
Towards Machine Mind Evolution

Ján Kollár, Michal Sičák and Milan Spišiak
Department of Computers and Informatics,

Technical University of Košice

Letná 9, 042 00, Košice, Slovakia

Email: {jan.kollar, michal.sicak, milan.spisiak}@tuke.sk

Abstract—We introduce the principles of symbolization and
conceptualization of perceived reality. We show them as processes
that are applicable inside of a computer mind. We derive those
processes from principles of a human mind. We present process of
higher order regular abstraction and state automata acceptance
as possible machine reality realization mechanism. We present the
algorithm for evolution of machine mind language. Verification
of this algorithm is presented in functional language Haskell.
On the output, we have obtained fine-grained parallel non-
redundant structure. It is in super-combinator form and rep-
resents elements of a machine mind language. Count of elements
applications highly exceeds the count of elements themselves.
Instead of accumulating acquired information, they are dissolved
in the language of a mind. Vice versa, the information can be
reconstructed from this language. We show that non-redundancy
of a machine language is the decisive criterion for restructuring
the machine mind language in each moment of communication.
It is like that, so we can achieve more powerful and abstract
communication between humans and computers or between
computers themselves.

I. INTRODUCTION

A
BSTRACTION of the human-computer communication

interfaces [1] can be increased by DSL development [2],

coming out from the abstract syntax [3]. Grammatical and/or

genetical language evolution [4], [5], [6] is more automated

approach, but still oriented more to syntactic than to semantic

facet of languages.

On the other hand, the development of thinking machine is

a great challenge, which can be found in many works of histo-

rians, philosophers, psychologists and linguists. For example,

Renfrew [7] characterizes humans as symbolic beings that

language was evolved in a consequence of communication.

Gardenfors [8] refers to the structured substance of concepts.

Structured conceptualization for databases can be found in

[9]. Chomsky’s [10] hypothesis on the universal language of

thought, innate to every human being is the subject of many

discussions.

In this paper, we present the algorithm in which reality

recognized by humans can be conceptualized and represented

in the machine mind.

Our approach comes out from the empirical cognition of

reality by humans and its reflection in the mind: our imagina-

tions are structural, and our concepts that reflect the meaning

of the reality are languages, since they are meaningful. In our

This work was supported by project VEGA 1/0341/13 Principles and meth-
ods of automated abstraction of computer languages and software development
based on the semantic enrichment caused by communication

opinion, no information acquired by human is being forgotten

(it is just suppressed in our mind) and no information is stored

multiplicity.

We deal with symbolization just marginally in this paper,

more information can be found in [11]. We discuss concep-

tualization as a process of abstracting the language concepts

in more detail, since differently abstracted concepts on input

of the algorithm affect the evolved language of the machine

mind.

We present the algorithm for the machine mind language

evolution in eight subsequent steps. In this paper, we also

introduce the principle of applicative deterministic automata,

able to recognize reality incrementally.

Also another aspect of symbolized input processing is

explored. We present possibility of higher order regular ex-

pressions creation.

Our results tend to distributed automata structures [12] and

they conform with the principle of the determinism of systems

[13]. The proposed solution allows us to separate process

forming of language of the machine mind from the process

of machine thinking reasoning on concepts. As we hope, this

provides a perspective for cognitive and more abstract HC and

CC communication.

II. SYMBOLS AND PERCEPTION

Human is a symbolic creature, i.e. the human communica-

tion is symbol based. He creates immaterial concepts inside of

his mind that flow right from the symbols that have material

substance. Concepts exist only inside of a human mind, i.e.

his imagination. Symbols posses their informal meaning and

at the same time they might be structured with high degree of

complexity during the communication.

Symbolization is a symbol based reality representation pro-

cess. Simple components of reality, such as the letter A or an

image of a square can be symbolized with simple symbols like

a or b. Therefore we are able to symbolize perceived reality,

like the sequence (1), into the symbol sequence aabababa.

AA�A�A�A�A (1)

The new structured symbol has been created. The relation

between the reality and its symbolized form is bidirectional.

It is not enough to symbolize reality at the input in order to

communicate, as the reality needs to be reconstructible at the

output from the previously obtained symbol structure.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 985–990

DOI: 10.15439/2015F210

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 985

The symbolization of the sequence (1) is expressed with the

rule (2):

A ↔ a � ↔ b
AA�A�A�A�A ↔ aabababa

(2)

Section above line in the rule (2) tells us, that if we have

already identified reality of simple facts A and � and symbol-

ized them with symbols a and b, then new structured reality (1)

is going to be symbolized with the use of a new symbol.

This is the structured symbol aabababa. The structure doesn’t

necessarily have to be a sequence as it is in our example,

but may be any structure. Symbols are just abstractions of

reality in our view, recorded and produced from inside of

a memory during communication. In order for communication

to be faultless, such records of reality are stored inside the

memory. They represent reality inside a human or computer

mind. Since a human does not think in symbols, we may need

to imagine its relation to machine mind abstract symbols as

a connective bidirectional links to records of reality. Since we

do not posses an architecture of a machine that corresponds

to human mind, we find no other way than to consider them

as alphabet symbols - terminal symbols of a language, and

to represent them in discrete way, like whole non-negative

numbers.

The purpose of symbolization is not the same as recognition

problem. A machine is able to register and reproduce reality.

Cognition is tied with the language evolution and it is inherent

property of a mind. The language evolution works together

with symbol abstraction. It is based on conceptualization,

whose substance is the concept creation inside of an internal

machine language.

III. CONCEPTUALIZATION

A mechanism of conceptualization is a higher form of

language abstraction than symbolization is.

String (3) is a concept - language, identical with the

symbol sequence perceived on input. An abstraction was not

performed upon it.

aabababa (3)

Sequence (1) is a concept or a language that has meaning

if we consider process of symbolization defined in (2) being

applied.

Consider a concept in a form of a regular expression (4),

where (r)∗ is transitive closure of an expression r. This

concept is created by performed abstraction that searches for

repeating patterns, in our case the sequence ab.

a(ab)∗a (4)

This concept is more abstract than concept (3) for there is

a relation (5) between the languages (3) and (4).

aabababa ⊂ a(ab)∗a (5)

A machine operating with the language (3) cannot ef-

fectively communicate with a machine that recognizes the

language (4), since its language is less abstract. In automaton

theory it means that an automaton derived from the regular

expression (3) accepts only terminal symbol string aabababa.

It can be generated from the regular expression (4) however.

On the other hand, the human or the machine (3) can learn

from its counterpart (4), since it is capable of producing the

symbol set aa, aaba, aababa, etc. It can achieve level (4) by

this process. We can say, that language (3) will mutate to the

language (4). The premise for machine learning is a massive

stream of structured symbols at the input. Language (3)

mutation into more abstract form is based on such a stream.

A sequence of symbols at the input shown at (6) leads to

conceptualization - the process of concepts creation shown

in (7).

aa; aaba; aabababa (6)

1. ({}, aa) ⇒ {aa}

2. ({aa}, aaba) ⇒ {a(ab){0,1}a}

3. ({a(ab){0,1}a}, aabababa) ⇒ {a(ab){0,1,3}a}

(7)

In the first step, the mind is enriched by language aa

as there is the symbol aa at the input and the mind is

empty. This language is stored inside of the machine mind.

Next, the symbol aaba arrives at the input. The result of

conceptualization is mutation of the language aa inside the

mind of a machine into the language a(ab){0,1}a during the

second step. Another symbol transforms the language into

a(ab){0,1,3}a during the third step. This language enables the

machine to communicate in form of the symbols aa, aaba and

aabababa, since (8) holds.

a(ab)0a ⇒ aa

a(ab)1a ⇒ aaba

a(ab)3a ⇒ aabababa

(8)

The conceptualization example (7) shows us, that symbols

on the right side of (8) can be generated and then represented

as records of reality from concepts on the left side. Those

concepts are languages, since they are sub-languages of most

general language (9). This language is a concept only when

all symbols generated from it have meaning i.e. represent the

reality.

a(ab){0,1}a ⊂ a(ab)∗a (9)

Following facts about conceptualization are to be noted:

1) Conceptualization leads to language ambiguity, it ex-

pands exponentially, therefore a selection condition is

necessary. For example, language (a){2} could have

been created in the first step of (7) instead of the

language aa.

2) It is possible to represent single symbol with multiple

languages. For example, if language a(ab){0,1,3}a is

created inside of a mind of one machine and language

aa(ba){0,1,3} inside of another, they will be equal in

terms of inter-machine communication. Machines will

”understand” each other.

986 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

We can conclude that the machine mind is non-redundant

i.e. does not contain any two identical language components.

The mind hasn’t got an ability to forget and it is deterministic.

Language structure of the mind has to be highly parallel,

associative, and amount of interconnections between language

components highly exceeds the amount of components them-

selves.

IV. STRUCTURED SYMBOLS AS REGULAR EXPRESSIONS

We have shown, that reality can be symbolized as a struc-

tured symbol describable by a regular grammar. In this paper,

we use regular expressions to describe concepts that were

obtained by previously symbolized reality. Those expressions

themselves provide interesting ways to describe concepts, as

we will show in this section.

Regular expressions are usually an in-line way to describe

regular grammars. In practice, we use them for string match-

ing. Therefore, fundamental data type (the type of symbol that

regular grammar itself is matching to patterns) for accepting

is a character. Our expressions are composed of operators

sequence, closure and sum. First two have been already

described earlier. Sum operator is n-ary and designated as

| symbol.

Regular expressions represented as a string itself are not

well executable. One of better executable solutions is to

use a tree form that can be considered meta-executable, as

described in [4]. All our experiments were performed in func-

tional language Haskell. It allows easy creation of complex

data structures, such as a tree. Definition is based on work [11]

and is depicted below:

data RExp a = TERM a | SEQ [RExp a] |
SUM [RExp a] | CLS (RExp a)

Data structure RExp contains four constructors. Constructor

TERM represents fundamental type, SEQ is for the sequence,

SUM represents the sum operation and CLS is for the closure. It

is notable, that we are not using type Char as the fundamental

type for regular expression. Current definition allows us to

match expressions composed of an arbitrary data type. We will

return to this proposition later on. Sum and sequence operators

are n-ary.

Consider following regular expression:

a(b|c)∗ (10)

where a, b, c ∈ Σ, where Σ is terminal symbol set. This

expression matches string that begins with symbol a and after

that an arbitrary long string consisting of bs and cs is matched.

Transformed regular expression into the tree form is shown

bellow. Transformation is based on scheme described in [11],

so we won’t present it here for brevity.

SEQ [TERM ’ a ’ ,

CLS (SUM [TERM ’b ’ ,TERM ’ c ’])]

As mentioned earlier, fundamental type of regular expres-

sion does not have to be of type Char. Definition allows us

to use arbitrary data type.

TABLE I
MEANING OF REGULAR EXPRESSION ELEMENTS

symbol meaning
a d(e)∗

b ef
c (d|f)

SEQ

’d’ CLS CLS

’e’ SUM

SEQ ’d’ ’f’

’e’ ’f’

Fig. 1. Less abstract regular expression

Let us consider our regular expression data type as a form of

abstract interpretation of another regular expression. Therefore

elements a, b and c represent other regular expressions, and

the resulting type will be RExp (RExp Char). This can be

considered a higher order regular expression.

Term ”higher order” is used similarly as in functions, where

higher order functions take a function as a parameter or return

one. Since our regular expression takes another as a parameter,

it can be considered higher order regular expression.

Definitions of symbols the a, b and c meaning is depicted

in Table I. We use different symbols, d, e and f , in this

abstraction to make it clear on what level of we currently

are. By substitution of the elements a, b and c we get less

abstract regular expression:

d(e)∗(ef |(d|f))∗ (11)

Tree form of expression (11) is shown in Fig 1.

Fundamental data type can be arbitrary, even recursive.

Question arises, what if we would be able to create data type

that is going to be recursive and will contain RExp a type.

Data type like that would need a terminating and recursive

part. In our case, we will use type shown bellow. Regular

expression itself would be of type RExp RexChar.

data RexChar =

Ch Char | R (RExp RexChar)

Every element of regular expression can be either a char-

acter (the use of Char is not obligatory, we have chosen

this type for example purposes) or regular expression of

same type as the original expression. Purpose of recursive

regular expressions is that they can contain themselves as their

fundamental elements entering form of recursion.

In Haskell we can create those expressions statically as

a source code or we might obtain them dynamically during

execution by parsing input. Here is an example of a higher

order regular expression in static Haskell code:

a , b : : RExp RexChar

MICHAL SIČÁK ET AL.: TOWARDS MACHINE MIND EVOLUTION 987

a = SEQ [TERM (Ch ’ a ’) ,

SUM [TERM (R b) , TERM (Ch ’ c ’)]]

b = SUM [SEQ [TERM (Ch ’b ’) ,

TERM (R b)] , TERM (CH ’b ’)]

We can rewrite them as:

A → a(B | c)

B → bB | b
(12)

If we consider the rules of CFG from Chomsky hierarchy,

we can see that our recursive regular expressions (12) are

written in format of a BNF rule. We can see, that our recursive

regular expressions are corresponding with CFG rules and

BNF grammars.

By definition of hierarchy of languages, for every regular

language a finite state automaton can be constructed. Automata

are efficient way for accepting or even generating phrases of

regular languages. Next section discuses the idea of higher

order state automata, that may not necessarily be finite, yet

for all practical purposes, they will be usable.

V. STATE AUTOMATA DERIVED FROM HIGHER ORDER

EXPRESSIONS

As machine mind processes symbolized input and trans-

forms it into concepts, it needs mechanism for structured

symbols acceptance. This can be done with state automata.

Deterministic automata can only have one transition for each

symbol from one state to another and cannot contain empty

transitions. Every nondeterministic automaton can be con-

verted into deterministic. For practical purposes, it is always

better to have control over choosing which step to take next.

To obtain state automata we need to have an expression

first. We will use following example:

A → aAb|ab (13)

Expression (13) can be interpreted as a grammar of context

free language that contains strings that have exact number of

as and bs in succession. This is typical illustration of a non-

regular context free language, uninterpretable as a regular ex-

pression. However with our recursive expression it is possible.

Resulting tree created from (13) will be infinite, depicted on

Fig 2. We can see that second argument of sum operator, ab,

is terminator part. We can conclude that if we consider our

regular trees as executable, they are able to accept a context

free language.

In work [11] is presented an algorithm that transforms

regular expressions directly into minimum state automaton.

Same can be applied to higher order regular expressions.

Resulting automaton of expression (13) is depicted in Fig 3.

This is an automaton corresponding to regular expression

labeled as A.

There is a transition within body of an automaton in Fig 3

that accepts not a symbol but entire automaton. In this case it

accepts itself. We can perceive this fact as a recursive jump to

the higher level. For an input string ”aaabbb”, our automaton

would have jumped twice into higher levels. We could see this

SUM

SEQ SEQ

’a’ ’b’ ’a’ ’b’
SUM

SEQ SEQ

’a’ ’b’ ’a’ ’b’
SUM

SEQ SEQ

’a’ ’b’ ’a’ ’b’
SUM

SEQ SEQ

’a’ ’b’ ’a’ ’b’

Fig. 2. Tree form of expression (13).

0 1
a

2
A

3b

b

Fig. 3. Context free automaton

as an automaton with infinite levels, as depicted in Fig 4. We

see, that those automata are equivalent to recursive transition

networks.

Final state on higher level does not always mean possible

string acceptance, it can just represent return from a recursion,

as depicted in Fig 4, where states 3 of all higher levels have

transition into state 2 of lower level. Acceptance of string is

achieved only in final states on base level. This does not mean,

that higher level final states are not allowed to have transitions

into final states of lower levels. In case like that, whole string

of symbols can be accepted at higher level and then sequence

of empty transitions into base final state will occur.

Consider following higher order expression written accord-

ing to our rules, labeled as B:

B → ba(Bb|(b)1) (14)

Closure in last symbol is parametrized and it designates zero

or one repetition. Automaton for expression (14) is depicted

in Fig 5. In this particular case see an example of higher order

nondeterminism.

Automaton itself is deterministic, if we look at it as residing

on one level, where B transition is just another symbol

transition. It is unfortunately not our case and B means

Fig. 4. Recursive infinite state automaton

0 1
b

2
a

3
B

4b

b

Fig. 5. Nondeterministic higher order state automaton

988 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

recursion, where automaton accepts itself. Consider execution

where we are on non-zero level and are in the state 2. It is

the final state, so execution on current level can terminate and

we can return back. There is also a transition into the higher

level and a normal transition with the symbol b.

Therefore exactly three transitions are possible at this mo-

ment. And all three are accepting one symbol, b. Jumping into

the higher level causes jump into state 0 and here only b is

accepted. Returning one level down will get us into the state 3
and here b is only acceptable symbol as well.

Application of automata inside machine mind is a possible

solution for perceived reality acceptance, and as we have

shown, symbolized structures do not need necessary be simply

structured. The accepting part is but a small portion of a whole

concept of the machine mind. The more important part is to

deal with symbols and conceptualize them into the memory.

We will continue to use only simple regular expressions further

on for the sake of simplicity. Our focus is to get closer to

human comprehension of concepts as possible. In the next

section we will present the algorithm of abstract machine

mind evolution that satisfies conditions of symbolization and

conceptualization laid in previous sections.

VI. ABSTRACT LANGUAGE EVOLUTION ALGORITHM

Let the language a(ab)∗a be a result of conceptualization,

that is also a concept, since symbolization process was bound

to reality. This concept is composed of infinite amount of

sub-concepts, where each of them has its own meaning. The

most simple concept is aa that symbolizes meaning of two

uppercase letters AA. We can abstract from language seman-

tics, since it is defined by separate process of symbolization.

Therefore we can see them as simple regular expressions rather

than complex languages.

An algorithm for abstract language evolution is composed

of those eight steps:

1) Transformation of regular expression to metaexecutable

form of (meta)syntactic tree, considering priority and

associativity of metaoperations.

2) Selection of arguments terminal symbols and trans-

formation of each (sub)expression to the form of its

application to selected arguments.

3) Abstraction of each expression deriving the arity of

lambda abstraction from number of arguments, selected

in step 2. Elementary languages arise being still applied

in the tree.

4) Decomposition of elementary languages (elementary

language concepts). Elementary languages are dissolved

in associative memory represented by a list and applied

by the MATCH operation.

5) Abstraction of all applications (APP) to terminal sym-

bols, i.e. replacing them by abstract applications (APPA)

to lambda variables. The set of mutually applied abstract

languages is formed.

6) Compression - removal of multiple occurrences of the

same abstract languages, i.e. removal of redundancy of

elementary languages.

7) Filtration - removal of sets of pointers to redundant

languages. Manipulation phase.

8) The machine mind language extraction.

The sequential separation of steps is useful for the method-

ological purposes and also for verification of evolution on a se-

quential computer. But it can be noticed that sequential steps

are executable potentially in parallel as pipelined processes.

VII. ALGORITHM IMPLEMENTATION USING HASKELL

In the Haskell implementation, meta-operations of sequence

and transitive closure used in abstract concept a(ab)∗a as well

as sum (|) meta-operation were used. This allows us to apply

the algorithm to the abstract language concept a(b)∗|c as an

input sample.
Each elementary language is in supercombinator form,

i.e. lambda abstraction (LAM n e), where n represents

lambda variables x1, . . . , xn and e is a meta-expression. Meta-

expression e in the form VAR 1 represents lambda variable

x1, otherwise it is the application of binary sequence metaop-

eration (SEQ), unary transitive closure metaoperation (CLS),

and n-nary sum metaoperation (SUM), all being applied to

the applications of elementary languages. These applications

(APPA (MATCH k) [x1, . . . , xm]) apply k-th elementary lan-

guage of arity m to bound lambda variables. By other words,

k-th elementary language is a supercombinator, which can

be accessed to be applied in a highly distributed associative

memory of mind by operation (MATCH k) .

VIII. ALGORITHM VERIFICATION

We obtain the abstract language concept a(b)∗|c represented

in the machine mind by five elementary languages L in

supercombinator form (15).

L = {L0, L1, L2, L3, L4}

L0 = λx1.x1

L1 = λx1.L0 x1

L2 = λx1.(L0 x1)
∗

L3 = λx1.λx2.L1 x1 + L2 x2

L4 = λx1.λx2.λx3.(L3 x1 x2|L0 x3)

(15)

Each of elementary languages is applied to admissible

abstract symbols, that sets have been derived in the algorithmic

evolution. All possible applications (16) represent all meaning-

ful sub-concepts acquired by the most complex input concept.

L0 a, L0 b, L0 c

L1 a

L2 b

L3 a b

L4 a b c

(16)

For example, we can verify that the applications of identity

supercombinator L0 yields concepts a, b, and c, that represent

facts, and the application of supercombinator L4, see (17),

yields the most complex concept a(b)∗|c.

L4 a b c = a(b)∗|c (17)

MICHAL SIČÁK ET AL.: TOWARDS MACHINE MIND EVOLUTION 989

Abstraction in the process of conceptualization significantly

decreases the amount of elementary supercombinators of the

machine mind. For example, abstract concept a(ab)∗a, i.e.

a(ab)ka would be represented by 6 supercombinators, for

each k ≥ 0. But if the algorithm is applied to non-abstracted

concept (such as aabababa), the amount of supercombinators

grows linearly (2k + 3 for k ≥ 0, i.e. 9 supercombinators for

aabababa).

Summarization of structurally identical concepts yields no

change of supercombinator form of languages L, just that

amount of their arguments is increased. For example, (18)

holds.

L(a(ab)∗a|c(cd)∗c) = L(a(ab)∗a|c(cd)∗c|e(ef)∗e) (18)

Considering well abstracted conceptualization of large amount

of symbols on input, we can await that the amount of appli-

cation bindings exceeds the amount of elementary languages

rapidly, preserving non-redundancy of the set of elementary

languages.

IX. RECOGNITION BY APPLICATIVE AUTOMATA

As can be seen, derived elementary languages are defined

by regular expressions in that a single meta-operation is ap-

plied to elementary languages applications, instead of terminal

symbols. Let us remind that:

L4 a b c = a(ab)∗c

In the first step of meta-computation we get:

L4 a b c ⇒ L3 a b |L0 c = A |B

Then it is not necessary to recognize concrete sub-concept

belonging to a(ab)∗a by generation of DFA for a(ab)∗a,

but it is sufficient to derive the applicative DFA for regular

expression A|B, where terminal symbol A represents the set

of final states of applicative DFA for (L3 a b) and terminal

symbol B represents the set of final states of applicative DFA

for application (L0 c).

Considering (15), the number of applications commonly

highly exceeds the number of elementary languages. That

is why we can formulate the hypothesis on saturation of

the machine mind, which can be realized as slowing-down

expansion of set the L with each new concept on input.

Multiple occurrences of terminal symbols in arguments in (16)

are of less importance, since they physically do not exist,

because they represent just interconnections to reality records.

X. CONCLUSION

The main advantage of internal machines supercombinator

form is addition of automatic conceptualization criterion. It is

the minimal count of elementary languages, which themselves

are supercombinators as well. Internal language of a mind does

not expand with ongoing stream of symbols on input. It is

common knowledge that almost everything is new for a little

child but an adult hardly finds something new that he hasn’t

heard or seen. In order for learnable machine to communicate

with human, it needs to work on similar thought principles.

This thinking is language oriented. If this principle is present,

it can then absorb reality, symbolize it and based on abstraction

it can create concepts in form of internal languages of a mind.
Our position isn’t that supercombinator form is the only

form able to represent internal language of mind. It is but

an algorithmic realization of a possible way not to store

anything multiplicity inside mind but to remember everything.

Our supercombinator form has future applications possibilities

despite the fact that each of cognition steps could look

differently, if someone else performed it. Experiment with

higher order expressions shows us that our future work may

be involved in other forms of grammars.
We do not think the machine mind evolution is based just

on regular expressions, as presented in this paper. But using

this simplest case we were able to introduce the principle

of applicative automata for output communication. Clearly,

machines should be active in communication, i.e. able to

formulate the questions.
Derived language of the machine mind consists of ele-

mentary languages, such that each of them can be fetched

associatively by matching. An interesting structural similarity

between the machine mind and neural brain network can be

noticed. Both mind meta-operations and brain neurons are the

nodes and both mind applications and brain synapses are arcs

of a graph. However, in our opinion, no bidirectional relation

between brain and mind can be deduced from mentioned

structural similarity.

REFERENCES

[1] M. Bačı́ková, J. Porubän, and D. Lakatoš, “Defining domain language
of graphical user interfaces.” in SLATE, 2013, pp. 187–202.

[2] J. Poruban, M. Bacikova, S. Chodarev, and M. Nosal, “Pragmatic model-
driven software development from the viewpoint of a programmer:
Teaching experience,” in Computer Science and Information Systems

(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1647–
1656.

[3] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation based
parser generator,” Computer Science and Information Systems, vol. 7,
no. 2, pp. 291–307, 2010.

[4] J. Kollár and E. Pietriková, “Genetic evolution of programs,” Central

European Journal of Computer Science, vol. 4, no. 3, pp. 160–170,
2014.

[5] F. Javed, M. Mernik, B. R. Bryant, and A. Sprague, “An unsupervised
incremental learning algorithm for domain-specific language develop-
ment,” Applied Artificial Intelligence, vol. 22, no. 7-8, pp. 707–729,
2008.

[6] M. O’neill, C. Ryan, M. Keijzer, and M. Cattolico, “Crossover in
grammatical evolution,” Genetic programming and evolvable machines,
vol. 4, no. 1, pp. 67–93, 2003.

[7] C. Renfrew, Prehistory: the making of the human mind. Random House
Digital, Inc., 2009, vol. 30.

[8] P. Gärdenfors, “Symbolic, conceptual and subconceptual representa-
tions,” in Human and Machine Perception. Springer, 1997, pp. 255–270.

[9] M. Pater and D. E. Popescu, “Multi-level database mining using afopt
data structure and adaptive support constrains.” International Journal of

Computers, Communications & Control, vol. 3, no. 3, 2008.
[10] N. Chomsky, Syntactic structures. Walter de Gruyter, 2002.
[11] J. Kollár, “Formal processing of informal meaning by abstract interpre-

tation,” Smart Digital Futures 2014, vol. 262, p. 122, 2014.
[12] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast and

scalable deep packet inspection with extended finite automata,” in ACM

SIGCOMM Computer Communication Review, vol. 38, no. 4. ACM,
2008, pp. 207–218.

[13] J. L. Peterson, Petri net theory and the modeling of systems. Prentice-
hall Englewood Cliffs (NJ), 1981, vol. 132.

990 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

