
Behavior-Preserving Abstraction of ESTEREL

Programs

Nir Koblenc
Department of Mathematics and Computer Science

Open University of Israel

Ra’anana, Israel

Email: skoblenc@gmail.com

Shmuel Tyszberowicz
School of Computer Science

Academic College of Tel-Aviv Yaffo

Tel-Aviv, Israel

Email: tyshbe@tau.ac.il

Abstract—Reactive programs often control safety-critical sys-
tems, thus it is essential to verify their safety requirements.
ESTEREL is a synchronous programming language for developing
control-dominated reactive systems, and XEVE is a verification
environment that analyzes circuit descriptions generated from
ESTEREL programs. However, a circuit generated by the ES-
TEREL compiler from non-pure ESTEREL program often displays
behaviors which may violate safety properties even when the
source program does not. We introduce an automatic abstraction
process for ESTEREL programs developed to tackle this problem.
When the process is applied to a program augmented with
observers to monitor the program’s behavior, it results in a
pure program that preserves the behavior of the source program,
replacing value-carrying objects with pure signals. We have built
a prototype tool that implements the abstraction and used it to
purify control programs and robotic systems.

Index Terms—Verification, Abstraction, Reactive Systems,
ESTEREL.

I. INTRODUCTION

Reactive systems are computer systems that continuously

react to their environment at a speed determined by the en-

vironment. Most industrial real-time systems are reactive [3].

ESTEREL1 is an imperative concurrent language for the de-

velopment of industrial-strength reactive systems, which is

especially well-suited for control-dominated reactive systems

such as real-time process control systems, embedded systems,

communication protocols, peripheral drivers, human-machine

interfaces, and others [4]. ESTEREL belongs to the family

of synchronous languages— languages that are based on the

synchrony hypothesis, which states that a program instanta-

neously reacts to its input. Control is assumed to takes no

time and thus output is broadcast right when the input arrives.

The notion of simultaneity is captured by the concept of

event, which is a set of simultaneous occurrence of (possibly

valued) signals [3]. ESTEREL offers significant advantages

over traditional languages used in industrial settings [5], such

as verification (due to the precise mathematical semantics and

This work has been partially supported by GIF (grant No. 1131-9.6/2011).
The paper is based on the master’s thesis of the first author. For the thesis
and the prototype tool see [1]. This paper extends a very short paper we have
published in [2].

1We refer to ESTEREL v5.92, which we use for teach-
ing. The toolset and the documentation are available at
http://www-sop.inria.fr/esterel.org/filesv5_92/.

the existence of verification tools and techniques), reduction

of testing (automatic verification covers safety requirements),

high-level abstraction, and better code structuring. A full

definition of the language, as of version 5.91, can be found

in [4].

ESTEREL programs communicate with their environment by

means of signals and sensors. Signals can be used both for

input and output, and may convey values; sensors can only

be input and always convey values. A signal can be either

present or absent; no such concept exists for sensors. A signal

that carries values is called a valued signal, and a signal that

does not convey values is called a pure signal.

Reactive systems are often used to control safety-critical

systems. Hence they require rigorous design methods, and

formal verification must be considered [3]. A complete, consis-

tent and precise specification is constructed, often employing

formal language to avoid ambiguity. While this process is very

potent in detecting errors already at the formal specification

development phase [6], there still is a risk that there would

be inconsistencies between the formal specification and the

eventual product. Even while the specification is formally

verified, the product itself may still be erroneous, and we want

to verify that the program satisfies its safety properties.

Verification by observers [7] is an approach to verify code.

Observers are program modules monitoring the program, test-

ing that a property is satisfied and broadcasting specific signals

when the property is violated. The observers are composed in

parallel to the original program, and the resulting program is

compiled using an ESTEREL compiler into a finite automaton.

The properties of the automaton are verified using tools such as

the X ESTEREL VERIFICATION ENVIRONMENT (XEVE) [7],

reducing the verification problem to reachability problem in

finite automata – finding if there exists an execution trace from

the initial state to a state emitting one or more of those special

observer signals.

The XEVE verification environment requires the program to

be compiled into Berkeley Logic Interchange Format (BLIF),

a logic-level hardware hierarchical circuit description in a

textual form; however, ESTEREL compiler, as of version

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 743–754

DOI: 10.15439/2015F190

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 743



5.912, can either compile pure ESTEREL programs into BLIF

files without changing their semantics, or, using the -soft

option, abstract the data and compile only the control aspect

into BLIF [9]. Pure ESTEREL programs only handle pure

signals, i.e., they involve no valued signals, types, constants,

functions, procedures, tasks, or variables [9]. In this work

we collectively refer to valued signals, sensors, and variables

as valued objects. The problem is that XEVE may fail to

verify properly circuits generated from observed programs in

which data is involved in the control when using the -soft

option. The reason is that the abstraction might add behaviors

not displayed by the original program, possibly including

behaviors in which observer signals are emitted. Based on the

false observation, the user might reject a program which is

actually correct. For example, consider the following program:
module SpuriousError

output Error;

var v := 1 : integer in

if (v <> 1) then

emit Error

end if;

pause

end var

end module

This program declares a variable v and initializes it to 1. It is

obvious that the signal Error is never emitted because the

condition tested by the if statement is never fulfilled. We

can compile this program into a BLIF file using the -soft

option, yet XEVE suggests that Error is possibly emitted,

probably since the role of the data in the control flow is ignored

and every transition dependent on run-time values is always

enabled.

Many control schemes, however, receive numerical inputs,

conduct numerical calculations, and emit numerical outputs.

Example for such schemes are signal processors and closed-

loop feedback controllers. We purify such programs to allow

automatic verification of their properties. This is a transforma-

tion of ESTEREL programs handling valued objects into pure

ESTEREL programs. It abstracts an unbound, concrete system

that handles data by replacing objects that take values from

theoretically-infinite domains with pure signals to receive a

finite system. The abstraction preserves the external observable

behavior of the original program, i.e. there is a correspondence

in terms of inputs, outputs, and timings between the two

programs. The difference between the two programs is that

the abstract program uses pure signals where the original one

employs valued signals, sensors, and variables.

Our approach is largely based on predicate abstraction [10].

Predicate abstraction is an automatic mapping of an un-

bounded system (the concrete system) to a finite system (the

abstract system). An abstract system is defined by a concrete

system and a finite set of predicates. Its states correspond to

truth assignments to these predicates. The predicates define the

abstraction function, which maps the states of the concrete

system to the states of the abstract system. A state of the

2 We chose to focus on ESTEREL v5 since it is free, suitable for teaching,
and can be verified using the free XEVE tool which is part of the ESTEREL

v5_92 distribution, whereas ESTEREL v7 [8] is commercial. XEVE is used
in the industry [7].

abstract system is reachable if it is an abstraction of a reachable

concrete state. A user who wants to prove certain invariants

supplies them as part of the predicate set. If the predicates

stating the invariants are true in all reachable abstract states,

then it means that the invariants hold in any reachable state

of the concrete system. Applying this idea to ESTEREL, we

automatically derive predicates about current and previous

values of valued objects, of the form “the value of object x

is in the range I”. Each such predicate is translated to a pure

signal. We can say that a state of the concrete system where

such predicate is held is abstracted to a state of the purified

program where the corresponding signal is present.

Usually, abstraction-based proof techniques are sound but

not complete, since the abstraction is done such that every

property proven to be satisfied by the abstract system has

a concrete version which holds on the concrete system, yet

the other way around is unnecessarily true [10]. However,

verification using our abstraction technique is both sound and

complete, since the abstract program adds no new behaviors

to those displayed by the concrete program; in particular every

pure signal is emitted by the observer-augmented concrete

program if and only if it is emitted by its purified version. The

abstraction alters the semantics of a few operations; however,

these changes remain internal, i.e. the interaction with the

environment is unaffected.

We suggest an algorithm that automatically purifies a certain

group of programs and we characterize the class of programs

verifiable using our technique. The main contribution of this

work is extending the class of programs verifiable using

observers with XEVE. We have implemented a prototype

tool that purifies ESTEREL programs based on the algorithm

described in Section II. This section also presents a running

example of a proportional controller. We discuss the chal-

lenges we have faced when abstracting variables in Section III.

The programs to which the method is applicable must comply

with certain constraints, which are discussed in Section IV.

Section V characterizes the class of programs to which the

solution can be applied and provides test cases. We conclude

and provide suggestions for future work in Section VI.

II. ESTEREL PROGRAM PURIFICATION

The XEVE verification environment takes as input BLIF

files. Compiling an ESTEREL program into this format pre-

serves the program’s behavior only if the source code is

pure. Hence, we have to substitute valued objects with pure

signals and to modify the statements controlling the flow of

the program and manipulating these objects to use pure signals

instead. In this section we explain how to transform a program

that complies with certain necessary constraints, into a pure

program preserving the behavior of the original program.

We describe only the fundamentals of the algorithm.3 We

use a running example to demonstrate our method. It shows the

application of our method to a proportional controller. This

3Due to lack of space we omit some details. The full description can be
found in [1].

744 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



is a closed-loop feedback controller whose control signal is

proportional to the error – the difference between the set point,

also known as the reference (the ideal point) and the measured

quantity under control, i.e., the control signal is calculated by

multiplying the error signal by a gain [11]. Following is the

ESTEREL code before its purification:
module PropMotor:

input SampleTime;

sensor Speed : double;

output MotorForce : double;

output AC_ON, AC_OFF;

loop

% proportional controller for the motor force

present SampleTime then

emit MotorForce (3.0 * (100.0 - ?Speed))

end present;

await SampleTime

end loop ||

loop

% bang-bang controller for the cooling sub-system

present MotorForce then

if ?MotorForce > 270.0 or

?MotorForce < -270.0 then

emit AC_ON

else

if ?MotorForce > -30.0 and

?MotorForce < 30.0 then

emit AC_OFF

end if

end if

end present;

await tick

end loop

end module

In addition to the proportional controller, the example uses

a bang-bang controller that is composed in parallel and

controls a cooling system. Bang-bang controllers are feedback

controllers that switch abruptly between two states [11]. The

controller receives a measured quantity of interest, and outputs

a certain value if that quantity is above a certain threshold, and

a different value otherwise.

The example displays a control system for a motor. The

set point is 100 km/h; the measured quantity is the motor’s

current speed, received by the Speed sensor; the gain is 3.0.

The output signal, MotorForce, is the force that the motor

should produce, and is obtained by multiplying the difference

between 100 km/h and the current speed by the gain. The

motor is cooled by an air conditioning unit when exerting more

than a certain amount of force (270.0). The air conditioning

stops when the amount of force exerted by the motor drops

below a certain threshold (30.0) (the difference between the

thresholds is deliberate and used for hysteresis4). To start the

air conditioning, it emits the AC_ON signal, and to stop the

air conditioning, it emits AC_OFF.

We want to verify several safety properties of the given

program using observers that monitor the system’s behavior

and emit special signals once one of these properties is

violated. The observers are assembled in threads parallel to

the main program. We would be able to verify that these

signals are never emitted by compiling the observer-augmented

program into BLIF format; however, we cannot do so as long

as the program handles data other than pure signals.

4Hysteresis can be introduced by setting “dead zones” of no reaction around
the set point in bang-bang controllers to avoid rapid on-off cycling [11].

The algorithm removes from the program all variables,

sensors, and valued signals. Instead, we represent their values

using pure signals. Each Boolean-valued object needs only

one signal – that we call a value signal – to represent its value

(present when true, absent when false). Since a Boolean signal

actually has three states (absent, present and true, present and

false) it takes another signal, which we call a presence signal,

to denote whether the simulated Boolean signal is considered

present or absent.

As for numerical-valued objects whose values range over

infinite domains, we partition their domains into non-

overlapping intervals, which we hereby call ranges, in such

way that two goals are achieved. The first one is being able

to decide any condition containing an occurrence of some

numerical valued object by knowing the range within which

that object’s value resides. For example, the condition ?s

> 3.0 for a sensor s (?s is the current value of s) can

be decided if the information whether ?s ∈ (−∞, 3.0] or

?s ∈ (3.0,+∞) is available. The second goal is maintaining

relationships between dependent objects. For instance, for the

assignment v := a * ?x + b, where v is a variable, x is

a valued signal and a and b are literal constants, we can

determine the range within which the v’s value would reside

following the assignment based on the range of x. E.g., for

v := 2 * ?x + 1 where ?x is in (1,3], the value of v is in

(2 · 1 + 1, 2 · 3 + 1] = (3, 7]. Note that actually we calculate

the ranges for x given the partition for v.

Our prototype tool works in two stages that run in a

sequence by a shell script. In the first stage a standalone

tool parses the source ESTEREL program according to v5_91

grammar specification found in [4] and outputs an intermediate

file containing a list of syntax rules it identifies. The second

stage is another program that reads that file and constructs

a parse tree representation of the program. The tree data

structure holds the information about all objects and statements

of the source program, such that it is possible to reconstruct the

program entirely from the tree. During the construction of the

tree items that are of interest to the abstraction process, such

as valued objects or statements that manipulate or test data are

identified and stored in collections from which the abstraction

algorithm can efficiently access them later. The abstraction

is performed on the tree. The tool automatically calculates

the predicates and performs the abstraction, implementing

the algorithm discussed in this work. At the final step, a

pure, abstract program is written to a target file based on the

transformed tree. For sake of readability, we have edited in

the paper the code produced by the tool.

After the source program is parsed, the abstraction algorithm

starts with a pre-processing step to simplify the program when

needed. Currently it expands each sustain statement (a

statement emitting a specified signal in every instant once

started and remains active forever) for a valued signal by a

loop in which that signal is emitted in every instant, such that

we can handle these statements just like instantaneous signal

emissions (emit statements). This is also the place to perform

other pre-processing activities; for example, for the simplicity

NIR KOBLENC, SHMUEL TYSZBEROWICZ: BEHAVIOR-PRESERVING ABSTRACTION OF ESTEREL PROGRAMS 745



of the algorithm, we require the user to guarantee a few

preconditions the source program must fulfill (see Section IV)

in order to apply the tool/algorithm to it; these assumptions can

be obtained automatically by performing some pre-processing

steps on the original program. This step can be expanded in

future versions to include them as well.
We implement some interval-scalar arithmetic operations

required by this algorithm. Let I be an interval, and a and

b be scalars:

• Multiplication of an interval by a scalar: a · I (equivalent

to scaling an interval), and

• Addition of a scalar to an interval: I + b (equivalent to

translating an interval).

Additionally, we define a product of two partitions P1 and

P2 as {I1 ∩ I2|I1 ∈ P1 ∧ I2 ∈ P2}. This is a “mutual

refinement” of P1 and P2 by one another. We denote the

partition of the domain of a numerical valued object x by

PARTITION(x). The partitioning process starts from state-

ments that assign a constant value to a valued object (i.e.

var := const or emit val_sig(const)). The object’s domain

is partitioned according to the assigned constant. Suppose, e.g.

that at some stage of the partitioning process PARTITION(v) =

{(−∞, 1), [1, 1], (1, +∞)} for a variable v, once considering an

assignment v := 2.0, PARTITION(v) is refined to {(−∞, 1),

[1, 1], (1, 2), [2, 2], (2, +∞)}. This refinement allows us to

refer later to v = 2 (equivalent to v ∈ [2, 2]) as a predicate in

our abstract system, which is true once the assignment takes

place in the original program. Note that this is the product of

{(−∞, 1), [1, 1], (1, +∞)} and {(−∞, 2), [2, 2], (2, +∞)}.
Next, we consider the Boolean data expression in which

a valued object occurs. Let (a*D+b) R c be a Boolean data

expression, where a, b and c are literals (a 6= 0), D is either

the current or the previous (i.e. pre(?x)) value of x, all

have the same data type, and R is a relational operator. We

denote k = c−b

a
. If a divides c − b (i.e. ⌊k⌋ = k) or x

is floating-point real, the partition of x is refined with the

partition {(−∞, k), [k, k], (k, +∞)}; otherwise, x’s partition is

refined with {(−∞, ⌊k⌋] , [⌈k⌉ ,+∞)}. During the partitioning

process we distinguish integer objects from float and

double objects. For integer objects, non-integer values

are illegal, therefore – an interval that does not contain integers

is irrelevant. Also, non-integer values can be excluded from

ranges computed for integer objects. When we compute

ranges for an object of type integer, if an interval (range)

end is neither at +∞ nor at −∞, we round it to the nearest

integer inside the interval, and close the end. For example, if

we compute a range (−10, 3.5] for an integer object, then

this range contains exactly the same values as [–9, 3] in the

integer domain, hence (−10, 3.5] is replaced by [–9, 3].
The partitioning process continues based on dependency

between valued objects. We consider a valued object y to be

dependent on another valued object x if x’s current or previous

value occurs in an assignment to, or an emission of, another

valued object y (the data expression is of the form a * D + b

where a and b are literals and D denotes x for a variable x, ?x

for a sensor x, or either ?x or pre(?x) when x is a signal).

Suppose y’s partition is {Y1, Y2, ..., Yn}, then x’s partition

is refined with {1/a · Y1 − b/a, 1/a · Y2 − b/a, ..., 1/a · Yn − b/a}.
The order by which these dependencies are considered is

detailed in Section IV.

There are two valued objects in the example: the sen-

sor Speed and the output signal MotorForce. Since

MotorForce is set with Speed’s transformed value,

MotorForce’s ranges are computed before Speed’s ranges.

MotorForce is computed the following nine ranges: {(−∞,

−270.0), [−270.0, −270.0], (−270.0, −30.0), [−30.0, −30.0],

(−30.0, 30.0), [30.0, 30.0], (30.0, 270.0), [270.0, 270.0],

(270.0, +∞)}. We denote them by RMotorForce
1

, ..., RMotorForce
9

,

respectively. The only valued signal emission found in the en-

tire program is: emit MotorForce (3.0 * (100.0 −

?Speed)). Let us denote this statement by E1. Once ex-

ecuted, ?MotorForce = −3.0 * ?Speed + 300.0. Since

Speed = 100.0 − MotorForce / 3, the partitioning pro-

vides the following ranges for Speed: {(−∞, 10.0), [10.0,

10.0], (10.0, 90.0), [90.0, 90.0], (90.0, 110.0), [110.0, 110.0],

(110.0, 190.0), [190.0, 190.0], (190.0, +∞)}, denoted by

RSpeed
1

, ..., RSpeed
9

. Note that when this emission is executed,

MotorForce is in RMotorForce
1

if and only if Speed is in

RSpeed
9

, MotorForce is in RMotorForce
2

if and only if Speed

is in RSpeed
8

, and so forth.

Each range is matched with a pure range signal. For a

valued object x, for which PARTITION(x) = {Rx
1
, Rx

2
, ..., Rx

n},

the ranges’ corresponding signals are named R1_x, R2_x, etc.

A configuration of the abstract, purified program in which

Ri_x is present corresponds to a configuration of the original,

concrete program where the value of x is in Rx
i

. In other words,

an event in which Ri_x is present in the abstract program

stands for an event in which the value of x resides within

range Rx
i

in the concrete program. In addition, if x in the

source program is a signal, an occurrence of any of its range

signals in the abstract program means that x is present in the

corresponding configuration of the concrete program.

When we declare range signals for a numerical input signal

or a numerical sensor (replacing the original signal or sensor

definitions), we also declare an exclusion relation5 among the

range signals, such that the environment would not be able to

provide more than one range for each original valued object

at the same instant. As for sensors, since every sensor is ever-

present and always carries a value, a thread is composed in

parallel to the program, emitting the range signal for its first

range when its other range signals are absent.

The declarations of sensor Speed and valued output signal

MotorForce in the example are replaced with the following

declarations:
input R1_Speed, R2_Speed, R3_Speed, R4_Speed,

R5_Speed, R6_Speed, R7_Speed, R8_Speed,

R9_Speed;

relation R1_Speed # R2_Speed # R3_Speed # R4_Speed #

R5_Speed # R6_Speed # R7_Speed # R8_Speed #

R9_Speed;

output R1_MotorForce, R2_MotorForce, R3_MotorForce,

5An exclusion relation, also known as incompatibility, is a declaration that
asserts that no two signals listed by the relation declaration can be present
simultaneously in the environment [4].

746 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



R4_MotorForce, R5_MotorForce, R6_MotorForce,

R7_MotorForce, R8_MotorForce, R9_MotorForce;

To implement Speed’s “ever-presence” property, we compose

the following code segment in a parallel thread:
loop

present not ( R2_Speed or R3_Speed or R4_Speed or

R5_Speed or R6_Speed or R7_Speed or

R8_Speed or R9_Speed ) then

emit R1_Speed

end present;

await tick

end loop

The original variable assignment and valued signal emission

statements are replaced by emit statements, emitting pure

local signals to denote the execution of their respective state-

ments. The effect of the assignments and the emit statements

from the program is simulated by parallel components, calcu-

lating the range signal that should be emitted every instant

for each numerical valued object of the program, to represent

its state in every instant. For a variable, the simulation code

tests whether a signal denoting an assignment to that variable

has occurred in the previous instant, and if so – it emits the

range signal representing that variable’s state following the

assignment. If no “assignment” is performed, then the previous

range signal is emitted once again. For full details regarding

variable simulation using pure signals, see Section III. For

a valued signal, the simulation code works similarly, with

two differences: the previous range signal emitted need not

be emitted in an instant if no “emission” takes place in

that instant, and every emission operation can be handled

independently.

We need to translate the emission of MotorForce in the

example to range signal terms. The original emit statement is

replaced with emit E1. A new code segment is composed in

a thread running in parallel to the current module’s body, emit-

ting the correct range signal for MotorForce in response

to E1’s presence. The local signal E1 must be declared as

well, and its scope must include both the transformed module’s

original threads and the new thread shown below.
... || [ loop

present E1 then

present R1_Speed then

emit R9_MotorForce

end present;

present R2_Speed then

emit R8_MotorForce

end present;

...

present R9_Speed then

emit R1_MotorForce

end present;

await tick

end loop ] || ...

Variable abstraction also employs pure signals and resem-

bles valued signal abstraction; however, it is different because

a variable can store values for future instants and can change

value multiple times in every instant. It is elaborated on in

Section III.

We now discuss transforming expressions. ESTEREL fea-

tures three types of expressions [4]: data expressions, which

are built by combining basic objects using operators and func-

tion calls; signal expressions, which are Boolean expressions

over signal statuses; and delay expressions6, which are used

by temporal statements such as await7 and abort8.

Signal expressions consist of: signal identifiers, which may

appear within pre operators (meaning their status from the

previous instant); parentheses; and logical operators (and, or

and not). They are tested by present statements (condi-

tional statements testing signal statuses instead of data) or

occur within delay expressions used by temporal statements.

These expressions are transformed as follows:

• An identifier of a signal S having a numerical data type,

whose ranges are RS
1
, RS

2
, ..., RS

n , is replaced by the sub-

expression (R1_S or R2_S or . . . or Rn_S).

• An identifier of a signal whose data type is boolean is

replaced by the identifier of its respective presence signal.

In our example, there is a present statement test-

ing whether MotorForce is present before testing its

value. Accordingly, we replace the MotorForce identi-

fier with a chain of or operators over the range sig-

nals representing MotorForce in the purified program:

present (R1_MotorForce or R2_MotorForce or

... or R9_MotorForce) then...

Numerical data expressions whose values are assigned to

variables or carried by signals are handled by the variable as-

signment and valued signal emission simulation mechanisms.

Hence we would like to focus on Boolean data expressions,

whose values are not only used in variable assignments and

signal emissions, but also in if statements.

Boolean data expressions are recursively translated to signal

expressions. They are tested at each instant in a loop composed

in parallel to the program. If the expression is true, a special

signal is broadcast and is used in the purified code:

1) To calculate the results of simulated assignments to

boolean-typed variables and emission of boolean-

typed signals; and

2) To simulate the evaluation of Boolean data expressions

by if statements. An if statement testing a Boolean

data expression Bi is replaced with a present statement

that tests its corresponding signal Bi in the transformed

program.

In the example there are two Boolean data expres-

sions. We translate the first, ?MotorForce > 270.0

or ?MotorForce < -270.0, into the signals expres-

sion R9_MotorForce or R1_MotorForce and create a

thread that runs in parallel to the module’s original threads.

The new thread contains a loop in which the signal B1

is emitted in every instant in which this signal expression

is satisfied. Afterwards, if ?MotorForce > 270.0 or

6A delay expression is an expression defining a delay that begins when
the temporal statement bearing it starts and elapses in some later instant,
possibly in the same instant in which the delay starts (delays that may elapse
immediately are called immediate delays, and they start with the immediate
keyword). There are three types of delays (standard, immediate, and count
delays), but all delay expressions use signal expressions.

7The await statement pauses program execution until a delay elapses [4].
8The abort statement kills its body when a delay elapses [4].

NIR KOBLENC, SHMUEL TYSZBEROWICZ: BEHAVIOR-PRESERVING ABSTRACTION OF ESTEREL PROGRAMS 747



?MotorForce < -270.0 then... can be replaced by

the statement present B1 then. . . .

Additional transformations include removing the original

interface and local declarations for the valued objects and

modifying input relations. There are two types of input rela-

tions offered by ESTEREL: exclusion relations and implication

relations. Exclusion relations, shown earlier as means to

ensure that no two range signals representing a numerical

input signal, assert that no two signals listed by the relation

declaration can be present in the environment simultaneously.

If the original program contains an exclusion relation where

a numerical valued signal appears, than the declaration is

expanded to include all range signals representing it. Identifiers

of valued Boolean signals are replaced by the identifiers of

their respective presence signals. Implication relations, which

are relations of the form relation A => B, asserting that

if A is present then B must be present, are harder to transform,

as they require a different solution for each case. For example:

• If A is a valued signal and its type is numerical while B

is pure, then the relation is broken-down to a series of

declarations for each range signal representing A, stating

that an occurrence of any range signal of A implies that

B is present.

• If A is pure and B is valued and numerical, then we

add a thread containing a loop, where in every instant

we check if A is present, and if so we ensure that if

no other range signal representing B is present, then

R1_B is internally-emitted. The reason that we cannot

use implication in this case is that we want to allow any

range signal representing B to appear if A is present, and

not necessarily one particular range signal.

The full list appears in [1].

We want to verify the following properties in the example:

1) The program never simultaneously emits the signals

AC_ON and AC_OFF. Such a situation “confuses” the

external controller of the air conditioner. When an oc-

currence of both signals in the same instant happens, the

observer emits ErrorACConflict.

2) The air conditioning is not off when the force exerted by

the motor is greater than 270.0 in either direction. In case

of violation, the observer emits the signal ErrorNoAC.

Hereby is the observer code – expressed in terms of the

abstract program:
signal AC_isOn, AC_isOff in

loop

% no air condition conflict: ON and OFF not emitted

% at the same instant

present AC_ON and AC_OFF then

emit ErrorACConflict

end present;

% air condition is never off when motor force is

% greater than 270 or lower than -270

present AC_isOff and

(R1_MotorForce or R9_MotorForce)

then emit ErrorNoAC

end present;

await tick

end loop ||

[ abort

sustain AC_isOff

when immediate AC_ON;

loop

present AC_OFF then

emit AC_isOff

else

present AC_ON then

emit AC_isOn

else

present pre(AC_isOff) then emit AC_isOff

end present;

present pre(AC_isOn) then emit AC_isOn

end present

end present

end present;

await tick

end loop ]

end signal

The declaration of the output signals ErrorACConflict

and ErrorNoAC joins the interface of the module. This

observer code consists of one parallel thread in charge of

emitting the observer signals in every instant in case of

a property violation, and another parallel thread calculating

auxiliary signals. The auxiliary signals indicate whether the

air conditioning is on or off, depending on the most re-

cent control signal to the air conditioning subsystem emit-

ted by the program. Composing the observer code in par-

allel with the main program’s body, and running XEVE

on the resulting program, neither ErrorACConflict nor

ErrorNoAC are ever emitted.

When applying our technique to abstract programs that sat-

isfy the technique’s requirements, verification using observers

is both sound and complete [1]. We proved it by showing

that an abstract program has the same reactive behavior as the

concrete program, up to communicating with the environment

by means of pure signals instead of the original valued signals

and sensors. There is a loss of information and the abstract

program allows theoretically more behaviors than the concrete

program, in the sense that the abstract program provides ranges

of possible values for the outputs given ranges of possible

values for the inputs. However, the two programs make the

same control decisions under the same circumstances and

emit corresponding outputs, in particular with respect to pure

signals, including, but not limited to, the observer signals,

hence the soundness and completeness of the proof technique

as a whole. The proof starts by defining for every event of

the concrete program a corresponding event of the abstract

system. The proof that the two systems behave in the same

way given corresponding timed input sequences is statement-

wise. On the one hand, statements that do not handle valued

objects remain unchanged by the abstraction. On the other

hand, statements that handle them are altered or replaced,

hence the proof focuses on them. We identify four groups of

statements that concern valued objects: statements that declare

local signals and variables; statements that test data, i.e. make

control decisions based on the data (namely if statements);

statements that test signals, i.e. make control decisions based

on statuses (presence or absence) of signals; and statements

that manipulate data. We investigate, for every statement, the

748 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



behavior of the construct replacing it in the abstract program.

The full details appear in [1].

III. VARIABLE ABSTRACTION

As we do for valued signals, we replace variables with local

pure signals representing their current values. Employing pure

signals for representing variables in the abstract program has

a major drawback. ESTEREL supports multiple assignments

to a variable in a single instant, as it does not contradict the

synchrony hypothesis [4]; however, unlike variables, a pure

signal may have only one status at each instant – it may either

be present or absent, not both.

In the current version of the algorithm, we impose two re-

strictions on programs supported by the abstraction in addition

to those listed in Section IV: (i) each variable is assigned at

most once on every instant – after it is read9 by all statements

referencing it in that instant; and (ii) initializing a variable

takes an instant (as a result of the previous constraint). Given

these assumptions, we have implemented variable simulation10

in the abstract program as follows:

• A local pure signal is declared for each assignment

statement in the concrete program: A1, A2, A3, etc.

• Every assignment statement is replaced by an emit

statement emitting the corresponding pure signal.

• For every variable v a concurrent thread is added to the

program in which there is a loop that emits in every

instant the pure signal representing the current value of v.

• The code in this loop checks the previous status of

signals indicating an assignment to v. If one of these

signals has been emitted during the previous instant, it

calculates the pure-signal representation of v’s value in

the current instant based on the statuses of the pure

signals representing the values of valued objects from the

previous instant. If no signal indicating an assignment

to v has been present in the previous instant, the pure

signals representing v’s previous value are re-emitted in

the current instant; since no assignment to v means that

it retains its previous value.

This implementation with its implied restrictions is suitable

for a certain group of programs, such as programs using

a variable to manage a state machine: at the beginning of

each reaction the current state is checked by reading the state

variable, the reaction depends on the state and the input, and at

the end of the reaction, if the program changes state or mode

of operation, it assigns a new value to the state variable.

For example, in [1] we show a translation to ESTEREL of

an Escape behavior for autonomous mobile robots based on

a program taken from [11]. In this example, once a robot en-

counters an obstacle it backs off a predefined distance, rotates

a predefined angle, and then returns to its previous occupation

9Reading a variable refers to an evaluation of a data expression containing
an occurrence of that variable.

10By variable simulation we refer to the code that the abstraction adds to
the program that simulates operations carried-out on a variable, i.e. assigning
new values to it, in terms of the pure signals employed by the abstract program
to represent the value of that variable.

Figure 1: Robot Escape Behavior (with range detection).

(e.g. cruising). We add a range detector such that the robot

can escape an obstacle based on proximity without actually

having to collide with it. The program uses a state variable,

and in every reaction responds according to the current sensor

reading and the current state. A reaction ends with assigning

a new value to the state variable when transitioning to a new

state. Figure 1 illustrates the implementation.

To represent the behavior’s state, we use an integer

variable called State. The states are enumerated from 1 to

4. The partition of the integers domain to ranges for State is

{(−∞, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, +∞)} since State

is assigned the values of 1, 2, 3 and 4, and is also tested to

be equal to either one of them.

In the purification process we replace every statement

assigning a value to State in the concrete program (see

the source code in [1]) with a signal emission; e.g., the first

assignment State := 1 is replaced with emit A1; the

second assignment State := 2 is replaced with emit A2;

and so forth. We compose in parallel to the original program

a thread containing a loop that emits at every instant the range

signal representing State’s current value:
|| loop

% for each signal denoting an assignment to State

% the next range signal for State is emitted

present pre(A1) then

emit R2_State

else present (A2) then

emit R3_State

else ...

else

% if no assignment has occurred in the previous

% instant then State’s previous range signal

% is emitted

present pre (R1_State) then

emit R1_State

end present;

present pre(R2_State) then

emit R2_State

end present;

...

The choice whether to postpone the effect of an assignment

to the next reaction or to respond to it immediately affects

only the constraint we have to impose, because either way

our abstraction allows at most one assignment to a variable

in every reaction. In the first option we allow one assignment

at the end of the reaction after all statements use the value

assigned to it in a previous instant, whereas the second option

NIR KOBLENC, SHMUEL TYSZBEROWICZ: BEHAVIOR-PRESERVING ABSTRACTION OF ESTEREL PROGRAMS 749



allows one assignment at the beginning of the reaction and

using that value henceforth, until the start of the next reaction

where the variable is assigned again with a new value.
The difference between variable assignment in the con-

crete program, which is done immediately, and the variable

assignment simulation in the abstract program, where the

assignment is postponed to the next instant, has no externally-

visible implications for programs that satisfy the two constraint

mentioned above, since we require the concrete program not

to use the new value of an assigned variable until the next

instant. However, this approach severely confines the use of

variables. One approach that we considered for allowing free

use of variables was adding a delay immediately following

an assignment, in order to "buy time" for the variable to

update, i.e. giving the simulation code time to detect the signal

notifying on the change and respond by emitting the new

pure signals representing the variable’s new value. However,

this transformation, which in practice breaks-down seemingly

one reaction into a series of reactions, can change the timing

and semantics of the program significantly. In particular, it

violates the assumption that every signal retains the same

status throughout the entire reaction. For example, have a look

at the following program segment:
emit O;

present O then

v := 1

end present;

present O then

v : = 2

end present;

Since O is present during the instant in which this code

segment is executed, the two signal tests are satisfied and v

is assigned consecutively the values of 1 and 2. Therefore,

in the end of this program segment, v has the value of 2.

Suppose we add a delay after assignment to v to comply with

the assumptions above, e.g. by waiting for an arrival of some

signal DELAY after each assignment statement. We get the

following code:
emit O;

present O then

v := 1;

await DELAY

end present;

present O then

v : = 2;

await DELAY

end present;

In this program segment v is assigned the value of 1 since

O is present before the first arrival of the DELAY signal. If we

assume that O is not emitted by any parallel thread, then v is

not assigned the value of 2 since O is absent after the arrival

of DELAY.
We suggest an improvement to our algorithm, a workaround

that enables us to assume that every variable is assigned at

most once in every instant. This requires implementing a pre-

processing step, combined with an alternative implementation

of variable simulation that responds immediately to signals

notifying on assignments to the original variable.
The pre-processing step will transform the concrete program

such that each variable is assigned at most once in every

reaction. We call the target form SINGLE ASSIGNMENT PER

REACTION (SAPR). It is inspired by Static Single Assignment

(SSA) form. An SSA form is a representation of a program

involving separating each variable v in the program into several

variables vi such that each variable is assigned only once [12].

In this work we refer to the variables vi as instances of v. The

SAPR form is distinguished from SSA form in the sense that

every variable is assigned at most once in every instant but

not necessarily once in the entire program code. An additional

difference is that SSA form employs Φ-functions: in a node

in the control flow graphs having incoming edges from two

other nodes where there are two different valid instances of

some variable (for example, such node could be a statement

following an if statement having two branches – then and

else, each of which manipulates a certain variable L from

the original program code, such that new instances are created

in each branch for L – L1 and L2 respectively), the SSA

form defines a new variable (e.g. L3) and assigns to it a

Φ-functions standing for the value of valid variable instance

at the entrance to that node (i.e. L3 ← Φ(L1, L2)). In the

SAPR transformation we need an equivalent of a Φ-function

where the control converges back at terminations of branching

statements and traps. We use special variable instances which

are assigned the value of the valid variable instances at the

ends of branches and before exit statements escaping traps.

For example, suppose that in the program investigated in

Section II we wanted to limit the value of control signal to

a maximum of 50 in either direction, and wanted to break-

down the calculation of the control signal to several steps using

variables, we could have used the following code:
var Error, CtrlSigVal : double in

Error := 100.00 - ?Speed;

CtrlSigVal := Error * 3.0;

if CtrlSigVal > 50.0 then

CtrlSigVal := 50.0

end if;

if CtrlSigVal < -50.0 then

CtrlSigVal := -50.0

end if;

emit MotorForce(CtrlSigVal)

end var

This code segment employs two variables: Error, which

contains the error, i.e. the difference between the set point (the

target speed – 100) and the current speed; and CtrlSigVal,

which contains the value of the control signal, obtained by

multiplying the error (the value of Error) by the gain (3).

If the product of the error and the gain is smaller than –50,

then it is set to –50, and if it is larger than 50 it is set to 50.

Below is the SAPR form, guaranteeing that in each instant

each variable is assigned at most once:
var Error_0, Error_1,

CtrlSigVal_0, CtrlSigVal_1,

CtrlSigVal_2, CtrlSigVal_3,

CtrlSigVal_4, CtrlSigVal_5 : double in

Error_1 := 100.00 - ?Speed;

CtrlSigVal_1 := Error_1 * 3.0;

if CtrlSigVal_1 > 50.0 then

[ CtrlSigVal_2 := 50.0 ] ;

CtrlSigVal_3 := CtrlSigVal_2

else

CtrlSigVal_3 := CtrlSigVal_1

end if;

if CtrlSigVal_3 < -50.0 then

[ CtrlSigVal_4 := -50.0 ] ;

CtrlSigVal_5 := CtrlSigVal_4

750 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



else

CtrlSigVal_5 := CtrlSigVal_3

end if;

emit MotorCtrlSig(CtrlSigVal_5)

end var

In the transformed code segment we create a variable

instance for every assignment statement. Once assigned, a

variable instance substitutes the variable from the original

program wherever it appears in data expressions from that

point on, until the next assignment to the original variable,

where another variable instance is used. if statements, which

have no else-branch in the original program, are added with

an else-branch. A new variable instance is created to hold the

valid value upon leaving the if statement, and it is assigned

at the end of each branch. This exemplifies the reason why

else- and then-branches are introduced when missing – if

a variable is manipulated in one branch and not in another

then still at the end of the if statement there is one variable

instance replacing the original variable and holding the right

value. In [1] we elaborate on the transformation and provide

the full example, including simulation results.

IV. DISCUSSION

Our method supports only programs that compile and exe-

cute without errors and that comply with several assumptions

and constraints, which are described in this section. These

constraints are required for maintaining relationships between

valued objects and for replacing numerical and Boolean cal-

culations with pure signal operations. However, our method

still is useful for a large set of control and robotic programs.

Various robot behaviors appearing in [11] can be implemented

in ESTEREL, processing pure signals or requiring sufficiently

simple calculations, thus our method can be applied to them.

In [1] we list assumptions about the input program that

exist mainly for the simplicity of the solution. These assump-

tions usually concern ESTEREL syntactic sugaring instruc-

tions. However, they do not reduce the expressive power of

ESTEREL, as each assumption can be attained by replacing

the original construct by a semantically-equivalent construct,

either manually or automatically. For example, we require

that the program will consist of only one module. When the

program consists of several modules, one module calls another

using the run statement. The run statement instantiates one

module within another module by syntactically replacing the

run statement with the body of the instantiated sub-module,

exporting the data declarations of the instantiated sub-module

to the parent module, and discarding the interface declaration

of the instantiated sub-module [4]. By replacing any run

statement in a program having multiple modules with the

instantiated sub-module’s code, we can comply with this

assumption.

Unfortunately, we have some real constraints that limit the

family of programs to which our abstraction is applicable.

a) We do not support external code, i.e., code written

in the host language: The ESTEREL v5 compiler translates

the program into a program or circuit written in a host

language chosen by the user, for example C. The programmer

can declare abstractly and use various function, procedures,

tasks, constants and data types to be implemented in the host

language and linked to the code generated by the ESTEREL

compiler [4]. Being outside the scope of the ESTEREL pro-

gram, its behavior cannot be taken into consideration, as our

method verifies the ESTEREL code.

b) We do not support cyclic dependencies between values

of numerical valued objects: In order to maintain relationships

between targets and sources of assignments (as well as valued

signal emissions) of numerical valued objects, we restrict the

numerical data expressions used to affine transformations of

values of numerical valued objects (see constraint 3 in the list

below in this section). We refine a valued object x’s partition

of (−∞, +∞) to ranges for every assignment of x’s value to a

valued object y, according to the data expression, defining an

equation with x and y which is satisfied once that assignment

is executed.

Since the order of partitioning is derived from the depen-

dencies between valued objects, if there exist cyclic depen-

dencies11 between valued objects then the order of partitioning

cannot be determined, since no strict ordering of the partitions

calculated can reflect the dependencies between the objects.

Even when an object’s value is transformed and set to itself

directly (e.g. v:=3*v+1 for a variable v), the partitioning

process should theoretically refine the partition of that object’s

domain to ranges over and over again, infinitely many times.

One solution we considered was to allow self-assignments, in

the following form: Let P = {R1, R2, ..., Rn} be a partition

of (−∞,+∞) for some valued object x. Suppose we do not

take self-assignments into consideration when partitioning, but

rather leave the current partition, and define assignment as

“transitioning” x from its previous value’s bounding range(s) to

a union of ranges bounding x’s value following the assignment.

If x occurs in a formula F testing x’s value, and an assignment

causes the bound of x’s value to contain both ranges satisfying

F and ranges not satisfying F, we cannot decide if F is

satisfied. For example, suppose we compute for an integer

variable v the ranges [1, 8], [9, 9] and [10, 12] (among

others) and we have a conditional testing the expression v

= 9. Consider the assignment v := v + 1. If v is in [1, 8], and

the assignment is executed, then in the next instant it can be in

either [1, 8] or [9, 9], thus we cannot decide if the condition

v = 9 is satisfied.

To determine the order by which the partitioning process

inspects valued objects when partitioning by dependency, a

directed graph of valued object dependencies G = 〈V,E〉 is

created in the following manner. Our inputs include the set

VALOBJ of valued objects in the source program, and the

set of all variable assignments and valued signal emissions

11The term cyclic dependency in ESTEREL usually refers to a situation
where there exists an instantaneous circular dependency between a signal and
itself [4] (also known as a causality cycle). ESTEREL programs that contain
an instantaneous dependency cycle, for which the number of solutions is not
exactly one, are considered invalid. In this section we discuss a different kind
of dependency, however: a dependency between the current value of an object
and its previous one, from which it is calculated. We use the terms causality

cycle and causality problem to refer explicitly to a causality cycle.

NIR KOBLENC, SHMUEL TYSZBEROWICZ: BEHAVIOR-PRESERVING ABSTRACTION OF ESTEREL PROGRAMS 751



which appear in the original program. V and E are defined as

follows. For each numerical valued object define a vertex: V

= {x | x ∈ VALOBJ and x is of type integer, float, or

double}. The set E of edges in G is calculated using the

following procedure.

1. E ← ∅
2. For each two numerical valued objects v and u in V:

2.1. If the current or previous value of a numeri-

cal valued object u is assigned to v (i.e., if v

is a variable and there exists an assignment

v := exp or if v is a signal and there exists

an emission emit v(exp), where exp is a

data expression with an occurrence of u),

stretch a directed edge from u to v; that is,

add (u, v) to E.

2.2. If G contains cycles, halt the process with

an error message.

The order by which the process partitions the domains of

valued objects is a post-order of this graph. That is, a valued

object v’s partition is computed after the partition is computed

for all numerical objects to which v is assigned.

Hereby is a summary of the constraints on the programs

to which our method is applicable. These compromises are

basically due to two limitations:

1) One way to allow automatic methods to check a non-

trivial property is to reduce the power of the language or,

equivalently, reduce the class of program verifiable using

the method; and

2) Technical issues with aspects of our abstraction process

conflicting with the synchrony hypothesis.

The constraints are:

1) All valued objects are of type boolean, integer, or

floating-point real (i.e. strings and user-defined types are

not allowed);

2) All numerical formulas used in Boolean data expressions

are of the form (a*D+b) R k where R is an relational

operator, D is the current or previous value of a numerical

valued object (sensor, valued signal or variable of type

integer, float or double) and a, b and k are some

literal constants;12

3) All numerical data expressions used in assignments and

valued signal emissions are of the form a*x+b, where

x is an occurrence of a valued object (in its current or

previous value), and a and b are constant literals, all of

which of the same domain;

4) All delayed expressions in temporal statements may not

be count delays;

5) No repeat loops;13

6) No combined signals and no valued traps;

12Currently we support only linear equations and inequalities in one
variable, for future work see Section VI.

13ESTEREL v5 offers several loop constructs: loop, loop-each and
every (temporal loops) and repeat. A repeat loop executes a finite
number of times, unlike the others, which can loop forever [4]. We do not
support only the repeat statement.

7) No cyclic dependencies between numerical valued ob-

jects or self-assignments (except in loop-free program

segments); and

8) During one instant, the program does not access more

than one incarnation of a local valued signal or a variable.

Currently the algorithm and tool support accessing the

values of valued signals only during reactions in which they

are present; however, this can be handled by adding signals

to represent the latest value of a signal from the last time it

occurs. This solution will be implemented in future versions.

The set of programs to which our method is not applicable

includes, but not limited to, programs employing counters

(due to a dependency of the counter by its previous value);

programs performing calculations which are more compli-

cated than allowed by constraints 2 and 3 (e.g., containing

operations such as dividing by the value of some object

or comparing one numerical valued object to another); and

programs requiring extension in the host language. By design,

ESTEREL’s data definition facilities are minimal, since data-

handling is not the primary concern in control-dominated

reactive programming [4]. A major advantage of this approach

is high portability of the code. To program complex systems,

the programmer has to put a significant effort in implement-

ing data handling capabilities in the host language. Without

supporting host language extensions, our technique is limited

to simpler, control-centric programs.

A Proportional-Integral-Derivative (PID) controller [11] is

an example of a controller to which our method is not applica-

ble. This controller has three terms: proportional (proportional

to the error signal), derivative (proportional to the derivative of

the control signal, i.e. the rate of change in the error signal over

time), and integral (proportional to the integral of the error

signal, i.e. the summation of error over time). To calculate

the integral term, the system needs to sum of the error over

time, essentially creating a cyclic dependency. However, in

the high level at which robot behaviors are programmed in

behavior-based robotics, proportional controllers, which our

method supports, are nearly always sufficient [11]. Moreover,

PID controllers are not the usual application of ESTEREL.

ESTEREL, as a state-based formalism14, is better suited for

problems where control flow is prevalent, e.g. systems that

jump between different functioning modes [13]. Another style

of synchronous programming, where the system’s behavior

is represented as a set of recurrent equations, characterizing

languages such as SIGNAL and LUSTRE, is well-adapted to

problems where data-flow is prevalent [13], hence being more

natural for implementing PID controllers where the transfer

function is repeatedly calculated.

We currently investigate means to lift some of these con-

straints. Some research directions appear in Section VI.

14A state-based formalism uses a state transition diagram where arrows are
labeled with communication actions to represent the system’s behavior. The
diagram can be explicit in visual formalisms such as in STATECHARTS or
implicit in imperative formalisms such as ESTEREL and CSML [13].

752 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



State-Space Complexity Evaluation

The complexity of the number of pure signals

that the abstraction adds to the program is

O (NBool +Nnum · (Batomic +Aconst) +A+ E +B)
when there is at most one relation between every two valued

objects; NBool is the number of Boolean valued objects,

Nnum is the number of numerical valued objects, Batomic

is the number of atomic Boolean data expressions having

occurrences of numerical valued objects, Aconst is the number

of assignments of constant values to numerical valued objects,

and A, E, and B are the numbers of variable assignments,

valued signal emissions, and Boolean data expressions

respectively. For more complicated situations in which there

can be two or more relations between two numerical valued

objects we provide a recurrence relation in [1].
In general, an automaton generated from an ESTEREL

program may suffer from size explosion [14]. Increasing the

number of input and output signals may significantly enlarge

the sets of states and transitions of the automaton produced

from the purified program compared to the one generated from

the original program. In two of the examples presented in [1,

Chapter 5] the number of states remains the same following

the purification and for one example the number of states

increases from 6 to 16. However, one must remember that the

abstraction is done for verification purposes only. Moreover, a

typical ESTEREL application yields a fairly small number of

states, usually between 10 and 100 [14].

V. CASE STUDIES

The constraints described in the previous section provide

an accurate characterization of the family of programs to

which the method can be applied. The example in Section II

demonstrates the applicability of the method to two classes

of control systems within this set: bang-bang controllers and

proportional controllers. Another example demonstrating the

application of the method to a bang-bang controller is a tem-

perature controller system maintaining a constant temperature

in a chamber using a thermometer, a timer, and two boilers [1].
We present there also the application of our method various

robot programs:

• Border-following robots using one or two light sensors.

• Bang-bang implementation of the Home robot behavior:

a robot homes on a destination marked by a beacon using

differential sensing. It is based on a program appearing

in [11]. We use our technique to verify that the robot does

not run over the beacon, assuming that when the robot is

too close then the light intensity picked by the sensor is

greater than a given threshold.

• Escape behavior: once colliding with an obstacle, a robot

goes back a predefined distance, rotates a predefined

angle and then continues moving forward. It is also based

on a program that is described in [11] (though modified

to use a range detector and escape once detecting a close

obstacle). We verify that the robot never reaches a non-

reactive state, in which it fails to find a reaction and emits

an error signal.

The last two examples (Home and Escape behaviors)

demonstrate the application of the method to mobile robot

programming following the reactive control paradigm. This

paradigm, based on animal models of intelligence, decomposes

the overall action of the robot by behavior, allowing handling

multiple goals and multiple sensors, increasing robustness and

extensibility [15]. By combining various behaviors and control

algorithms, complicated control systems to which our method

is applicable can be derived. The full code for the examples,

including original program code, abstract program code, and

observer code are provided in [1].

The abstraction we propose has an advantage over complete

data abstraction performed when providing the -soft flag

to the ESTEREL compiler, since it avoids adding behaviors

not displayed by the original program. For example, consider

the following code portion switching on and off an actuator

based on a numerical input through a sensor S:

if ?S < 90.0 then emit On end if;

if ?S > 110.0 then emit Off end if

The ESTEREL compiler generates with the -soft flag

a circuit in which both conditions can be satisfied at the

same time, therefore it can emit both On and Off at the

same reaction. However, using our abstraction, in the purified

program no two range signals representing S can occur

simultaneously, therefore both conditions cannot be satisfied

at the same time.

VI. CONCLUSION

Combining the verification power of XEVE with the trans-

formation of non-Pure ESTEREL programs into Pure ESTEREL

programs, we can verify safety properties of a larger family

of programs. We provided examples for various categories of

programs that can be verified.

There still is a large set of programs to which we cannot ap-

ply our method, e.g. those involving complicated calculations

and counters. By giving up completeness, the full potential of

the technique developed is realized. Applying the technique to

parts of the program that fulfill the constraints while letting the

ESTEREL compiler remove the rest of the data when compiling

the program into a circuit can produce a more precise over-

approximation than total control-based abstraction. This is

especially useful when the system consists of several sub-

systems, some of which fulfilling the constraints while others

not. In [1] we provide an example of a system comprised of

a PID controller and a limit switch. The limit switch shuts

the process down by cutting off the PID controller’s output

once an undesired limit is reached. After the measured value

drops back to the safe zone, the switch can be manually reset

in order to reactivate the control system. An observer helps

to verify safety properties of the system by emitting a special

signal whenever the program emits the output signal while

the measured value is higher than some critical threshold. Not

only that the calculations performed by the PID controller are

not supported by our technique, but also the program takes the

set point, clock interval, and gains from constants defined in

the host language. The abstraction performed by the ESTEREL

NIR KOBLENC, SHMUEL TYSZBEROWICZ: BEHAVIOR-PRESERVING ABSTRACTION OF ESTEREL PROGRAMS 753



compiler alone produces a circuit which XEVE reports to pos-

sibly emit the observer signal. However, using our technique

to abstract the safety limit switch and the observer, which

comply with the requirements of our techniques, and letting

the compiler abstract the rest of the program creates a circuit

which never emits the observer signal, as XEVE guarantees.

The current version of the algorithm supports only linear

equations and inequalities in formulas occurring in Boolean

data expressions. We plan to extend the class of supported

formulas, for example to handle also univariate polynomial

equations and inequalities whose the roots can found analyti-

cally, i.e. polynomials of second, third, and forth degrees; the

roots can be used to partition the domain of the valued object

(which serves as the variable of the formula) to intervals.

One alternative approach to perform the analysis and the

abstraction is based on the constructive semantics of ES-

TEREL [16]. ESTEREL statements are divided into two groups:

kernel statements, forming a primitive core of the language,

and derived statements, which are definable as combinations

of kernel statements, whose purpose is to make programming

more convenient. The semantics of an ESTEREL program is

obtained by structural induction on the statements which it

consists of. Considering the constructive semantics of ES-

TEREL, it is essentially enough to define the abstraction

process and prove its correctness for kernel statements to

obtain a process and a proof that applies to the entire ESTEREL

syntax. Yet it would require to implement a much more

complicated abstraction technique, that not only finds and

transforms items of interest, but also breaks-down the program

to kernel statements. Our approach focuses on the occurrences

of valued objects in the program, leaving the rest of the

program untouched.

The TEMPEST [17] toolset provides a compiler for linear

temporal logic formulas representing safety properties to ob-

servers in ESTEREL language. The automaton compiled from

the observer-augmented program can be verified using other

tools from the TEMPEST package. When the control flow of

the program to be verified is independent of valued objects

(i.e., there are no conditionals testing run-time values of

valued objects), the control structure can be fully determined

at compile-time, therefore the verification is both sound and

complete. However, when the program’s control structure

depends on run-time values, the technique is sound but not

complete, since the ESTEREL compiler considers all paths,

including those that are unreachable due to data values [18,

Section 4].

We plan to incorporate the power of TEMPEST with our

method to extend both the class of verifiable properties and the

class of programs to which those techniques can be applied.

TEMPEST should be able to successfully verify programs

where the control structure is independent on the run-time

values of valued objects; therefore, TEMPEST should be di-

rectly applied to programs not complying with the constraints

which our method requires, while actually not querying values

of objects in conditionals. Hybrid versions may be suggested,

such as purifying only valued objects on which the control-

flow depends directly or indirectly, while leaving the rest of

the valued objects untouched (as long as the valued objects

on which the control flow depends satisfy our constraints).

This, however, cannot be verified using XEVE. An additional

possible research direction is extending the language used in

TEMPEST to express safety properties querying the run-time

values of valued objects, such as “variable V can never be

greater than 20”. In certain cases, this might be obtained

by purifying together the parallel composition of the main

program and the observer component.

REFERENCES

[1] N. Koblenc, “Purification of Esterel Programs,” Master’s thesis, Dept.
Mathematics and Computer Science, Open Univ. of Israel, Ra’anana,
Israel, June 2015, the thesis and prototype tool are available at
http://www.cs.tau.ac.il/~tyshbe/NIR/nirThesis.html.

[2] N. Koblenc and S. Tyszberowicz, “Purification of Esterel Programs,”
in Preproceedings of the Brazilian Symp. on Formal Methods (SBMF),
C. Braga and N. Martì-Oliet, Eds., 2014, pp. 183–188, available at:
http://www2.ic.uff.br/~cbraga/sbmf14/sbmf14-preproceedings.pdf (vis-
ited September 2015).

[3] N. Halbwachs, Synchronous Programming of Reactive Systems,
Stankovic, J. A. (Consulting Editor), Ed. Kluwer, 1993. [Online].
Available: http://dx.doi.org//10.1007/978-1-4757-2231-4

[4] G. Berry, “The Esterel v5 Language Primer, Version v5_91,” Centre
de Mathématiques Appliquées – Ecole des Mines and INRIA, 06565
Sophia-Antipolis, 2000.

[5] L. J. Jagadeesan, C. Puchol, and J. E. von Olnhausen, “A formal
approach to reactive systems software: a telecommunications application
in Esterel,” Formal Methods in System Design, vol. 8, no. 2, pp. 123–
151, 1996. [Online]. Available: http://dx.doi.org/10.1007/BF00122418

[6] I. Sommerville, Software Engineering, 8th ed. Addison-Wesley, 2007.
[7] A. Bouali, “XEVE, an Esterel verification environment,” in Computer

Aided Verification (CAV), ser. LNCS, A. J. Hu and M. Y. Vardi, Eds.,
vol. 1427. Springer-Verlag, 1998, pp. 500–504. [Online]. Available:
http://dx.doi.org/10.1007/BFb0028770

[8] “The Esterel v7 Reference Manual, Version v7_30 – initial IEEE
standardization proposal,” Esterel Technologies, 2005.

[9] G. Berry and the Esterel Team, The Esterel v5_91 System Manual,
Centre de Mathématiques Appliquées – Ecole des Mines de Paris /
INRIA, Sophia-Antipolis, 2000.

[10] S. Das, D. L. Dill, and S. Park, “Experience with predicate abstraction,”
in Computer Aided Verification (CAV), ser. LNCS, N. Halbwachs and
D. Peled, Eds., vol. 1633. Springer, 1999, pp. 160–171. [Online].
Available: http://dx.doi.org/10.1007/3-540-48683-6_16

[11] J. L. Jones and D. Roth, Robot Programming: A Practical Guide to

Behavior-Based Robotics. McGraw-Hill, 2003.
[12] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality

of variables in progress,” in Principles of Programming Languages

(POPL 1988). ACM, 1988, pp. 1–11. [Online]. Available: http:
//dx.doi.org/10.1145/73560.73561

[13] A. Benveniste and G. Berry, “The synchronous approach to
reactive and real-time systems,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1270–1282, September 1991. [Online]. Available: http:
//dx.doi.org/10.1109/5.97297

[14] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: design, semantics, implementation,” Science of Computer

Programming, vol. 19, no. 2, pp. 87–152, 1992. [Online]. Available:
http://dx.doi.org/10.1016/0167-6423(92)90005-V

[15] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics.
Cambridge University Press, 2000.

[16] G. Berry, The Constructive Semantics of Pure Esterel, 2002, draft
book, version 3, available at: http://www-sop.inria.fr/members/Gerard.
Berry/Papers/EsterelConstructiveBook.pdf (visited September 2015).

[17] C. Puchol, The TempEst Program Verification Toolset, AT&T Bell Lab-
oratories and the University of Texas at Austin, product documentation.

[18] L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen, “Safety property
verification of Esterel programs and applications to telecommunications
software,” in Computer Aided Verification (CAV), ser. LNCS, P. Wolper,
Ed., vol. 939. Springer-Verlag, 1995, pp. 127–140. [Online]. Available:
http://dx.doi.org/10.1007/3-540-60045-0_45

754 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015


