
Multi-Agent System Simulation of Indoor Scenarios

Rafael Pax
Universidad Complutense de Madrid

Facultad de Informática,

28040 Madrid, Spain

Email: rpax@ucm.es

Juan Pavón
Universidad Complutense de Madrid

Facultad de Informática,

28040 Madrid, Spain

Email: jpavon@fdi.ucm.es

Abstract—This paper presents a flexible agent decision model
for the simulation of indoor scenarios. There are different kind
of applications with varying requirements, from the typical

emergency evacuation where the physical interaction of crowds
of agents are more relevant, to those that demand more sophisti-
cated agent decision models as when testing smart environment
applications. Existing tools usually focus on one of these issues,
looking for efficiency in the solutions.

The agent decision model in this paper tries to get a balance
between efficiency and flexibility in the specification of the agent
behavior in simple and complex situations. This is applied in a
simulation framework for indoor scenarios, although it could be
extended to other settings.

I. INTRODUCTION

TESTING APPLICATIONS for smart environments is a

difficult task. It requires the installation of sensors and

actuators, the communications and the software for the control

system, and the participation of persons who have to play the

different scenarios. This is costly, both in economic sense as

well as in time. Also, there are some situations that cannot

be tested for practical reasons (e.g., a fire, people accidents).

Furthermore, from the point of view of the developers, who

are used to iterative processes, it is difficult to repeat the tests

if they have to perform these with persons. At least for these

reasons it is interesting to use simulation tools that provide

some support for the development of smart environment ap-

plications.

A relevant aspect to be considered in this kind of tests

is the modelling of the behavior of humans under different

situations. The behavior for these scenarios requires at least the

following: interactions among agents, with the environment,

and the process for decision making.

There are several tools for simulation and design of how

people behave in indoor scenarios (some of them commer-

cial) [1]–[6]. They focus on the design of spaces and 3D

appearance, where the agents are seen more like a crowd that

can be characterized by simple behaviors with a fixed number

of parameters, instead of considering them as individuals.

Although they are appropriate to simulate specific scenarios,

it is important to consider the human and social behavior of

This work has been developed in the context of the project MOSI-AGIL-
CM (with grant S2013/ICE-3019, by the Directorate General for Universities
and Research of CAM) and by the Programa de Financiación de Grupos de
Investigación UCM-Banco Santander with reference GR3/14.

individuals when simulating how people interact with their

environment, including other individuals.

Other works have better addressed the specification of the

agent behavior, such as [7]–[13]. However, they have not

sufficiently taken into account the methodological aspects for

a design process when developing the agents’ behavior. This

is relevant when the simulation framework has to be used for

different purposes and by other developers. In those cases,

there is a need for a clearer agent model, with some support

for the design at a higher level of abstraction that can be easily

translated to an implementation. This is the purpose of MAS-

SIS (Multi-Agent System Simulation of Indoor Scenarios),

a framework for modelling and simulation of the decision-

making process of agents in multiple situations in indoor

scenarios domain.

The rest of the paper is structured as follows. Section II

describes the MASSIS framework. Section III explains how

is modelled the agent’s behavior. Section IV shows a case

study to illustrate the approach. Finally, Section V presents

our conclusions.

II. THE MASSIS FRAMEWORK

MASSIS is an agent-based simulation framework for in-

door scenarios. It has a component-based architecture, built

on open-source software components. An overview of the

framework is shown in Figure 1.

Graphical modelling of the indoor environment is supported

by SweetHome3D [14]. This is a well known package that

is used to model all components involved in the simulation

environment, such as walls, doors, stairs, people, etc. (see

Fig. 2). Sweet Home 3D allows to design buildings with

enough realism, in a relatively short time. It also allows the

integration of extensions, providing significant flexibility when

adding new features. MASSIS adds a set of plugins for this

application, which lets the user to specify the characteristics

of the elements of the building that will act as agents. In the

case of people, can be weight, speed, inherent characteristics

of the person (fear, courage, etc.) and link to their behavior. It

is also possible to specify elements of the environment, such

as sensors and actuators, which will have a reactive behavior.

When the building is created, the SweetHome3D repre-

sentation of the building is transformed inside the simula-

tion engine, which adapts it to the internal representation

of MASSIS. One of the important issues when modeling

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1757–1763

DOI: 10.15439/2015F213

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1757

Fig. 1. MASSIS framework overview

Fig. 2. Screenshot of the MASSIS’s 3D editor, based on SweetHome3D.

indoor scenarios is the accuracy of the representation. Inside

a building it is very common to have various elements at

very small distances. If the elements of space are assigned

to cells, the accuracy is reduced considerably. To solve this

problem, MASSIS represents the elements in the building

without discretizing the space; each element is represented as

a polygon. For efficient computation of the locations of agents,

data structures appropriate to this representation are used, such

as different models of quadtree and polygon meshes. These

data structures are used both for locating agents, perception

Fig. 3. Standard schematic display of MASSIS, showing bodies radio, vision
areas and paths (black circles green arrows, yellow polygons and yellow lines,
respectively). The green lines are doors, and the red and green squares are
stairs.

Fig. 4. Example of an user-defined schematic display: crowd density.

and pathfinding.

As simulation engine, MASSIS uses MASON [15], a

lightweight multi-purpose agent-based simulation library. MA-

SON has been chosen because it provides a good support for

agent-based simulation platform, with well proven efficiency.

Also, the clear separation of the simulation core and the GUI,

allows MASSIS to use the MASON simulation core, while

using its own display system.

The agents’ behavior is controlled with the Pogamut’s [16]

POSH engine. (See Section III for more details)

All the changes made in the environment are reflected in real

time by MASSIS’ 3D (Fig. 9) and 2D (Fig. 3) displays, and

can be logged in JSON format (Listing. 1), as a single zipped

file or in a SQLite database for further analysis. Although 3D

display is more realistic, the 2D view is useful for analysis and

debugging. Also, the 2D visualization API allows the creation

of user-defined layers (Fig. 4).

Once a simulation is performed, the exported data can be

used to playback all events that have occurred during the

execution of the simulation, i.e., the agents will behave in

the same way they did during the simulation.

III. AGENT DECISION MODEL IN MASSIS

The aspects of human behavior that are of interest for

modelling indoor scenarios in the MASSIS framework are the

mechanisms that humans use to deal with problems reasoning

1758 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

{

"velocity": { "x": 32,"y": 58},

"visionRadio": 300,

"maxforce": 10,"maxspeed": 15,

"properties": {"steering.separation":

70,...},

"locationState":{

"angle": 0.7853982,"floorId": 8,

"centerX": 4975.2285,"centerY":

4108.2695,...},

"id": 3673

}

Listing 1. An agent’s saved state in JSON format.

Fig. 5. Seek and Flee Steering behavior [17].

from context, making use of collective intelligence, and how

this intelligence is used in problem solving.

Each agent in MASSIS has its own behavior, which is

computed at a high-level (reactive plans) and at a low level

(speed, position, angles, density, etc.)

When the high level decides what to do next, the action

is executed by the low-level module, which carries all the

necessary operations (movement, animation, etc.) Both high-

level and low-level behaviors are affected by the state of the

agent, altering the decision making process (e.g., a scared

agent may choose a different route to reach a target, probably a

longer one) and the action execution (it will be moving faster).

A. Low-level behavior

The low-level module deals with the perception of the

environment and a set of basic behaviors for interacting with

it. These behaviors are mostly a set of steering behaviors [17],

which control the most basic movement component of the

agent.

Using a simple force model, steering behaviors produce

smooth, life-like movements, providing agents the ability to

navigate around the environment in a realistic manner. The

forces applied to the agent can be combined in order to

create more complex behaviors (e.g. collision avoidance, path-

following, leader following, queuing, etc.). Fig. 5 shows the

forces present in the basic Seek and Flee behavior.

Fig. 6. MASSIS ’s human behavior agent model.

B. High-level behavior

The high-level behavior deals with decision making, learn-

ing and communications with other agents and makes deci-

sions based on the knowledge of the environment, which is

provided by the low-level module.

The architecture of this behavior follows the BOD (Behavior

Oriented Design) method [18]. This method for building

agents combines the advantages of Behavior Based AI [19],

[20] and object-oriented design approaches.

In MASSIS this is applied to facilitate the design of agents

that are capable of running in parallel and of generating a

behavior that can satisfy multiple objectives that may conflict

with each other.

The difficulty of making an autonomous agent is that many

of the goals that the agent wants to be accomplished must be

carried out at the same time. An agent may have the desire

to be loved, be promoted at work and having breakfast in the

morning.
Additionally, these goals must be achieved in an unpre-

dictable environment, which can complicate or even make

easier the way in which the agent tries to accomplish its goals.

Developing a system of agents under BOD involves dividing

the implementation into two different parts:

1) A library of Behavior modules. They consist of a set

of classes representing a set of modules for perception,

action and learning. These are primitives, actions and

senses that can be called from the mechanism of action

selection. They also provide a place where certain states

and knowledge can be stored in order to perform those

actions, and they contain code that describes any sense

that needs to be carried out to acquire that state and

JUAN PAVON, RAFAEL PAX: MULTI-AGENT SYSTEM SIMULATION OF INDOOR SCENARIOS 1759

public ActionResult run() {

boolean isInLoc;

SimulationObject target=getTarget();

Location tLoc=target.getLocation();

isInLoc=agent.approachTo(tLoc);

if (isInLoc) {

return ActionResult.RUNNING_ONCE;

}

else {

return ActionResult.FINISHED;

}

}

Listing 2. Example of the primitive action Go to target

(C search-for-object

vars($type, $storeFlag="IS_NEAR_TARGET")

(elements

((has-target (trigger ((HasTarget))) approach

))

((is-object-visible

(trigger ((SeesElement($attr=$type,$value=1)

true ==)))

setTarget($target="?LAST_SEEN_OBJ")))

((search ExploreAction)))

)

Listing 3. POSH code of parametrized competence search-for-object.
ExploreAction is a primitive action, approach is a competence and words
preceded by $ are variables.

knowledge. In brief, they determine how to do some-

thing. These senses and actions are created in the native

language for the problem space (in the case of MASSIS,

Java; see for instance the code in the listing 2)

2) POSH Dynamic action selection scripts. These allow

to determine priorities between modules. The BOD

architecture uses a POSH dynamic plan when an action

should be carried out.

A POSH(Parallel-rooted, Ordered Slip-stack Hierarchi-

cal) plan is a prioritized set of conditions and the related

actions to be performed when the conditions have been

met.

It consists of drive collections, competences, and action

patterns.

• Drive collections are the root of every POSH plan.

On the action selection step, the drive collections

select which goal the agent must try to accomplish.

They can be seen as a set of conditional rules, that

are evaluated from highest to lowest priority.

Every time the condition of the drive collection with

highest priority is satisfied (a higher rule interrupts

a lower one), the POSH engine executes the corre-

sponding action pattern or competence.

• Competences are a set of nested if-then conditional

trees, which can be reused several times inside the

reactive plan. They differ from the drive collections

in the way they are executed; rules they do not

interrupt each other.

Fig. 7. Mental state modification in a POSH plan (yellow), triggered by the
sense ”Message Received” (green) on the Drive Element ”hears-alarm”(blue)

Fig. 8. Propagation of the value ”door” in the parametrized competence of
searching an object. Note: Some elements were omitted for clarity.

• Action Patterns are simple sequences of actions.

Although they are not very flexible, they provide

a layer of abstraction very useful when grouping

actions.

MASSIS encourages the use of variables and the agent’s

Mental State in POSH plans. Mental States are intended for

representing the knowledge of the agent about its environment

as a set of key-value pairs, but can be used for any other

purpose, such as storing control variables in order manage the

plan execution (see Fig. 7).

Also, as MASSIS uses the Pogamut’s extension of the

POSH language, actions, senses, action patterns and com-

petences can be parametrized. This provides considerable

flexibility, allowing the reuse of elements in the reactive plans

(see Fig. 8 and Listing 3).

1760 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

IV. CASE STUDY: EMERGENCY SIMULATION

Public buildings have some protocols for dealing with

emergency situations, which may involve, for instance, evac-

uation of the building. Testing these protocols requires some

planning and cost. Simulation can help to this task. This case

study addresses this kind of situation for the building of the

Facultad de Informática at UCM. In this scenario, a teacher is

responsible for guiding students safely to the building’s exit

in case of emergency. For illustrating purposes, this is the

protocol for a teacher in an emergency situation:

When the alarm sounds the teacher of the group

should go to the classroom door and order the

students to close the windows if there is a fire. If

instead of a fire there is a bomb threat, windows

and doors should be left open. Students will leave the

classroom through the door and they will be waiting

for the teacher outside. The teacher will be the last

person to leave the classroom. Once there is nobody

in the classroom, the teacher will place a chair at

the entrance of it,as an indication that the room has

been evacuated entirely. Then the teacher will guide

students toward the nearest exit.

Modelling the teacher agent involves the following basic

skills:

• Hearing and vision capabilities.

• Ability to communicate with other agents by voice.

• Movement.

• Interaction with objects in the environment: Taking an

object, carrying it , dropping it.

These skills are candidates to be primitive actions and senses.

These primitives, such as the movement one (Listing 2), are

used by the reactive plan as Triggers of Drive Elements, com-

ponents of Action Patterns, or they form part of one or more

Competences. Figure 10 shows part of the teacher’s reactive

plan. Figures 9 and 11 show the initial state of the simulation.

When the alarm sounds, and the teacher goes to the door

(using go-to-nearest-door competence). Figure 12 illustrates

the moment when the teacher tells the students that they

must close the windows (act-windows competence). When the

windows are closed, and the students outside (Fig. 13), the

teacher takes the first chair he sees and he moves it to the

Fig. 9. 3D view of the simulation

Fig. 10. Partial overview of the Case Study POSH plan

JUAN PAVON, RAFAEL PAX: MULTI-AGENT SYSTEM SIMULATION OF INDOOR SCENARIOS 1761

Fig. 13. Teacher going to take the nearest chair.

Fig. 14. The students follow the teacher for escaping from the building.

Fig. 11. Teacher going to the door.

Fig. 12. The students receive the ”close windows” message, and they proceed
to close the windows.

door. After that, the teacher guides his students to the nearest

exit (cf. Fig. 14).

V. CONCLUSION AND FUTURE WORK

This paper has presented MASSIS, a multiagent-based

simulation framework that supports the decision making pro-

cess of humans when solving problems. Agent behavior is

structured in low-level and high-level behavior components,

extending Pogamut’s POSH implementation model, with the

addition of features that facilitate the separation of decision-

making process and low level actions. MASSIS provides a rich

set of low-level behavior components for the simulation of

indoor scenarios. This has required to MASSIS the extension

of the SweetHome3D environment with plugins for linking

agent’s behavior in the simulation. In order to apply MASSIS

to other kind of scenarios (e.g., a city), new low-level behav-

ior components should be implemented and integrated with

another graphical design package that supports the definition

of the new environment. In this sense, MASSIS can be easily

extended. MASSIS provides as well a rich log capability,

which can be the basis for further analysis of the scenarios.

The integration of existing analysis tools is one of the most

relevant issues for the next version ofthis framework.

ACKNOWLEDGMENT

A special thanks to P.R. Hijas for her comments that greatly

improved the development of the MASSIS’ framework.

REFERENCES

[1] Legion, “Science in Motion,” http://www.legion.com, [Online; accessed
Mar. 2015].

[2] M. Owen, E. R. Galea, and P. J. Lawrence, “The exodus evacuation
model applied to building evacuation scenarios,” Journal of Fire Pro-

tection Engineering, vol. 8, no. 2, pp. 65–84, 1996.
[3] PedGo, “TraffGo HT.” http://www.traffgo-ht.com/de/pedestrians/

products/pedgo/index.html, 2006, [Online; accessed Mar. 2015].
[4] M. MacDonald, “STEPS,” http://www.steps.mottmac.com/, 2009, [On-

line; accessed Mar. 2015].
[5] T. Engineering, “Pathfinder,” http://www.thunderheadeng.com/

pathfinder/, 2006, [Online; accessed Mar. 2015].
[6] Golaem, “Golaem Crowd: Artist-Driven Crowd Simulation,” http:

//golaem.com/content/products/golaem-crowd/overview, 2011, [Online;
accessed Mar. 2015].

[7] X. Pan, C. S. Han, K. Dauber, and K. H. Law, “A multi-agent based
framework for the simulation of human and social behaviors during
emergency evacuations,” Ai & Society, vol. 22, no. 2, pp. 113–132,
2007.

[8] L. Saı̂fi, A. Boubetra, and F. Nouioua, “Approaches to modeling the emo-
tional aspects of a crowd,” in Modelling and Simulation (EUROSIM),

2013 8th EUROSIM Congress on. IEEE, 2013, pp. 151–154.
[9] M. Software, “Simulating Life,” http://www.massivesoftware.com/,

2002, [Online; accessed Mar. 2015].
[10] S. Wu and Q. Sun, “Computer simulation of leadership, consensus

decision making and collective behaviour in humans,” PloS one, vol. 9,
no. 1, 2014.

[11] A. C. Bicharra, N. Sánchez-Pi, L. Correia, and J. M. Molina, “Multi-
agent simulations for emergency situations in an airport scenario,”
ADCAIJ: Advances in Distributed Computing and Artificial Intelligence

Journal, vol. 1, no. 3, pp. 69–73, 2013.

1762 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

[12] T. Bosse, M. Hoogendoorn, M. C. Klein, J. Treur, C. N. Van Der Wal,
and A. Van Wissen, “Modelling collective decision making in groups and
crowds: Integrating social contagion and interacting emotions, beliefs
and intentions,” Autonomous Agents and Multi-Agent Systems, vol. 27,
no. 1, pp. 52–84, 2013.

[13] R. Hocevar, F. Marson, V. Cassol, H. Braun, R. Bidarra, and S. R. Musse,
“From their environment to their behavior: a procedural approach to
model groups of virtual agents,” in Intelligent Virtual Agents. Springer,
2012, pp. 370–376.

[14] E. PUYBARET, “Sweet Home 3D,” http://www.sweethome3d.com/,
2005, [Online; accessed Mar. 2015].

[15] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan, “Mason:
A multiagent simulation environment,” Simulation, vol. 81, no. 7, pp.
517–527, 2005.

[16] J. Gemrot, R. Kadlec, M. Bı́da, O. Burkert, R. Pı́bil, J. Havlı́ček,
L. Zemčák, J. Šimlovič, R. Vansa, M. Štolba et al., “Pogamut 3 can
assist developers in building ai (not only) for their videogame agents,”
Agents for Games and Simulations, pp. 1–15, 2009.

[17] C. W. Reynolds, “Steering behaviors for autonomous characters,” pp.
763–782, 1999.

[18] J. J. Bryson, “Intelligence by design: principles of modularity and
coordination for engineering complex adaptive agents,” 2001.

[19] R. A. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[20] R. A. Brooks., “Intelligence without reason,” The artificial life route to

artificial intelligence: Building embodied, situated agents, pp. 25–81,
1995.

JUAN PAVON, RAFAEL PAX: MULTI-AGENT SYSTEM SIMULATION OF INDOOR SCENARIOS 1763

