defined and that

m(α) ≺̇M(α) whenever m(α) is defined. A constraint that is

not consistent is inconsistent.

So the consistency of the constraints only depends on the

relationships between the constants fromM in ψ. This means

26 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

that any constraint network that does not contain any elements

from M is consistent. This is quite natural, as our constraints

does not contain negation.

Lemma 30. A constraint ψ has a solution if and only if it is

consistent.

Proof. Assume that ψ is inconsistent. Then there is an α ∈
E(ψ) s.t. either M(α) is undefined, in which case we have two

≺-successors that do not overlap, or m(α)⊀̇M(α). In the first

case it should be obvious that there can be no solution. If the

latter is true, we have two cases. If α ∈ M(ψ) we have that

m(α) = α, hence α ⊀̇M(α). This means that there is a set of

≺-successors β1, . . . , βn ∈ M(ψ) s.t. α ⊀̇
⊗

i βi. Since this

does not depend on a solution, this is always unsatisfiable.

If α ∈ GV(ψ), then α must have at least one ≺-predecessor

β ∈ M(ψ) and a set of ≺-successors β1, . . . , βn ∈ M(ψ)
s.t. β ⊀̇

⊗

i βi, and we have the same situation as above.

It remains to prove that if ψ is consistent, there is a solution.

However, such a solution can be found by setting σ(α) =
M(α) for each α ∈ GV(ψ) which by definition is a solution.

It is easy to check consistency of a constraint, as it only

amounts to computing the minimal limits and maximal ele-

ments, and then check the ≺̇-relationships between them.

However, consistency is not the only property we need for

solving the constraints. It turns out that we can get hidden

ambiguities through implicit disjunctions from the constants

of M, which is a problem for our construction of minimal

models.

Definition 31. We call a constraint ψ ambiguous if there is an

element α ∈ GV(ψ) and a set of elements β1, . . . , βn ∈M(ψ)
such that

• M(α) ⊀̇ βi for all i ≤ n,

• there is at most one i for which ψ �M O(α, βi),
• and where

M(α) ≺̇
n

⊕

i=1

βi

A constraint that is not ambiguous is unambiguous.

As we will see shortly, it is only possible to find a minimal

model for unambiguous constraints. The intuition is that for

an ambiguous constraint, there is an object that is contained

in a sum of elements, but it is not clear how it should relate to

each of the objects in the sum. The constraint will therefore not

entail any relation between the element and the elements of the

sum, but of course, there must be one. This is an instance of

the general problem of obtaining minimal models of languages

that allow disjunctions, e.g. disjunctive Datalog [4]. In our

case, the disjunctions are hidden in the relationships between

the constants of M.

Example 32. Assume we have

ψ := A ≺ {0} ∧ {01} ≺ B1 ∧ {00} ≺ B2

Then ψ is ambiguous. Any model must make A overlap at

least one of the Bi, but none of the overlaps are entailed by

ψ. Hence ψ 2M O(A,B1) and ψ 2M O(A,B2), although at

least one of them must be the case in any model. Hence there

can be no minimal model.

Adding v ≺ A ∧ v ≺ B1 to ψ would still not make it

unambiguous, as we now have both ψ 2M A ≺ B1 and

ψ 2M O(A,B2). However, one of them must hold in any

model.

Theorem 33. If a consistent constraint has a minimal model,

then it is unambiguous.

Proof. We will prove the contrapositive, so assume ψ is

ambiguous. Then there is an α ∈ GV(ψ) s.t. there are some

β1, . . . , βn ∈ M(ψ) where M(α) ⊀̇ βi for each i, there is at

most one βj where ψ �M O(α, βj), and M(α) ≺̇
⊕

i βi.
For any model Q of ψ we must either have Q � α ≺ βj or

Q � O(α, βj) ∧ O(α, βj′) for some βj′ 6= βj . But neither of

the two is entailed by ψ, hence Q cannot be minimal. Since

Q was arbitrary, no such model can exist.

This means that constructing a minimal model is only

meaningful for unambiguous constraints. However, one can

always turn an ambiguous constraint to an unambiguous

constraint by introducing some additional constraints settling

the ambiguities. For an ambiguity over the element α, these

additional constraint could either set α to be a part of one (or

more) of the βs, or overlap at least one additional β.

This method could also be used to generate all possible solu-

tions (with respect to the relationships between the elements),

although there is an exponential number of such choices in

the size of GV(ψ), so this would be unfeasible in the general

case.

We will constructively prove the converse implication of

Theorem 33 in Section VIII.

VII. CORRECT INDEX STRUCTURES

As stated earlier, a common use of bintrees, quad-trees,

octrees and the like, is as spatial index structures. By construc-

tion, an index structure should be complete with respect to any

spatial query. That is, a look-up should at least contain all the

correct answers to the query. However, they are not always

sound, they might contain incorrect answers. Therefore, a

normal query procedure first makes a look-up in the index

structure, and then decides using numerical algorithms which

of the returned answers actually are correct.

In this section we will see how we can use the constraints

introduced in the previous section to construct complete and

sound index structures with respect to a set of mereological

relations R. This will make querying more efficient as it will

allow us to skip the refinement step, but more importantly, it

will allow us to have queries involving spatial relations in a

non-geospatial database.

Definition 34. Assume that N is a geometrical model, rϕ ∈
R ∪ Rδ a mereological relation, ~p a tuple and that ϕ ≡

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

∃v1 . . . ∃vn . ϕ
′(~p). Let the local completeness constraining

function ξ(ϕ(~p)) be defined as

ξ(∃v1 . . . vn . ϕ
′(~p)) = ϕ′(~p)[v

ϕ(~p)
1 /v1] . . . [v

ϕ(~p)
n /vn]

where each variable v
ϕ(~p)
i are unique for each formula ϕ and

vector ~p.

The idea is that any solution to the set of constraints returned

by ξ(ϕ) will make ϕ true. Hence, if we apply ξ to all true

(R∪Rδ)-statements in N , we will get a complete model that

also works as an index structure.

Note that any mereological formula ϕ can be rewritten to

a formula of the form ∃v1 . . . ∃vn . ϕ
′(~p), so the assumption

made in the definition does not restrict the number of formulas

ξ can be applied to.

The construction of the constraints from Rδ is almost the

same procedure as when one constructs a bintree as a spatial

index structure, with the only difference being that we do not

set the representation of an element α to be equal to all its

overlapping blocks at depth δ. We rather construct upper and

lower bounds of α by using the relations β ≺ α and α ≺ β,

and then set it to overlap all the blocks it overlaps at depth δ
by using O(β, α).

Definition 35. Let the global completeness constraining func-

tion Ξδ , for some initial depth δ, be defined as

ΞRδ (N) =
∧

rϕ∈R∪Rδ

∧

N�Nϕ(~p)

ξ(ϕ(~p))

Note that many of the constraints generated by the relations

from Rδ are redundant. For instance if we have α ≺ β for

some α ∈ G and β ∈ M, we could also have α ≺ β′ for

some β′ where β ≺̇β′. For simplicity, we will assume that we

only keep the constraints α ≺ βM for the smallest βM , and

βm ≺ α for the largest βm.

Lemma 36. Q � ξ(ϕ(~p))σ ⇔ Q � ϕ(~p) for any mereological

model Q, mereological formula ϕ and solution σ.

Proof. Assume ϕ(~p) = ∃v1 . . . ∃vn . ϕ
′(~p). Then

Q � ξ(ϕ(~p))σ ⇔ Q �

(

ϕ′(~p)
[

v
ϕ(~p)
1 /v1

]

. . .
[

vϕ(~p)n /vn

])

σ

⇔ Q � ϕ′(~p)
[

σ
(

v
ϕ(~p)
1

)

/v1

]

. . .
[

σ
(

vϕ(~p)n

)

/vn

]

⇔ Q � ϕ′(~p)[a1/v1] . . . [an/vn]

⇔ Q � ∃v1 . . . ∃vn . ϕ
′(~p)

⇔ Q � ϕ(~p)

for σ
(

v
ϕ(~p)
i

)

= ai.

Now that we have constraints properly describing the ge-

ometries, we want to construct a minimal model of these

constraints. This model will then only entail what the con-

straints entail, which is exactly the true sentences in the model

N . Hence, we have a sound and complete model that also

functions as a spatial index at the initial depth δ.

According to the definition of ΞRδ , we need to know all

true statements of N with respect to the relations of R ∪Rδ .

This would amount to computing all possible relationships

between all possible elements of G. However, if we start by

computing the constraints with respect to the index relations

Rδ , we can use M(α) with respect to these constraints as a

normal bintree index structure for α. This index structure can

be used to determine which objects might be related with a

given relation in the same way as a normal spatial index.

However, before we can attempt to solve our constraints,

we need to know that they are consistent and unambiguous. If

the constraints are constructed from true sentences in a model

N , they must be consistent. The following lemma states the

unambiguity.

Lemma 37. ΞRδ (N) is unambiguous.

Proof. Since the relations of Rδ determines the relationship

between every pair of α ∈ GV(ΞRδ (N)) and β ∈ Mδ in

ΞRδ (N), there can be no ambiguity in the constraints.

Theorem 38. We have

ΞRδ (N) �M ϕ(~p)⇔ N � ϕ(~p)

for any rϕ ∈ R ∪Rδ and ~p ∈ G∗.

Proof. (⇒): Assume ΞRδ (N) �M ϕ(~p), ΞRδ (N) =
∧

i ξ(ϕi)
and that Q is a model of ΞRδ (N). We know, by lemma 36,

that Q � ξ(ϕ)σ ⇔ Q � ϕ. This means that Q � ΞRδ (N)σ ⇔
Q �

∧

i ϕi. Hence Q �
∧

i ϕi ⇒ Q � ϕ(~p) for any model Q,

so
∧

i ϕi �M ϕ(~p). By Theorem 15 we get
∧

i ϕi �N ϕ(~p).
Since N �

∧

i ϕi, we get N � ϕ(~p).

(⇐): This follows easily from Lemma 36.

Example 39. Let’s construct a toy example with three two-

dimensional areas, and assume that G = {A,B,C} and that

the following is a visualisation of a geometrical model N :

A

B

C

We will assume that R = {O}. For simplicity let the initial

depth δ of the bintree be 4 and that we start dividing along

the y-axis. If we draw the blocks at the depth 4 over the

geometries, we get

28 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

A

B

C

0000 0010 1000 1010

0001 0011 1001 1011

0100 0101 1100 1110

0101 0111 1101 1111

If we apply Ξ
{O}
4 to the model N we get

Ξ
{O}
4 (N) =

A ≺ {01, 0001, 0011, 1001, 110} ∧ {0101} ≺ A ∧

v1 ≺ A ∧ v1 ≺ {0001} ∧ v2 ≺ A ∧ v2 ≺ {0011} ∧

v3 ≺ A ∧ v3 ≺ {1001} ∧ v4 ≺ A ∧ v4 ≺ {0100} ∧

v5 ≺ A ∧ v5 ≺ {1100} ∧ v6 ≺ A ∧ v6 ≺ {0101} ∧

v7 ≺ A ∧ v7 ≺ {0101} ∧ v8 ≺ A ∧ v8 ≺ {0111} ∧

v9 ≺ A ∧ v9 ≺ {1101} ∧B ≺ {0111, 1101, 1111} ∧

z1 ≺ B ∧ z1 ≺ {0111} ∧ z2 ≺ B ∧ z2 ≺ {1101} ∧

z3 ≺ B ∧ z3 ≺ {1111} ∧ C ≺ {0011, 1001, 0101} ∧

x1 ≺ C ∧ x1 ≺ {0011} ∧ x2 ≺ C ∧ x2 ≺ {1001} ∧

x3 ≺ C ∧ x3 ≺ {0101} ∧ y ≺ C ∧ y ≺ A

The constraints constructed in this section constrain all

elements of G at once, so once we have a solution to these

constraints, the entire procedure can be viewed as a bulk load

insertion. However, a single insert procedure for an element p
can easily be derived from the procedure above. Assume we

have a model Q with correct representations of the elements of

G according to the geometrical model N . Assume we want to

insert p. First, note that to determine the truth of ϕ(~p) in N we

only need to consult N when p is an element of ~p. Everything

else can be decided by querying Q. We would then construct

ψδ :=
∧

rϕ∈Rδ,N�ϕ(p) ξ(ϕ(p)), compute M(p) with respect

to ψδ , and let Rp = {p} ∪ {p′ ∈ G | Q � O(p′,M(p))}.
The constraints we would need to solve to construct correct

representations of G ∪ {p} would then be given by

ψ := ψδ ∧
∧

rϕ∈R∪Rδ

∧

~p∈G\Rp,Q�ϕ(~p)

ξ(ϕ(~p))

∧
∧

rϕ∈R

∧

~p∈G∩Rp,p∈~p,N�ϕ(~p)

ξ(ϕ(~p))

Note that the only representations of the elements of G that are

affected by the insert of p, must overlap M(p) with respect

to ψδ .

VIII. SOLVING THE CONSTRAINTS

Now that we know which models we are interested in, we

can define an algorithm for solving the constraints. In this

section we will construct a solver that solves the constraints

in polynomial time in size of the number of conjuncts in

the constraints. The space consumption of the returned rep-

resentations are, however, far from optimal, and a solver that

returns optimal representation is left as future work. The solver

presented in this section is therefore mostly to prove that the

problem of finding a minimal solution to a constraint is in the

complexity class PTIME in the size of the constraint graph.

In this section, we will assume that ψ (as a graph) is without

cycles. As cycles only would lead to equal elements, they

can easily be removed under the constraint solving process

by setting in one element that represents all elements in the

cycle. We can then reintroduce them when we have a solution

by setting the solution of each element in the cycle to equal

that of the representing element.

We will also extend our operators and relations to be defined

for ∅, such that we do not always have to check whether results

are empty. We let for any α ∈M:

• α ⊀̇ ∅,
• ∅ ≺̇ α,

• ∅ ⊕ α = α and α⊕ ∅ = α,

• ∅ ⊖ α = ∅ and α⊖ ∅ = α,

• ∅ ⊗ α = ∅ and α⊗ ∅ = ∅.
This makes (M, ≺̇) a lattice. Note that this is a purely

syntactic extension, and is not part of the semantics. We say

that an element is undefined if it is equal to ∅. Note that we

now always get a value from m(α) and M(α).
For our solver, we will need a syntactic way of finding all

β ∈ M(ψ) such that ψ �M O(α, β) for each α ∈ GV(ψ).
This can be done by finding all constants β ∈ M(ψ) such

that either

(i) O(m(α), β),
(ii) M(α) ≺̇ β,

(iii) or there is an element v ∈ Rα≺ ∩R
β
≺.

Using this, we will also be able to syntactically compute the

following necessary function.

Definition 40. Assume ψ is a constraint. Let

Bα¬O :=
⊕

β∈M(ψ),ψ2MO(α,β)

β

and define

M ′(α) :=M(α)⊖Bα¬O

Definition 41. Let ̟ψ : GV(ψ)→ B be a function returning

a unique block of length ⌈log2 |GV(ψ)|⌉ for each α ∈ GV(ψ).

Algorithm 1 Function that finds the minimal solution to ψ.

function solve(ψ)

δ := maxβ∈M(ψ) ∆(β)
for α ∈ GV(ψ) do

σ0(α) := {s ◦ 0 ◦̟ψ(α) | {s} ≺M
′(α), |s| = δ}

for α ∈ GV(ψ) do

σµ(α) := m(α)⊕
⊕

α′∈Rψ≺(α)∩GV(ψ) σ0(α
′)

return σµ

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

Definition 42. Assume ψ to be an unambiguous, consistent

constraint. Let µ(ψ) be the model induced by solve(ψ) in

algorithm 1.

The main idea behind the function solve is to first construct

an initial substitution σ0 that entails as few relationships

between the objects of ψ as possible, and then propagate the

necessary parts upwards to construct the correct solution σµ.

The first for-loop constructs the initial substitution σ0.

Since ̟ψ returns unique blocks of equal lengths we have

for any γ, γ′ ∈ GV(ψ), that σ0(γ) and σ0(γ
′) are disjoint.

Furthermore, for any α ∈ GV(ψ) and any β, β′ ∈ M(ψ),
we have both σ0(α) ≺̇ β if and only if ψ �M α ≺̇ β and

β′ ⊀̇σ0(α) (for details, see the proof of lemma 44). However,

σ0(α) ≺̇M(α) by construction.

So σ0 constructs representations that entail as few sentences

as possible, and only sentences already entailed by the con-

straints. The second for-loop can now iterate the elements of

GV(ψ) and constructs the correct solution such that every

element contains the elements the constraints force them to

contain. This step is somewhat similar to a more traditional

chase algorithm [4], although instead of adding triples to a

relation, we add blocks to representations.

The next example and the following lemmas and their

accompanying proofs will give the reader a more detailed

insight into the correctness of the algorithm.

Example 43. Assume that G = {A,B,C},

ψ := A ≺ {0} ∧ {01} ≺ B ∧ v ≺ A

v ≺ C ∧ C ≺ B ∧ C ≺ {00, 10}

and that

̟ψ(A) = 00 ̟ψ(B) = 01

̟ψ(C) = 10 ̟ψ(v) = 11

(since ⌈log2 |GV(ψ)|⌉ = ⌈log2 4⌉ = 2). We will now go

through each step of the computation of µ(ψ):
(i) First, δ = maxβ∈M(ψ) ∆(ψ) = 2.

(ii) We continue by computing M(A) = {0} and BA¬O =
{01}. Now M ′(A) = M(A) ⊖ BA¬O = {00}. Hence

σ0(A) = {00 ◦ 0 ◦ 00} = {00000}.
Computing the same for B,C and v, we get σ0(B) =
{00001, 01001, 10001, 11001}, σ0(C) = {00010, 10010}
and σ0(v) = {00011}.

(iii) We can now compute σµ. So

σµ(A) = m(A)⊕ σ0(A)⊕ σ0(v)

= ∅ ⊕ {00000} ⊕ {00011}

= {00000, 00011}

Doing the same for B,C and v, we get

σµ(B) = {01, 0001, 00001, 10001, 10010, 11001},
σµ(C) = {0001, 10010} and σµ(v) = {00011}.

We can now see that e.g. O(σµ(A), σµ(C)) and that σµ(C) ≺̇
σµ(B), but ¬O(σµ(A), {01}).

Lemma 44. Assume ψ is a consistent, unambiguous con-

straint. We have for any α, β ∈ E(ψ) that

ψ �M α ≺ β ⇔ σµ(α) ≺̇ σµ(β)

where σµ results from solve(ψ).

Proof. (⇒): This is easy to see from the construction of σµ.

(⇐): We will prove the contrapositive through proof by

contradiction. So assume ψ 2M α ≺ β, but σµ(α) ≺̇ σµ(β).
We have that

σµ(α) = m(α)⊕ σ0(α)⊕ σ0(α1)⊕ · · · ⊕ σ0(αn)

σµ(β) = m(β)⊕ σ0(β)⊕ σ0(β1)⊕ · · · ⊕ σ0(βm)

for α1, . . . , αn where ψ �M αi ≺ α for each αi, and

β1, . . . , βm where ψ �M βi ≺ β. It must therefore be the

case that σ0(α) ≺̇ m(β) ⊕ σ0(β) ⊕ σ0(β1) ⊕ · · · ⊕ σ0(βm).
Since ψ 2M α ≺ β there is no βi = α. We now have three

cases: Either α ∈ GV(ψ) and β ∈ M(ψ); α ∈ M(ψ) and

β ∈ GV(ψ); or lastly, both α, β ∈ GV(ψ).
In the first case, we have that σµ(β) = β, because for every

βi, we have that σ0(βi)≺̇M(βi)≺̇β. So σ0(α)≺̇β. However,

since σ0(α) contains only blocks that have a prefix among the

blocks of M(α)⊖Bα¬O, it must be the case that M(α)⊖Bα¬O≺̇
β. This further implies M(α) ≺̇ β ⊕ Bα¬O. Since M(α) ≺̇ β
implies ψ �M α ≺ β we must have M(α) ⊀̇ β. Furthermore,

ψ �M O(α, β), since if not then β≺̇Bα¬O and σ0(α)≺̇M(α)⊖
Bα¬O. However, M(α) ≺̇ β ⊕ Bα¬O, M(α) ⊀̇ β and ψ �M

O(α, β) implies that ψ is ambiguous, which is a contradiction.

In the second case, we have that σµ(α) = α. We cannot

have α ≺̇ m(β), since this would imply ψ �M α ≺ β.

Hence, α ≺̇ σ0(β) ⊕ σ0(β1) ⊕ · · · ⊕ σ0(βm). Since σ0(β)
and each σ0(βi) are all constructed of blocks at depth that

of δ + 1 + ⌈log2 |GV(ψ)|⌉, they can therefore not sum up to

an element containing any block with depth less than that of

1+maxβ∈M(ψ) ∆(β). Hence, α cannot be part of such a sum,

so we have arrived at a contradiction.

In the third case, we know that for any γ, γ′ ∈ GV(ψ),
by the uniqueness and length of ̟ψ(γ) and ̟ψ(γ

′), we have

that σ0(γ), σ0(γ
′) are disjoint. So for σ0(α)≺̇m(β)⊕σ0(β)⊕

· · · ⊕ σ0(βm) to hold, we must either have σ0(α) ≺̇m(β), or

that there is a βi where α = βi (by = we mean that they

denote the same element in the constraints). For the first case,

we can argue similarly as in the first case of the proof and

arrive at a contradiction, and in the second case we would

have ψ �M α ≺ βi, which implies ψ �M α ≺ β, which also

is a contradiction.

Lemma 45. Assume ψ is a consistent, unambiguous con-

straint. We have for any α1, . . . , αn ∈ E(ψ) that

ψ �M ∃v(v ≺ α1 ∧ · · · ∧ v ≺ αn)⇔

σµ(α1)⊗ · · · ⊗ σµ(αn) ∈M

where σµ results from solve(ψ).

Proof. For ∃v(v ≺ α1 ∧ · · · ∧ v ≺ αn) to hold in all

models of ψ, all of the αis must always share some common

30 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

part. This common part must either be a constant, in case

of overlapping lower limits, or a variable explicitly set to

be a predecessor of all αi in ψ∗. So ψ �M ∃v(v ≺
α1 ∧ · · · ∧ v ≺ αn) holds iff either

⊗n
i=1m(αi) ∈ M or

∃v ∈ GV(ψ) ((
∧n
i=1 v ≺ αi) ∈ ψ

∗). All other cases can be

reduced to one of the two.

Since all σ0(α) are disjoint, for
⊗n

i=1 σµ(α) ∈M to hold,

we must have that either
⊗n

i=1m(αi) ∈ M, or that there is

some α ∈ GV(ψ) s.t. σ0(α) is a part in each of the sums

σµ(αi). However, the last case holds iff (
∧n
i=1 α ≺ αi) ∈

ψ∗.

Theorem 46. Assume ψ is a consistent, unambiguous con-

straint. Then µ(ψ) is a minimal model.

Proof. By construction of σµ it must be a solution to ψ when

ψ is consistent, that is ψσµ is valid. Furthermore, since µ(ψ)
is induced by a solution to ψ, it is a model of ψ. Since µ(ψ) is

a model of ψ for consistent ψ, by definition of entailment of

a constraint, it must be the case that ψ �M ϕ⇒ µ(ψ) �M ϕ.

It remains to prove µ(ψ) �M ϕ ⇒ ψ �M ϕ. Without

loss of generality we can assume that ϕ ≡
∧

i α
′
i ≺ β′

i ∧
∃~v .

∧

j αj ≺ βj , where α′
i, β

′
i ∈ G(ψ) ∪M(ψ) for each i,

and αj , βj ∈ G(ψ) ∪M(ψ) ∪ V for each j. By Lemma 44

we have that ψ �M α ≺ β ⇔ µ(ψ) �M α ≺ β, for α, β ∈
G(ψ) ∪ M(ψ), so it remains to prove the result for ϕ′ ≡
∃~v .

∧

j αj ≺ βj .
We will prove this contrapositively, so assume ψ 2M

∃~v . ϕ′. Then there must be at least one model Q where

Q � ¬∃~v . ϕ′. We can compute the upper and lower bounds

of each variable vi from ~v in ϕ′, M(vi) and m(vi) resp.,

in the same manner as for the constraints. We then have

M(vi) =
⊗

i ci ⊗
⊗

j αj , where ci ∈M(ϕ′), αj ∈ G(ϕ
′) are

the constants set greater than vi in (ϕ′)∗. Since Q � ¬∃~v . ϕ′

it must be the case that either there is some vi ∈ ~v s.t. M(vi)
is undefined, or m(vi) is defined for at least one vi (if

not then M(vi) would be valid solution of vi) and that

Q � m(vi) ⊀M(vi).
In the first of the two cases, we have ψ 2M ∃v(

∧

i v ≺ αi)
where the αis are successors of vi in ϕ′. By Lemma 45 we

then have that
⊗

i σµ(αi) /∈M, so µ(ψ) 2M ∃~v . ϕ
′.

In the second of the two cases, we must have m(vi) =
⊕

i ki ⊕
⊕

j βj where ki ∈ M(ϕ′), βj ∈ G(ϕ
′) are the

elements set to be part of vi in (ϕ′)∗. For Q � m(vi) ⊀M(vi)
to be the case, there must be at least one pair of elements

γ, γ′ ∈ G(ϕ′) ∪ M(ϕ′) such that γ = ki or γ = βj and

γ′ = ci or γ′ = αj , but where Q � γ ⊀ γ′. However, this

implies ψ 2M γ ≺ γ′. Since γ, γ′ ∈ G(ψ) ∪ M(ψ), we

have by Lemma 44 that µ(ψ) 2 γ ≺ γ′, and furthermore,

µ(ψ) 2 ∃~v . ϕ′.

IX. IMPLEMENTATION IN RELATIONAL ALGEBRA AND

OTHER QUERY LANGUAGES

Now we have seen when it is possible to solve mereolog-

ical constraints, and how one can construct such solutions.

However, apart from proving the existence of sums, prod-

ucts and differences of our representations, an algorithm for

constructing representations from constraints, and a proof of

correctness, we still have not addressed how the mereological

relations actually can be evaluated over a relational database

containing these representations. In this section these details

will be outlined.

We will assume that a mereological model Q is imple-

mented as a relation Q s.t. Q(s, a) iff s ∈ aQ. Representing

our bintree blocks as bit-strings was natural for theoretical

treatment. However, in this section we will assume them to

be integers, as this is a more natural representation for actual

implementation. We will still have that a block s1 is part of

a block s2 if s2’s bit-representation is a prefix of s1’s bit-

representation.

We will start by defining the 2-relation in a more procedural

manner adopting this new representation of our blocks:

s2 s′ := (s′ = (s≫ |s| − |s′|))

where |s| := 1+⌊log2 s⌋ is the length of the bit-representation

of the integer s, and ≫ is right bit-shift.

We can now use 2 to compute ≺ over elements of Q as

≺:= (π2(Q)× π2(Q)) −

π1,3((Q× π2(Q))− π1,2,4(σ123(Q×Q)))

where π~I , σϕ,× are all from standard relational algebra (see

e.g. [4]), and is projection, selection and cross-product of the

tuples in relations, respectively. Note that ⊀:= π1,3((Q ×
π2(Q))− π1,2,4(σ123(Q×Q)).

If we want to compute a window query, that is, a query

with a constant β ∈M, then we have

X ≺ β := π2(Q)− π2(Q− π1,2(σ123(Q× β)))

β ≺ X := π2(Q)− π2(Q− π2,3(σ122(β ×Q)))

We could easily translate a numerically represented geometry

to an element ofMδ by using a standard bintree construction,

and then use this element in a window query. Since all

elements of Q are correctly represented according to Rδ our

system would return the correct answers with respect to a

resolution of δ.

There is also another suitable representation of our blocks,

which allows us to get rid of the computation of the logarithm

in 2. This representation stores the depth of each bit-string

along with the bit-string, such that each block is a pair (l, s)
where l is the length and s is the bit-string. This second

representation allows for the simpler definition of 2:

(l, s) 2 (l′, s′) := (s′ = (s≫ l − l′))

We would then have Q as a relation of arity 3, such that

Q(l, s, a), and must then update the projections in the defini-

tion of ≺ accordingly.

Intersection ⊗, union ⊕, and complement of bintrees is

implemented and discussed in [6]. Their implementations all

have a linear complexity in the size of the blocks in their

arguments. We use intersection and complement to define

difference in the standard way, a⊖ b := a⊗ b−1.

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

To compute our mereological relations over Q, we have to

get rid of the existentially quantified variables, as they actually

do not denote an object in the database but rather an object

of M. To do this we can just substitute each variable v with

the intersection of constants and free variables denoting its

maximum bound M(v). The entire query will then look like
∧

i αi ≺
⊗

j βi,j , where all αi are elements of G ∪M ∪ V
and free variables that ranges over G, and βi,j are elements

of M ∪ G or free variables over elements of G. Whenever

αi ∈ V , we can rewrite αi ≺
⊗

j βi,j to EXISTS(
⊗

j βi,j),
where EXISTS test whether its argument is empty (and is a

standard keyword in SQL). If we assume that I contains all

indices i where αi ∈ V and I ′ the rest, the entire query can

be rewritten to
∧

i∈I

EXISTS(
⊗

j

βi,j) ∧
∧

i∈I′

∧

j

αi ≺ βi,j

In Datalog with negation, assuming we have the imple-

mentation of 2 as above (either in an arithmetic extension

of Datalog or as an external predicate) ≺ is defined by the

following rule:

≺(X,Y)← not(Q(S,X),not(Q(S′, Y),2(S, S′))) .

assuming Q(s, a) iff s ∈ aQ, as above.
In SPARQL, ≺ could be implemented as :partOf as

CONSTRUCT { ?a :partOf ?b . }

WHERE

{

?a a :Geo .

?b a :Geo .

FILTER NOT EXISTS

{

?s :Q ?a .

FILTER NOT EXISTS

{

?s2 :Q ?b .

FILTER (?s <= ?s2)

}

}

}

assuming 2 is implemented as <=, and s :Q p iff s ∈ pQ.

X. COMPLEXITY

We will now turn to the actual complexity of computing

our minimal model µ(ψ) and the space complexity of the final

representations.

Theorem 47. Assume ψ is a consistent, unambiguous con-

straint with. Let n = |E(ψ)|, m be the number of conjuncts in

ψ and k be the largest cardinality of any element of M(ψ).
The time complexity of computing µ(ψ) is O(m3 + n2k).

Proof. We have that the algorithmic complexity of computing

• a⊕ b, a⊗ b and a⊖ b are all O(k) [6],

• a ≺̇ b is O(k) (can be reduced to checking a⊗ b = a),

• the transitive closure of a graph is O(m3) [7],

• M(α) is O(n2k) for each α,

• m(α) is O(n2k) for each α,

• ψ∗ is O(m3 + n2k),

• the set of elements that are forced to overlap α (given

ψ∗) is O(n2k) for each α,

• Bα¬O (given ψ∗) is O(n2k) for each α,

• M ′(α) (given ψ∗) is O(n2k) for each α.

This means that the complexity of computing each of the

for-loops in the algorithm, assuming that we already have

computed ψ∗, and Bα¬O, M(α) and m(α) for each α, is

O(nk), and O(nk), giving a combined complexity of O(m3+
n2k).

Lemma 48. Assume ψ is a consistent unambiguous constraint

with a fixed maximum depth δ. Let n = |GV(ψ)∪M(ψ)| and

m = |G(ψ)|. We have that the storage space required by the

representations returned from µ(ψ) is bound by O(mn log n).

Proof. Every σ0(α) will after the first for-loop use 2δ−1(δ +
1+ ⌈log2 n⌉) bits of storage. m(α) can take up n2δ−1 space,

which means that each σµ(α) can, worst case, use n2δ−1 +
n2δ−1(δ+1+⌈log2 n⌉) bits. This means that the entire model

of the m elements of G, µ(ψ), has a space consumption bound

by O(mn log n) (for a fixed δ).

The depth only decides the resolution of the constraining

constants, so we can easily set a maximum depth for most

applications.

Note that the space needed to store the representations from

solve depends on the size of the graph. The size of the graph

depends on the number of witnesses variables we introduce,

so the size of our representations will depend on the number

of tuples in the relations, just like the naive solution. In the

next section, we will outline a solution to this, which we are

currently working on.

XI. CONCLUSION AND FUTURE WORK

We have seen that we can in polynomial time construct

sound and complete index structures. These structures allow

us to pose mereological queries over objects over a normal

relational database.

Our fist priority is to find a solution returning optimal

representations. We are currently working on a solver using

the transitive closure compression scheme from [8]. This

algorithm assigns a number and a set of intervals to each

node in directed acyclic graphs. The intervals of each node

contains the numbers of this node’s reachable nodes. In the

paper, they also describe how one can obtain optimal com-

pression schemes. Our idea is to use this optimal compression

scheme and assign optimal representations from M to the

intervals in the compression scheme. We think this would give

representations of size O(n2 log n) where n = |G|. Another

potential optimisation is based on the observation that we do

not really need to construct σ0(α) for all α ∈ GV(ψ). In fact,

it seems that we only need to construct σ0 for ≺-minimal

elements in the graph, and elements α ∈ GV(ψ) that has

exactly the same ≺-predecessors as another element in GV(ψ).
Furthermore, there might be many redundant variables and

edges in the constraint graph that we can remove, e.g. all

variables v ∈ V(ψ) where there exists an element α ∈ GV(ψ)

32 PREPRINTS OF THE LQMR WORKSHOP. WARSAW, 2015

such that Rψ≺(v) ⊆ R
ψ
≺(α) and Rψ≻(v) ⊆ R

ψ
≻(α) is redundant

and can be removed from the constraints.

In the future, we also plan to make an implementation of the

system, such that we can test the actual performance over real

data. We also want to extend the system to include a touching-

relation and a projection function. The first of the two will

allow us to express mereotopological relations and constraints.

With such a system one could formalise interesting calculi

like RCC8 [5] and Allen’s Interval Algebra [9]. There has

also been done work on touching relations on quad-trees [10],

which should be easy to generalise to bintrees.

With a projection function, we can represent geometries that

change shape, size and location over time. Such a function

is very easy to implement, as projecting a block down one

dimension only involves removing the i’th bit in each n-bit

sequence of the block. It is not trivial, however, to construct

a solution of a constraint that constrains objects in different

dimensions.

If we combine the two extensions, we can construct cor-

rect mereotopological representations of spatio-temporal ge-

ometries, and the much more expressive corresponding base

relations.

Another interesting research topic is whether it is possible to

extend the expressiveness of our query language beyond con-

junctive queries to other first order query languages, without

losing feasibility of solving the constraints.

REFERENCES

[1] M. Koubarakis, Spatio-temporal databases: The CHOROCHRONOS

approach. Springer Science & Business Media, 2003, vol. 2520.
[Online]. Available: http://dx.doi.org/10.1007/b83622

[2] H. Samet and M. Tamminen, “Bintrees, csg trees, and time,”
SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 121–130, Jul. 1985.
[Online]. Available: http://doi.acm.org/10.1145/325165.325211

[3] R. Casati and A. C. Varzi, Parts and places: The structures

of spatial representation. MIT Press, 1999. [Online]. Available:
http://dx.doi.org/10.1215/00318108-110-3-479

[4] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases.
Addison-Wesley Reading, 1995, vol. 8.

[5] A. G. Cohn, B. Bennett, J. Gooday, and N. M. Gotts, “Qualitative spatial
representation and reasoning with the region connection calculus,”
GeoInformatica, vol. 1, no. 3, pp. 275–316, 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1009712514511

[6] C.-Y. Huang and K.-L. Chung, “Fast operations on binary images
using interpolation-based bintrees,” Pattern Recognition, vol. 28, no. 3,
pp. 409–420, 1995. [Online]. Available: http://dx.doi.org/10.1016/
0031-3203(94)00102-r

[7] Y. E. Ioannidis and R. Ramakrishnan, “Efficient transitive closure
algorithms.” in VLDB, vol. 88, 1988, pp. 382–394. [Online]. Available:
http://dx.doi.org/10.1016/0020-0190(94)90128-7

[8] R. Agrawal, A. Borgida, and H. V. Jagadish, “Efficient management
of transitive relationships in large data and knowledge bases,” vol. 18,
no. 2, 1989. [Online]. Available: http://dx.doi.org/10.1145/66926.66950

[9] J. F. Allen, “Maintaining knowledge about temporal intervals,” Com-

munications of the ACM, vol. 26, no. 11, pp. 832–843, 1983. [Online].
Available: http://dx.doi.org/10.1016/b978-1-4832-1447-4.50033-x

[10] K. Aizawa and S. Tanaka, “A constant-time algorithm for finding
neighbors in quadtrees,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 31, no. 7, pp. 1178–1183, 2009. [Online].
Available: http://dx.doi.org/10.1109/tpami.2008.145

LEIF HARALD KARLSEN, MARTIN GIESE: A FRAMEWORK FOR CONSTRUCTING CORRECT QUALITATIVE REPRESENTATIONS OF GEOMETRIES USING MEREOLOGY OVER

