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Abstract—A major challenge in swarm robotics is to minimize
energy and time costs. We focus in this paper on multi-agent
foraging algorithms that uses ant-like agents with limited energy.
By considering energy consumption, we propose a new Energy
aware Cooperative Switching Algorithm for Foraging (EC-SAF)
that optimizes the whole system search and transport operations
needed to collect resources over time. Unnecessary moves are
avoided according to the following two premises: (1) Quick search
and optimal paths provided by Stigmergic Multi-Ant Search
Area (S-MASA) algorithm; (2) Quick homing provided by using
the optimal paths created while searching. Results indicate that
EC-SAF is promising in reducing swarm energy consumption
compared to an energy-aware version of the c-marking algorithm
(Ec-marking).

I. INTRODUCTION

S
WARM robotics is concerned with the design of artificial

robot swarms based upon the principles of swarm intelli-

gence [1] [2] [3]. Promising solutions are expected by using

numerous simple robots [4] [5] [6]. The collection carries

out complex tasks based on simple rules, without spending

much computational power and much physical energy [7].

Foraging robots are mobile robots that search for objects, and

transport them to one or more storage points. It is a benchmark

problem used in swarm robotics for several reasons: (1)

It integrates several complex sub-tasks such as exploration,

navigation, manipulation and transport; (2) It constitutes a

canonical problem for the study of robot-robot cooperation;

and (3) Many real-world applications are instances of foraging

robots (like cleaning, harvesting, searching and rescuing) [8].

Foraging robots perform tasks that consumes energy, and must

have a means of obtaining more energy to complete missions

successfully. The most common strategies for powering long-

lived autonomous robots are: (1) Capture ambient energy di-

rectly from the environment, also known as energy scavenging;

or (2) Transfer energy from a recharging station [9]. Several

options are possible in the last case: (1) Working robots

perform their work until their energy falls below a given

threshold. At this time, they return to recharging station, to

recharge their energy [10] [11]; (2) Working robots can stay

at the working site permanently, while special dock robots

visit them periodically to provide them with energy [9] [12];

(3) Robots could transfer the energy also between them by

comparing their energy’s level [8]; and (4) Robots have to

decide between search and transport, where transport can be

applied to different resources. Even if resources are unknown

at the beginning, as robots can be recruited by others, robots

have sometimes to choose between carrying resources to

the nest, carrying resources to another location in the field

or searching for new resources, according to minimize the

global energy consumption and maximize the global resources

collected (that are equivalent to the accumulated energy) [13].

In this paper, we study the energy expenditure in the

Cooperative Switching Algorithm for Foraging (C-SAF) [14]

by addressing and analyzing two points:(1) What is the impact

of collective exploitation of food provided by recruitment

in C-SAF algorithm on energy consumption? (2) Does the

division of search space (by using multiple sinks) in C-

SAF improves energy efficiency? C-SAF robots are ant-like

agents with limited computing and memory capacities. C-SAF

provides quick search by using S-MASA algorithm [15] as

search strategy, and quick exploitation by recruiting agents.

Results are better than the standard reference algorithm and

performances are emphasized with cooperation [16]. In this

work, we propose to enhance foraging algorithms efficiency

by taking energy into account. Individual energy and overall

swarm energy are considered during resources location and

exploitation.

The remainder of the paper is organized such as follows:

in Section II we present the EC-SAF algorithm, its Finite

State Machine (FSM) and a description of different states and

we present the Ec-marking algorithm, an enhanced version of

the c-marking algorithm [16], with which we compared the

obtained results. In Section III, we present the performance

indices used, describe the scenarios used for simulations and

compare obtained results of the two algorithms. We finish with

a conclusion in Section IV and some future works.

II. AN ENERGY-AWARE MULTI-AGENT FORAGING

ALGORITHM

In this Section, we present the EC-SAF algorithm, the FSM

of our foraging agents and a description of different states. We

present the Ec-marking algorithm, with which we compare the

obtained results.
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A. EC-SAF Algorithm

Our foraging agents use a four layered subsumption ar-

chitecture [17] where each layer implements a particular

behavior: Environment exploration is the lowest priority layer

in this architecture. It consists in exploring the environment,

therefore, it includes the states Choose-Next-Patch and Look-

for-Food. Food exploitation consists in exploiting food when

it is found, it envelops the states Pick-Food, Return-to-

Nest, Return-and-Color, At-Home, Climb and Remove-Trail.

Recharging energy consists of the set of states that allow

agents to return home to recharge when their energy falls be-

low a threshold, it includes the states Return-to-Nest, Return-

and-Color, Remove-Trail and At-Home. Obstacle avoidance is

the higher priority layer, it implements the obstacle avoidance

behavior. Higher priority layers are able to subsume lower

levels in order to create viable behavior (see Figure 1 for an

illustration of the architecture). The behavior of our foraging

agents is enhanced from [14] to deal with energy limitation.

It is shown by the state transition diagram in Figure 2

where dotted arrows represent the new transitions used when

the current energy of an agent (Ec) falls below the fixed

threshold (Emin). States are described below and the enhanced

algorithm is given by Algorithm ??:

Look-for-Food: If Ec > Emin and there exists a food here,

agent executes Pick-Food state, while if there exists no food it

executes Choose-Next-Patch state. If its Ec <= Emin, it turns

to Return-to-Nest state if there exists a trail, or to Return-and-

Color state, if there exists no trail.

Choose-Next-Patch: If an obstacle is detected, the agent

calls the procedure Avoid Obstacle(). If no obstacle is there,

the agent climbs the brown trail to reach the food location

if there exists one, it spreads then the information to its left

cell. It lays a limited amount of pheromone P in current cell,

adjusts its heading by executing S-MASA Algorithm [15] and

moves one step forward. It turns automatically when finished

to Look-for-Food state.

Pick-Food: If Ec > Emin, agent picks a given amount of

food and spreads the information to its left cell. However, If

Ec <= Emin it does not pick food. It executes in the two cases

Return-to-Nest state, if there exists a trail or Return-and-Color

state if there exists no trail.

Return-to-Nest: The agent moves to one of colored neigh-

boring cells with the lowest P value. It remains in this state

until home is reached, it turns then to At-Home state.

Return-and-Color: The agent moves to one of the four

neighboring cells with the lowest P value and marks its trail

with yellow and remains in this state until it reaches the home;

it turns then to the At-Home state.

At-Home: The agent unloads food if it carries one. If its

current energy (Ec) is below (Emin), it recharges its energy

to the maximum amount Emax. It goes to Climb state if there

exists one and the amount of food is > 0. If amount of food

is = 0, it executes Remove-Trail state, else it turns to Look-

for-Food state.

Climb: Agent moves to one of its four colored neighbors

P
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Actions

Recharging Energy
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Environment Exploration

Food Exploitation

Fig. 1: Subsumption architecture of our foraging agents
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Fig. 2: State transition diagram of a foraging agent. Dotted

arrows are the added transitions related to the recharging

behavior of agents

with a P value greater than the P value of the current cell. It

remains in this state until no colored cell (yellow trail) exists

and its Ec > Emin, it turns then to the Look-for-Food state. If

its Ec <= Emin and since there exists a trail, it executes the

Return-to-Nest state in order to return home for recharging its

energy.

Remove-Trail: The agent moves to a colored cell with the

greatest P value and resets its color to the default color (black).

It remains in this state until no colored cell is found and Ec

> Emin, it turns then to the Look-for-Food state. If Ec <=

Emin, the agent returns to home to recharge and executes the

Return-and-Color state since it already removed the existing

trail and to keep track of the last position from where he will

continue removing after it recharges its energy.
The modeling of the components of our multi-agent system

are detailed below:

• Environment Model: an N X N grid world. It contains a

set of agents, food, nest and obstacles.

• Agent Model: agents have limited processing power and

memory, simple sensors, do not know the position of food

nor the map of environment.

• Pheromone Releasing and Evaporation: Two types of

pheromone have no diffusion and evaporation properties

and they are used either to mark a transport or recharging

trails or a recruitment trail. The third one is used to mark

already visited cells.

B. Ec-marking Algorithm

The Ec-marking algorithm, which is an enhanced version of

the c-marking algorithm [16] to deal with energy limitation,
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Fig. 3: State transition diagram of an Ec-marking agent, where

colored state, dotted transitions and bold guards are related to

energy-aware behavior of agents

is given by Figure 3. Agents while exploring the environment

build simultaneously paths between food and nest which re-

sults in building an ascending Artificial Potential Field (APF)

incrementally. An Ec-marking agent is always in one of the

states depicted by Figure 3, where the enhancements made

represented by filled states, dotted transitions and bold guards.

This set of states is described below:

SEARCH & CLIMB TRAIL: If food >0 and Ec > Emin, the

agent executes the LOADING state. If Ec <= Emin, it looks

for trail, if there exists one it executes RETURN TO BASE,

else if there exists no trail it executes RETURN & COLOR

TRAIL, else it moves to food if it is found and if not it moves

to a neighboring cell not marked yet.

LOADING: The agent picks a given amount of food and

food here is exhausted and there exists a trail, it executes

RETURN & REMOVE TRAIL, if food is not exhausted and

there exists no trail, it executes RETURN & COLOR TRAIL,

else it executes RETURN TO BASE.

RETURN & COLOR TRAIL: The agent moves to one of

the four neighboring cells with the lowest APF value and

changes its color to a trail color, it remains in this state until

it reaches the home; it turns then to the UNLOADING state.

RETURN & REMOVE TRAIL: The agent moves to one of

the four neighboring cells with the lowest APF value and

changes its color to the default one (black), it remains in this

state until it reaches the home; it turns then to the SEARCH

& CLIMB TRAIL state.

RETURN TO BASE: The agent moves to a colored neigh-

boring cell with value minimal to its current value, until it

reaches the home; it turns then to the SEARCH & CLIMB

TRAIL state.

UNLOADING: The agent unloads the food at home. If Ec

<= Emin, it recharges its energy to Emax and if its statue

is recharging it changes state to the REMOVE RECHARGING

TRAIL, else it changes to the SEARCH & CLIMB TRAIL.

REMOVE RECHARGING TRAIL: The agent moves to a

colored neighboring cell with higher APF value and resets

its color to the default one, until no colored cell is found it

changes then to the SEARCH & CLIMB TRAIL.

III. SIMULATION RESULTS

Three performance indices are used to compare the algo-

rithms (Total food returned, Energy efficiency and Total en-

ergy). Through simulations, we compared the four algorithms

(EC-SAF [Algorithm ??], C-SAF [14], c-marking [16] and

Ec-marking [Figure 3]) on the basis of Total food returned,

to verify if an energy-aware management can improve perfor-

mances. After that, the two energy-aware algorithms proposed

in this paper (EC-SAF and Ec-marking) are compared between

each other on the basis of Energy efficiency (Eeff ) and Total

energy performance indices.

• Total food returned: is the total amount of food (in units)

returned over some elapsed time.

• Energy efficiency: it is the energy spent while foraging

one food location. It is calculated according to equation 1.

Eeff =

TotalEnergyOfConsumedFood

NumberOfReturnedFood
(1)

Where Total Energy Of Consumed Food, is the sum of

each agent energy spent in exhausting one food location

starting from finding the food until it is exhausted.

Number Of Returned Food is the quantity of units of

food returned;

• Total energy: is the total energy spent by all agents to

search and exhaust all the food locations.

The energy consumption of an agent at each state is defined

on the basis of the power of real equipment (such as motor,

sensor and processor) required to achieve that state. It is

inspired by the B-swarm model [10]. Agent consumes 1 unit

of energy per simulation update for the states that do not

need hard work (such as Climb and Return-to-Nest), while

in states that need hard manipulation such as: depositing

pheromone (in Choose-Next-Patch state), loading food (in

Pick-Food state), unloading food (in at-Home state), pick-up

pheromone (in Remove-Trail state), and deposit pheromone

(in Return-and-Color state), the agent consumes 5 units of

energy per simulation update. However, for the Avoid-Obstacle

(), agent changes its direction only and consumes 3 units of

energy per simulation update. For the Ec-marking, the energy

consumed is: 5 units of energy per simulation update for states

SEARCH, LOADING, RETURN & COLOR TRAIL, RETURN

& REMOVE TRAIL, UNLOADING, REMOVE RECHARGING

TRAIL and 1 unit of energy per simulation update for states

CLIMB TRAIL, RETURN TO BASE and 3 units of energy

per simulation update for the avoid obstacle(). Simulation is

based on Netlogo [18]. The simulation results are the average

of ten simulations. Four kinds of simulations are reported in

this paper. In each simulation several related parameters are

to be fixed: agent parameters (number and capacity), world

parameters (size, complexity and sinks number) and food

parameters (density and concentration) where: Agent’s number

is the number of agents that participate at each simulation,

Agent’s capacity is the amount of food (units) that an agent

can transport at each time. World size is the dimension of the

search space, it is a grid of N X N cells, the world is obstacle-

free or obstacle represent the world complexity, sinks number
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(a) (b) (c)

Fig. 4: World setups used in simulations (a) obstacle-free

environment (b) obstacle environment (c) environment with

4 sinks, where red arrows are agents, green arrows are food

locations, gray blocks are obstacles and pink squares are sinks

TABLE I: Parameters of scenario 1, scenario 2, scenario 3 and

scenario 4

Parameter Value

Scenario 1 Total food returned Analysis

World size 40 X 40 cells

Number of agents 8

Food density 2 sites

Food concentration 50 units

Agent’s capacity 1 unit

Sinks number 1

Scenario 2 Energy Efficiency Analysis

World size 40 X 40 cells

Number of agents 5 – 30

Food density 1 site

Food concentration 20 units

Agent’s capacity 1 unit

Sinks number 1

Scenario 3 Energy Efficiency Analysis

World size 80 X 80 cells

Number of agents 48

Food density 1 site

Food concentration 20 units

Agent’s capacity 1 unit

Sinks number 1 – 16

Scenario 4 Total Energy Analysis

Number of ticks 50 – 300

World size 40 X 40 cells

Number of agents 15

Food density 1 site

Food concentration 20 units

Agent’s capacity 1 unit

Sinks number 1 sink

is the number of the home or base station to where agents

store food and recharge energy. Food density is the number of

food locations (sites), distributed randomly in the environment.

Food concentration, indicates the amount of food that each site

contains (we refer to it as unit in the paper). At first stage,

we wanted to test if energy-aware can improve efficiency of

our C-SAF algorithm or not, therefore, we proposed scenario

1 (see TABLE I), where we calculate the total amount of food

returned over some elapsed time. The obtained results with the

four algorithms (C-SAF, EC-SAF, c-marking and Ec-marking)

are depicted by Figure 5.

From Figure 5, we observe that in C-SAF and c-marking

algorithms, the total food returned increases with the increase

in ticks (below 300 ticks) because agents still have energy,

when their energy is exhausted, agents die and the total food

returned does not increase (over 300 ticks). While the total

food returned keep increasing in the energy-aware versions

of the algorithms (EC-SAF and Ec-marking), because agents

return to recharge when their energy falls below the fixed

threshold and resumes their tasks. From this experimental

results, we conclude that an energy-aware version are needed

to improve performances.

The EC-SAF algorithm is also compared with the Ec-

marking one, in order to test if it can improve energy con-

sumption or not. We proposed therefore, Scenario 2, scenario

3 and scenario 4, where the two first ones are used to test the

impact of varying agent’s number and sink’s number (search

space division) on energy efficiency. While in scenario 4, we

observe the whole energy consumed over some elapsed time,

to test whether the algorithm consumes much or less energy

when operating (see TABLE I for the description of the three

scenarios). The three world setups that are used for simulations

including positions of nest, food, obstacles and agents, are

reported in Figure 4.

A. Results in Scenario 2

The energy efficiency in EC-SAF does not change when

changing the number of agents. In opposite to the number of

ticks that is reduced with the increase of agents number, the

energy consumed by one agent is the same consumed by mul-

tiple agents that participate at food exploitation. However, the

energy efficiency in c-marking decreases with each increase in

agents number. The energy consumed depends on the length

of path that relays the food and the home. In Ec-marking

algorithm, the paths are not optimal when number of agents

is small thus energy consumption is great, with the increase

of agent’s number the length of paths will be reduced and the

energy consumption decreases. Because of the optimal paths

provided by S-MASA algorithm [15], EC-SAF gives better

results than the Ec-marking one (see Figure 6(a)). Results

in obstacle environment are similar to the ones in obstacle-

free environment configuration, with additional steps needed

to avoid obstacles (see Figure 6(b)).

B. Results in Scenario 3

Using multiple sinks divide the whole search-space into

sub-search spaces with smaller size. When increasing the the

number of sinks the number of sub-spaces is increased too and

the size is reduced more. The path length to food is reduced

each time we increase the number of sinks (food takes fixed

position in all simulations). In EC-SAF less consumption of

energy is reached with 16 sinks, where the size of sub-spaces

is the smallest and the path length to the food is the smallest

(6 cells). The energy consumption is greater with 4, 7, 10

and 13 sinks (the path length to food is 8 cells). However,

it is the greatest with 1 sink, because the search-space size

is the greatest and the path length to food is the longest (14

cells). In Ec-marking, the energy consumption is great with

1776 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015
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Fig. 5: Simulation results of scenario 1 in : (a) obstacle-free environment, (b) obstacle environment.
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Fig. 6: Simulation results in obstacle-free and obstacle environment of: (a), (b) scenario 2. (c), (d) scenario 3. (e), (f) scenario 4
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1 sink because the search-space size is the greatest, the path

length to food is the longest and paths are not optimal. It is

reduced with 16 sinks, since the path length to food is reduced.

ES-CAF provide less energy consumption rather than Ec-

marking because of the optimal paths induced by the S-MASA

algorithm [15]. Figure 6(c) shows the results comparison

between the two algorithms. Results in obstacle environment

are same as in obstacle-free environment configuration, with

additional steps needed to avoid obstacles (see Figure 6(d)).

C. Results in Scenario 4

The total energy increased with increasing the number of

ticks as shown in Figure 6(e). It is stable in EC-SAF above

200 tick because the agents reach the boundaries of the

search world (the finish time of the foraging is 140 ticks).

However, the finish time of foraging in Ec-marking is 300

ticks and until this time the total energy continue to increase.

Also in this scenario EC-SAF provides a less consumption

of energy in comparison to Ec-marking one. Also in obstacle

environment, the total energy in the two algorithms increased

with increasing the number of ticks but it is more in Ec-

marking algorithm than in EC-SAF algorithm (see Figure 6(f)).

IV. CONCLUSION

We investigated in this paper the energy efficiency and the

total energy consumed of the EC-SAF algorithm as changing

the number of agents (to test the benefit of collective foraging),

changing the sinks number (to test the benefit of dividing

search space) and calculating total energy consumed over ticks

(to test the impact of the search strategy used). Simulation

results show that energy efficiency in EC-SAF, does not

change when changing agents number because the set of

agents execute the same states as one agent and thus consume

the same energy consumed by one agent. It can be reduced

when using multiple sinks, and it depends on the path length

between food and home, if the path is reduced with search

space division the energy efficiency is even reduced (and vice

versa). While the total energy increased with the increase in

number of ticks, it stops changing and becomes stable when all

food is foraged and the search space boundaries are reached.

EC-SAF gives better results than the enhanced c-marking one,

because of the optimal paths and the quick search provided by

S-MASA algorithm [15].
In the future, we intend to explore other environment

configurations and examine other possibilities to reduce the

energy consumption in EC-SAF.
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