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Abstract—Equality is fundamental notion of logic and math-
ematics as a whole. If computer-supported formalization of
knowledge is taken into account, sooner or later one should
precisely declare the intended meaning/interpretation of the
primitive predicate symbol of equality. In the paper we draw
some issues how computerized proof-assistants can deal with this
notion, and at the same time, we propose solutions, which are
not contradictory with mathematical tradition and readability of
source code. Our discussion is illustrated with examples taken
from the implementation of the MIZAR system.

I. INTRODUCTION

T
HE ROLE of equality in mathematics is indispensable.

Linear equations represented and accompanied by graphs

seem to be one of the primary mathematical exercises for

children, where also recognizing which objects are identical is

important. Finding solutions for systems of equations [2], for-

mulas for calculating integrals, values of various mathematical

functions, etc., is the basic mathematical activity all engineers

are familiar with. Hence it is not surprising that equational

provers were one of the primary computerized tools developed

for use by mathematicians, after offering simple numerical

tools and methods – in fact also based on equality since they

essentially handle sequences of equalities.

As a mathematical proof, a proof in a computerized system

is just a sequence of proof steps, we could expect that it can

be discovered automatically within a reasonable universe of

discourse. Typically, a proof search explodes exponentially

if the universe and/or the method is not properly chosen.

Essentially the process of finding an equational proof is fairly

simple. Given sets of equalities can be merged to define

a substitution operation by iteration. E.g., in cases when the

equalities are between terms and variables, or imply such

equalities that can be derived, the substitution operation is

the result of (1) (simultaneous) substitution of terms for

corresponding variables, according to the given equalities, and

(2) iterating this process on results. The iteration step (2) can

lead to the target or fail if sooner or later the equalities became

too complex to handle. The idea is to have a handy set of

underlying techniques for machine learning and to restrict the

field of expansions.

The results are always tempting, as after identifying two

objects as equal – no matter how different they seem to

have been – all knowledge about one of them applies to

the other also. Moreover, from the moment of identifying

objects, it does not matter with which of them we are dealing,

properties discovered for one of them automatically carry

over to the other one. Thus, identifying objects as equal can

make certain work (e.g., in some non-procedural or extensional

work) just easier. Depending on the mathematical context or

computational environment, the use of the quality predicate

may not be so simple as they look, and saying that two objects

are equal we often mean certain level of abstraction which is

the core of mathematics.

Informally the notion of equality is clear, but following [19]

we cannot be sure about that:

... when it comes to a crisis of rigorous argument, the

open secret is that, for the most part, mathematicians

who are not focussed on the architecture of formal

systems per se, mathematicians who are consumers

rather than providers, somehow achieve a sense of

utterly firm conviction in their mathematical doings,

without actually going through the exercise of trans-

lating their particular argumentation into a brand-

name formal system.

Developers of computerized proof-assistants must be pre-

pared for such exercises, furthermore – they have to provide

tools for solving them. Our paper is a result of some thoughts

presented in [7] and [3]. However, we are focusing not on

computer algebra systems as in [7], and also not on the role

of equality in mathematical education (although mathematical

proof-assistants are definitely useful in this area). We started

from the place where [7] posed some important questions:

the area where automated reasoning and computer algebra

can interact, and we went ahead of discussions, focusing

on real-life implementations of the theoretical ideas: how

the automatic proof-checker can cope with the predicate of

mathematical equality and corresponding predicate symbol of

equality. For our work in this paper, we have chosen MIZAR

proof-checker described in [1]. The MIZAR system is much

closer to automated theorem prover, although some basic

elements of computer algebra are also implemented. In this

sense this discussion is a kind of a counterpart of Davenport’s

research from the viewpoint of MIZAR proof-checker.

Essentially, all with the exception of the very basic MIZAR

examples are of our authorship: the first author is mainly

responsible for the formalization of lattice theory, rough and

fuzzy sets [26], [37], the second author’s work is on hard-

coding of new MIZAR constructions (e.g. reductions), while

the third author delivered examples from abstract algebra. We
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hope then that our paper is much more than a theoretic dis-

cussion on selected issues on the usage of equality predicates.

The structure of the paper is as follows. At the beginning we

draw some initial remarks on the properties of the equality and

show how one can solve equational problems with the help of

a computer, not necessarily in a fully readable way. Then we

focus on the MIZAR system, explaining the implementation

of the equality both from purely logical point of view, and

extensionally, in set theory (including two extensions: rough

and fuzzy sets). Section VI starts the discussion on specific

implementation issues in MIZAR: analysis of terms, properties,

and built-in computations. In Section XII, based on the con-

crete example, we show how the discussed techniques work to

find the compromise between readability and writability, and

then we present the statistics of the use of described construc-

tions in MIZAR Mathematical Library (MML). The final part

is devoted to the discussion of the structural understanding of

the equality, where injections and isomorphisms are typically

used by mathematicians.

II. EQUATIONAL CHARACTERIZATION

The importance of equational characterization is obvious –

varieties are defined in this way. Among equationally defined

classes of algebras, we can find all well-known problems

solved with the help of powerful provers, with the Robbins

problem [21] (the alternative set of axioms for Boolean alge-

bras) and its solution by EQP/OTTER as the most prominent

example. And even if Robbins problem’s importance for

Boolean algebras is not crucial, this specific set of axioms

is quite interesting. E.g., we can point out many problems in

lattice theory (presented as short equational bases) solved as

a by-product of this computerized system achievement [9].

Absolute equality has the following properties defining it

as equivalence relation between the objects in the considered

universe of discourse (i.e., domain of objects):

• reflexivity,

• symmetry, and

• transitivity.

Furthermore, the absolute equality should satisfy the so-

called Leibniz’s Law (or identity of indiscernibles), which is

a kind of closure with respect to properties or substitution

property.

Two objects x and y are equal if for every predicate

P we have P (x) if and only if P (y), that is, x and

y are equal if they cannot be distinguished using

predicates.

This is an intuitively clear definition, however hard to check,

in particular in proof assistants – one can ask which universe of

discourse should be taken. On the other hand, in some sense,

the equality can be treated just like ordinary predicate.

III. AUTOMATION – THE INITIAL APPROACH

If we are not aware of all fears of the precise meaning

and all shades of mathematical equality, we can see its use

with computer knowledge systems very flawlessly. We can

use equational provers e.g. in the area of lattice theory (as

EQP/Prover9 was very successful in this domain), which

gives representation of various mathematical areas – topology,

algebra, logic, geometry, etc.

Remembering that lattices are structures

〈L,⊔,⊓〉

where both binary operations ⊔ and ⊓ are commutative,

associative, and satisfy the absorption laws, given as axioms,

we can obtain

a ⊔ a = a

as a result of the six axioms. Essentially, the easy proof

(sometimes credited to Dedekind) doesn’t need them all,

although caused some confusion (e.g., early versions of lattice

axiomatics included both idempotences as additional axioms).

We can easily obtain a proof using any equational prover. Let

us stick to our favourite Prover9 – the direct successor of

OTTER:

formulas(assumptions).

x ^ y = y ^ x.

x ^ (y ^ z) = (x ^ y) ^ z.

x ^ (x v y) = x.

x v y = y v x.

x v (y v z) = (x v y) v z.

x v (x ^ y) = x.

end_of_list.

pushing all the axioms into the assumptions and the desired

equality into the goals:

formulas(goals).

x v x = x.

end_of_list.

and after a while one can get the answer, which is maybe not

very readable for a human, but definitely assures us that the

proven formula is true.

1 x v x = x. [goal].

5 x ^ (x v y) = x. [assumption].

9 x v (x ^ y) = x. [assumption].

10 c1 v c1 != c1. [deny(1)].

22 x v x = x. [para(5(a,1),9(a,1,2))].

23 $F. [resolve(22,a,10,a)].

Even for the reader unfamiliar with Prover9 syntax [20]

it is clear that only two axioms are really needed. Bigger

proofs are not that readable and additional transformations

are useful to show the essence of the proof. In the column

on the right hand side in square braces one can note the so-

called tactics used in the proof search – among assumptions

and goals, deny denotes the denial of the goal (Prover9 uses

proofs by contradiction, then paramodulation and resolution is

done). Essentially, the more readable counterpart of the proof

given by Prover9 is the following proof object which contains

concrete proof steps.

(5 (input) (= (meet v0 (v v0 v1)) v0) NIL)

(9 (input) (= (v v0 (meet v0 v1)) v0) NIL)

(10 (input) (not (= (v (c1) (c1)) (c1))) NIL)

(24 (instantiate 5 ((v0 . v100)))
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(= (meet v100 (v v100 v1)) v100) NIL)

(25 (instantiate 9 ((v0 . v100)

(v1 . (v v100 v1))))

(= (v v100 (meet v100 (v v100 v1))) v100)

NIL)

(26 (paramod 24 (1) 25 (1 2))

(= (v v100 v100) v100) NIL)

(22 (instantiate 26 ((v100 . v0)))

(= (v v0 v0) v0) NIL)

(27 (instantiate 22 ((v0 . (c1))))

(= (v (c1) (c1)) (c1)) NIL)

(23 (resolve 27 () 10 ()) false NIL)

IV. THE MIZAR SYSTEM

Formalization of mathematics is a practise of mathematics,

or specific mathematical activity, by using a formal language

suitable for computerized systems [36]. Here, we mean that

a practise of mathematics means acts of proving theorems

and correctness of definitions according to classical logic and

Zermelo-Fraenkel set theory. Such activity, obviously without

the use of computers, is dated back to Peano and Bourbaki,

and typically, all areas of mathematics use specific, more-or-

less formal languages. Computer certification of mathematics

can be useful for many reasons – computers open new pos-

sibilities of information analysis and exchange, they can help

to discover new proofs or to shed some light on approaches

from various perspectives. With the help of such automated

proof assistants one can observe deeper connections between

various areas of mathematics.

Even if formalization of mathematics (even outside any

computerized assistants) could potentially depend only on

specific logical layer, set-theoretical counterpart is often, or

typically, indispensable in practical applications (of course,

one can imagine expressing e.g. Zermelo theorem in terms of

pure predicates as Rasiowa and Sikorski mentioned in their

The Mathematics of Metamathematics [30], but we aim at

practically useful programs). Essentially then, alongside with

logical connectives, e.g. equivalence, a mathematical system

can include equality relation or predicate. Its characteristic

properties are those commonly accepted in equivalential logics

– reflexivity, symmetry, and transitivity, as we mentioned

before.

As the testbed of our considerations we have chosen the

MIZAR system, developed by the team we are members

of. It was created in the early 1970s in order to assist

mathematicians in their work. Now the system consist of

three main parts: (1) a special formal language, in which

mathematics can be expressed. This language is close to the

vernacular used by human mathematician [14]. When used,

the language expressions can be automatically checked for

grammatical correctness; (2) the software, which verifies the

correctness of formalized knowledge, in the classical logical

framework; and last, but not least, (3) a huge collection of

certified mathematical knowledge – the MML.

Here, we can quote the source written in MIZAR file

HIDDEN containing basic built-in properties of primitives

– one can see reflexivity and symmetry for the equality.

Unfortunately, there is no transitivity property implemented

for predicates in MIZAR, hence it was hard-coded by the

developers of the system.

definition let x,y be object;

pred x = y;

reflexivity;

symmetry;

end;

In fact, as HIDDEN is one of the two axiomatic files in the

MML (the second one is TARSKI, which will be mentioned

in the next section), there are no proofs for these properties.

The formal language in our examples with MIZAR is pretty

close to the every-day language in ordinary mathematics. For

precise syntax details, we refer to [1].

V. SET-THEORETIC EQUALITY AND ITS EXTENSIONS

If we have primitives for chosen set theory, namely the

notion of a set and a primitive set-theoretic membership

predicate ∈, we can express the equality of sets in terms of ∈
and logical connectives (including quantifiers). Clasically, it is

done via extensionality.

∀X∀Y (X = Y ⇔ (∀x(x ∈ X ⇔ x ∈ Y )))

theorem :: TARSKI:2 :: Extensionality

(for x being object holds

x in X iff x in Y) implies

X = Y;

The implication in the opposite direction is provided by

the implementation of the system. But obviously, this equality

predicate is by no means new one. Of course, the above

theorem can be read as the form of Leibniz’s Law.

Although the notion of the equality of objects is quite con-

crete, its specific realizations are strongly dependent on how

the object is mathematically defined. An illustrative example

could be the notion of a rough set [26] treated formally in

[8]. On the one hand, rough sets can be defined as the classes

of equivalence with respect to a certain relation (it’s really

meaningless here that numerous generalizations are described

in the literature, and partitions are hardly used nowadays in

real-life applications of rough set theory). In such approach,

two rough sets are equal if the families of subsets are equal

(taken componentwise). Thus, we can define the alternative

rough equality as below. It is coherent with the equality of

ordered pairs, but not necessarily with families of subsets.

definition

let A be Approximation_Space,

X, Y be Subset of A;

pred X _=^ Y means

:: ROUGHS_1:def 16

LAp X = LAp Y & UAp X = UAp Y;

reflexivity;

symmetry;

end;

Note that the symbol of the rough equality predicate is not

the ordinary =, but _=^ denoting the equality of lower and up-

per approximations. Earlier, we introduced similar predicates

in cases of single approximations only [13], [10].
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One can consider another approach, credited to Iwiński

[16] – rough sets can be viewed as a pair of approximation

operators – the lower and the upper one. Within a fixed

approximation space, two sets are equal if both approximations

are equal (from the very foundational part we can quote

Kuratowski’s definition of an ordered pair as

(a, b) = {{a, b}, {a}}),

but majority of mathematicians explore an usual equality of

underlying elements.

Here we only mention that even if rough and fuzzy sets have

much in common, the equality of fuzzy sets in MIZAR is not

that harmless. Because in MML fuzzy sets are correspond-

ing membership functions, their equality is just set-theoretic

equality. For formal approach to fuzzy sets, see [11].

VI. EQUATIONAL CALCULUS IN MIZAR

Equational calculus is mainly performed by a dedicated

module EQUALIZER which computes the congruence closure

over the collection of equalities accessible at a given inference,

where the congruence closure of a relation R defined on

a set A is the minimal congruence relation (a relation that

is simultaneously reflexive, symmetric, transitive, and com-

patible) containing the original relation R. In other words, R
is congruence iff it is an equivalence relation satisfying

∀x1,x2,y1,y2∈A(x1, x2) ∈ R ⇔ (y1, y2) ∈ R.

The computed congruence closure is used by the MIZAR

CHECKER to detect a possible contradiction and to refute the

inference (MIZAR is a disprover; by using a technique similar

to adding the negation of the goal to the list of available

premises can be observed in line 10 of the Prover9 proof in

Section III), which can happen if one of the following cases

holds

• there are two premises of the form P [x] and ¬P [y] and

x, y are congruent, or

• there is a premise of the form x 6= y when x, y are

congruent;

where two elements x and y are congruent, if the pair (x, y)
belongs to the congruence closure.

There are many possible sources of equalities, which can

be taken into account during the analysis of a given inference.

They can be grouped into the following categories:

• occurring explicitly in a given inference,

• term expansions (equals),

• properties,

• term reductions,

• term identifications,

• arithmetic,

• type changing (reconsider),

• others, e.g. processing structures.

Some of them are of very basic character (e.g. arithmetic),

two last ones are extremely dependent on the MIZAR language

specification of objects (in this case, structures and type chang-

ing statements), but the remaining five are of very general

character, and we can easily remap them with the ordinary

human reasoning.

The following is an example of a very basic case of

equalities, which are stated in the statement to be proved, e.g.:

theorem

for a,b being Element of INT.Ring

for c,d being Integer st a = c & b = d

holds a + b = c + d;

In the following section(s), we give examples of equalities

for the listed categories, at least for those that are not-so-

intuitively clear.

VII. TERM EXPANSIONS AND TERM REDUCTIONS

There are two MIZAR strategies based on substitutions –

they act dually in a sense that one of them increases the length

of the formula (measured by the number of characters), the

other goes in the opposite direction preventing a little bit from

uncontrolled growth of terms.

A. Expansions

One of the methods for defining new functors can use the

following syntax:

definition

let x1 be θ1, x2 be θ2, . . . , xn be θn;
func ⊗ (x1, x2, . . . , xn) -> θ equals :ident:

τ(x1, x2, . . . , xn);
coherence

proof

thus τ(x1, x2, . . . , xn) is θ;
end;

end;

which introduces a new functor ⊗(x1, x2, . . . , xn) which is

equal to τ(x1, x2, . . . , xn). Such definitions, whenever terms

⊗(x1, x2, . . . , xn) occur in an inference, allow the VERIFIER

to generate equalities

⊗(x1, x2, . . . , xn) = τ(x1, x2, . . . , xn).

For example,

definition

let x,y be Complex;

func x - y -> Complex equals

x + (-y);

coherence;

end;

causes that all instantiations of terms x-y are expanded to

x+(-y). As a gain of such expansions, for example, the

equality a-b-c = a+(-b-c) is a direct consequence of

associativity of addition. It holds because the term a-b is ex-

panded to the term a+(-b), and the term a-b-c is expanded

to the term a-b+(-c), and both give a+(-b)+(-c). On

the other hand, the term -b-c is expanded to the term

-b+(-c), which creates the term a+(-b+(-c)), that is,

the associative form of a+(-b)+(-c). An important feature

of this kind of term expansions is that it is “a one-way”

expansion, in the sense, that terms ⊗(x1, x2, . . . , xn) are

48 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



expanded to τ(x1, x2, . . . , xn), but not vice-versa. The reason

of such treatment is to avoid ambiguity of expansions and

over-expanding terms.

B. Term Reductions

Another method of imposing the EQUALIZER to generate

extra equalities based on terms occurring in processed infer-

ences are term reductions, presented in [17], with the following

syntax:

registration

let x1 be θ1, x2 be θ2, . . . , xn be θn;
reduce τ1(x1, x2, . . . , xn) to τ2(x1, x2, . . . , xn);
reducibility

proof

thus τ1(x1, x2, . . . , xn) = τ2(x1, x2, . . . , xn);
end;

end;

Term reductions can be used to simplify terms to their

proper parts of terms (sub-terms). This simplification re-

lies on matching terms existing in the processed inference

with left-side terms of all accessible reductions, and when-

ever the EQUALIZER meets an instantiation σ of the term

τ1(x1, x2, . . . , xn), it makes σ equal to its sub-term equivalent

to τ2(x1, x2, . . . , xn).

The restriction about simplifying terms to their proper sub-

terms, not to any arbitrarily chosen terms, is to fulfill the

general rule established for the system, that the EQUALIZER

does not generate extra terms and does not expand the universe

of discourse.

An example of a possible reduction could be reducing the

first power of a complex number to the number (c is a sub-

term of c|^1).

example

registration

let c be Complex;

reduce c|^1 to c;

reducibility;

end;

Reducing the zero power of a number to one is not allowed

(1 is not a sub-term of c|^0) – as in the source code below

– as a result the following error will be output in a comment

(“::” starts a comment).

prohibited use of a reduction

registration

let c be Complex;

reduce c|^0 to 1;

::> *257

reducibility;

end;

::> 257: Right term must be

::> a sub-term of the left term

Reductions are recently implemented and their impact on

the library is not very big yet. First of all, we can imagine

even very complicated reductions, which can be useful in very

exceptional cases. The main aim is to reflect human reasoning

rather than to force unusual calculations, even if they are

straightforward for the machine.

VIII. PROPERTIES

Properties in MIZAR are special formulas, which can be

registered while defining functors, see [1], [23]. MIZAR sup-

ports involutiveness and projectivity, for unary

operations, and commutativity and idempotence, for

binary operations. If a property is registered for some functor,

the EQUALIZER processes appropriate equalities adequate to

the property, where for involutiveness the equality is

f(f(x)) = x,

for projectivity it is

f(f(x)) = f(x),

for commutativity it is

f(x, y) = f(y, x),

and for idempotence

f(x, x) = x.

IX. TERM IDENTIFICATIONS

In mathematics, there are different theories, which at some

of their parts are about the same objects. For example, when

one considers complex numbers and extended real numbers

(reals augmented by +∞ and −∞) and discusses basic

operations on such numbers (like addition, subtraction, etc.),

it can be quickly recognized that if the numbers are reals,

the results of these operations are equal to each other. That is,

there is no difference, if one adds reals in the sense of complex

numbers or in the sense of extended real numbers. Therefore,

pairs of such operations could be identified on appropriate sets

of arguments.

MIZAR provides a special construction for such identifica-

tions [4] with syntax:

registration

let x1 be θ1, x2 be θ2, . . . , xn be θn;
let y1 be Ξ1, y2 be Ξ2, . . . , yn be Ξn;

identify τ1(x1, x2, . . . , xn) with τ2(y1, y2, . . . , yn)
when x1 = y1, x2 = y2, . . ., xn = yn;
compatibility

proof

thus x1 = y1 & x2 = y2 & . . . & xn = yn
implies τ1(x1, x2, . . . , xn) = τ2(y1, y2, . . . , yn);

end;

end;

and, whenever the EQUALIZER meets an instantiation σ of the

term τ1(x1, x2, . . . , xn), it makes σ equal to the appropriate
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instantiation of τ2(y1, y2, . . . , yn). A gain of using such iden-

tifications is that all facts proven about τ2(y1, y2, . . . , yn) are

applicable for τ1(x1, x2, . . . , xn), as well.
An example of identification taken from the MIZAR MATH-

EMATICAL LIBRARY could be the lattice of real numbers

with operations min, max as the infimum and supremum,

respectively, of two elements of the lattice, see [5].

registration

let a,b be Element of Real_Lattice;

identify a "\/" b with max(a,b);

compatibility;

identify a "/\" b with min(a,b);

compatibility;

end;

By having such identifications declared, i.e., registered,

as registration, reasonings about the lattice oper-

ations can automatically use facts about real numbers.

For example, the associativity of the supremum is a di-

rect consequence of the associativity of the maximum:

max(max(a,b),c) = max(a,max(b,c))

A less obvious example of such term identifications is con-

nection of lower and upper approximations of rough sets with

the topological interior and topological closure, respectively,

see [12]. The problem is that the topological closure coincides

with the notion of the upper approximation (both possess

Kuratowski closure’s properties), but topological spaces and

approximation spaces are formally distinct structures. We can

lift both into some other common one.

registration

let T be with_equivalence

naturally_generated non empty TopRelStr;

let A be Subset of T;

identify LAp A with Int A;

identify UAp A with Cl A;

end;

The latter registration would allow for mixed use of the

lower approximation instead of interior operator and vice

versa. Here the mathematician’s understanding of the identifi-

cation is as isomorphism (or an analogon) instead of equality.

X. BUILT-IN COMPUTATIONS

Another source of equalities processed by the EQUALIZER

are special built-in procedures for processing selected objects.

Generating equalities by these routines is controlled by the

environment directive requirements, see [23]. In our interest

are two procedures dealing with boolean operations on sets

(BOOLE) and basic arithmetic operations on complex numbers

(ARITHM).

A. Requirements BOOLE

X \/ {} = X; X /\ {} = {}; X \ {} = X;

{} \ X = {}; X \+\ {} = X;

B. Requirements ARITHM

x + 0 = x; x * 0 = 0; 1 * x = x;

x - 0 = x; 0 / x = 0; x / 1 = x;

Moreover, requirements ARITHM provides procedures for

solving systems of linear equations over complex numbers.

XI. TYPE CHANGING STATEMENTS

It is quite common situation, when one object can be treated

as an element of different theories or different structures. For

example, the empty set is the empty set in set theories, but it

is also the zero number is some arithmetics. In computerized

mathematics, to allow systems to distinguish and understand

symbols clearly and to avoid ambiguity, it is often required to

express types of objects explicitly.

MIZAR provides a special rule (reconsider) for forcing the

system to treat a given term as if its type was the one stated.

For example, to consider the number 0 as an element of

the field of real numbers (for example, to prove that it is the

neutral element of its additive group), one can state

reconsider z = 0 as Element of F_Real;

The equality z = 0 is obviously processed by the EQUAL-

IZER.

XII. EXAMPLE WITH AUTOMATIZATION

In this section we present an example how all described

above techniques can automatize reasoning and make proofs

shorter or even make theorems obvious. The working example

(about elements of the additive group of real numbers G_Real)

with all automatizations switched-off and all basic proof steps

written within the proof is as follows:

theorem

for a being Element of G_Real holds

a + 0.G_Real = a

proof

let a be Element of G_Real;

reconsider x = a as Real;

B: 0 in REAL by XREAL_0:def 1;

A: 0.G_Real = the ZeroF of G_Real

by STRUCT_0:def 6

.= In(0,REAL) by VECTSP_1:def 1

.= 0 by B,SUBSET_1:def 8;

thus a + 0.G_Real

= (the addF of G_Real).(a,0.G_Real)

by ALGSTR_0:def 1

.= addreal.(a,0.G_Real) by VECTSP_1:def 1

.= x + 0 by A,BINOP_2:def 9

.= x by ARITHM:1

.= a;

end;

while the theorem is obvious when all provided mechanism

are utilized.
The equality

a + 0.G_Real =

(the addF of G_Real).(a,0.G_Real);

is a consequence of the “equals” expansion of the definition:

definition

let M be addMagma;

let a,b be Element of M;

func a+b -> Element of M equals

:: ALGSTR_0:def 1

(the addF of M).(a,b);

end;
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The equality a + 0.G_Real = x + 0 is a consequence of

the equality x = a (reconsider), the equality 0.G_Real = 0

and the term identification:

registration

let a,b be Element of G_Real, x,y be Real;

identify a+b with x+y

when a = x, b = y;

compatibility by BINOP_2:def 9;

end;

The equality 0.G_Real = 0 is a consequence of the “equals”

expansion of the definition:

definition

let S be ZeroStr;

func 0.S -> Element of S equals

:: STRUCT_0:def 6

the ZeroF of S;

end;

and the “equals” expansion of the definition:

definition

func G_Real -> strict addLoopStr equals

:: VECTSP_1:def 1

addLoopStr (# REAL,addreal,In(0,REAL) #);

end;

and the term reduction:

registration

let r be Real;

reduce In(r,REAL) to r;

reducibility;

end;

The equality x + 0 = x is a consequence of built-in calcu-

lations over complex numbers. Finally, the equality x = a is

a trivial consequence of the “reconsider”.

What is especially useful, the distribution of MIZAR con-

tains programs which detect if the reference (or the proof

step) is really necessary for the checker. Alternatively, we can

test by brute force if the construction is useful in a specific

case: adding an environment directive to the preamble of the

article [25] and call the cleaning utilities; if no changes will

be done, the directive is deleted. Of course, there is no need

to add all directives to all articles (some of them can be just

from another area of mathematics), note also that even useful

constructions, say expansions, can significantly slown down

the proof checking by expanding the universe of discourse.

An illustrating example was the splitting of the equality of

sets into two inclusions: it is useful, but even if, according to

the von Neumann construction, all natural numbers are sets,

the expansion of the equality of numbers into two inclusions

isn’t especially feasible (even if mathematically reasonable,

but who would prove inclusions like 2 ⊆ 3, perhaps besides

the person interested in the arithmetic of ordinals?).

Every MIZAR article contains a preamble with the list of

files from MML which will be used. There are 10 keywords

for that (and respectively, 10 environment directives). We focus

only on those tightly connected with our paper, mainly of three

items:

• registrations, responsible for various registrations of clus-

ters, including reductions and identifications;

• equalities, which allow to expand definitions given by

equals;

• requirements, which turn on (mainly arithmetical or set-

theoretic) calculations.

With all the automatics switched on, one can obtain the

formula from the third section

a "\/" a = a;

as a result of declared reduction (or alternatively, the

idempotence property). This however cannot be enough

for a human user who wants to see what is really going on

here, i.e.:

a "\/" a = (a "/\" (a "\/" a)) "\/" a

by LATTICES:def 9

.= a by LATTICES:def 8;

where both definitions are actually axioms – the absorption

laws defined in the form of attributes.

Of course, the equality can be introduced in a non-explicit

way as in the examples of problems of purely equational

character. Remember that one can, apart from the above

considerations, register the following cluster:

registration

let X be set;

cluster X \ X -> empty;

coherence;

end;

which is effectively equivalent to

X \ X = {};

adding it automatically as one of the premises to every

inference where applicable. Remember that in order to assure

the needed identification, one should not use the reduction (∅
is not a sub-term of X \ X).

registration

let T be TopSpace,

A be 1st_class Subset of T;

cluster Border A -> empty;

end;

To quote less straightforward example, in the area of rough

sets (expressed in Isomichi style) it can be the identification of

first class subsets with crisp sets, consequently their borders

are the empty sets as the set-theoretic difference A\A. The ex-

planation and the details of the corresponding implementation

of rough sets can be found in [13].

XIII. SOME STATISTICS

We illustrate our discussion by the number of concrete

constructions used within the MML by Table I.

Table II shows how often selected properties are declared

(and proved) in MML. The numbers however can be more

or less accidental: authors can just omit a property when

developing some theories, and can state it in a form of explicit

formula, or just the proof of it can be too complex. In Table
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Table I
OCCURRENCES OF BASIC CONSTRUCTIONS IN MML

Construction keyword occurrences
type changing statements reconsider 66115

equalities equals 3678
identifications identify 172

reductions reduce 139

Table II
OCCURRENCES OF PROPERTIES IN MML

Property occurrences
commutativity 150
idempotence 18

involutiveness 36
projectivity 20

III, we listed how many times in MIZAR articles (among 1240

in total in the whole MML) selected properties were used. We

have chosen among three areas: basic set theory, arithmetic

of complex numbers, and some properties of pairs. Even if

MML is based on ZFC set theory, the calculations are used

very extensively.

Here we can point out the scale we refer to. There are about

11 thousand definitions and 55 thousand theorems proven in

MML. This is contained among 2 million lines of code (about

90 MB of mathematical texts). One can ask a question why

the commutativity of the set-theoretic union is used less often

than that of set-theoretic intersection. Similar (although dual)

issue with arithmetic is clear: the complex addition is just

used more frequently. Symmetric difference X−̇Y is just of

marginal interest and, which can be also a kind of explanation

after deeper research, it is defined as equal to the combination

of the other operations, namely X−̇Y = (X \ Y ) ∪ (Y \X),
where the commutativity of ∪ (understood automatically) can

do some useful work.

XIV. VARIOUS MATHEMATICAL EQUALITIES

Equality in mathematics has many facings; of course there

are the usual identities x = y, such as for example 2+1 = 3 or

(x+1)2 = x2+2x+1. Note however, that even in these cases

equality depends on the domain we are working in: 2+1 = 3
is true in Z but not in Z2. The second equation can be seen as

an equation between (real) numbers or between polynomials

(not necessarily) over the real numbers.

Table III
THE NUMBER OF CONCRETE USES OF PROPERTIES

Property No. of Mizar articles No. of implicit uses
X ∪ Y = Y ∪X 483 4721
X ∩ Y = Y ∩X 547 6232

X−̇Y = Y −̇X 7 57
a+ b = b+ a 670 9548

ab = ba 429 5734
{x, y} = {y, x} 118 857

There are other kinds of equality. Among the most important

ones is identifying objects of a given structure with respect to

a certain property. Formally, this is described by an equiva-

lence relation r, for example rp(x, y), if x and y are integers

such that x mod p = y mod p. This in particular is applied

when, for example, constructing Zp, the integers modulo p:

All integers leaving the same remainder when dividing them

by p are identified using the equivalence relation rp. Formally,

equivalence classes with respect to rp are built, and these are

the elements of Zp – on which the usual operations are defined.

Using this construction Zp does not contain any numbers,

this is later achieved by “identifying an equivalence class

with a number”, so that Zp = {0, 1, . . . , p − 1} is used.

Note, however, that this formally also means “changing the

operations of Zp appropriately” to match with elements of

{0, 1, . . . , p− 1}.

In some sense this last step – going from equivalence classes

to non-negative integers smaller than p – can be seen as

changing the representation of the integers modulo p. In fact it

does not matter whether we consider Zp as a set of equivalence

classes or as {0, 1, . . . , p − 1}. Aside from the names of the

objects, the two structures are the same: The objects behave

the same way, that is, the effect of the operations is identical.

This in fact is the most important kind of mathematical

equality: The two structures are isomorphic, that is there exists

a (bijective) function i from Zp to {0, 1, . . . , p−1} respecting

the domain’s operations, i.e. i(x + y) = i(x) + i(y), and

similarly for all other operations of Zp. From a mathematical

point of view, this completely defines an equality in the

sense of the first section: Properties discovered for one of

the structures automatically carry over to the other one. In

a proof-assistant, this however is not that obvious. First of

all, both structures must have been constructed in the prover

to describe the isomorphism. This is not always the case

and is often technical and tedious, or impossible. Moreover,

by having a property/theorem for one of the isomorphic

structures, usually some work remains to be done in order to

have the same property/theorem for the other one. For example

Zp is a field, if p is prime. Proved in one of the isomorphic

structures, carrying it over to the other one requires to translate

the property with the help of the isomorphism i. Here of course

the theorem that i(x∗y) = i(x)∗i(y), where y is the inverse of

x does the trick. The interesting discussion from the category

theorist’s point of view is given in [19].

Observe that our discussion here is not in contradiction

with the Leibniz’s Law mentioned at the beginning of our

paper. Such an identity of indiscernibles does not coincide

with equality via isomorphisms. For example, a field is prime,

if it does not have any proper subfield. One could now expect

that two isomorphic fields are either both prime or not. This,

however, is not the case as the isomorphic fields K(X) and

K(X2) show. We will therefore mostly deal with equality via

isomorphisms.
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XV. DATA STRUCTURE EQUALITY

From a computer scientist’s view, the equality is not that

easy as Leibniz’s Law could suggest. Almost immediately

one observes that, e.g. in a programming language, it is quite

a difference whether the objects to be equal are just plain

numbers or more structured objects such as arrays or trees.

For short, equality, and consequently its handling, heavily

depends on the object’s types. In programming languages, of

course, there exist a number of techniques allowing users to

exactly define equality of objects of a given type, e.g. via type

classes in Haskell [32]. In general, intelligent systems should

be able to handle equalities of different kinds, even delivered

by external tools [24].
Proof assistants dealing with the notion of a mathematical

proof, therefore, should provide means for equalities occur-

ring in mathematics. In mathematics, however, the notion of

equality is much more elaborated. To give an easy example,

two functions f and g are equal if their domain D and

codomain C are equal, and if f(x) = g(x), for all x ∈ D.

Of course, this apparent incoherence can be easily explained

considering natural hierarchy of notions many mathematicians

don’t use in their proofs. For example, in typical set-theoretic

approaches, functions are just binary relations of a special

type, and relations are subsets of the Cartesian product, which

is a set of corresponding ordered pairs. Here equality takes into

account not only two/four additional sets, but also equality of

a – possibly infinite – number of objects of another type.
When it comes to structures, such as e.g. groups, fields or

topologies, equality becomes even more sophisticated. This

is not only due to the growing complexity of the objects;

mathematicians have developed a special style of informal

handling with various kinds of equality. The point is that, in

proof assistants, each kind of equality between objects of a

given type has to be formally defined, in order to prove that

two objects of that type are equal.

XVI. ISOMORPHISMS AND INCLUSIONS

For a given field F , one can build the ring of polynomials

F [X]. Actually, while the construction applies to arbitrary

rings, our formalization work, however, concentrates on field

theory, so we restrict ourselves to fields here. Elements of

F [X] – polynomials over F – are basically functions from

the natural numbers into F , hence obviously different from

elements of F . Consequently, F ⊆ F [X] cannot hold from

a formal point of view. In particular one cannot prove this with

the ordinary definition of ⊆. Even if this would be possible,

note that F ⊆ F [X] here means not that F is a subset of

F [X], but that F is a subfield of F [X], that is addition and

multiplication of F [X] are taken into account. Nevertheless,

[35] states the following

We regard F ⊆ F [X] by identifying the element

a ∈ F with the constant polynomial a ∈ F [X],
and observe that under this identification the units

of F [X] are precisely the nonzero elements of F .

What is hidden in this statement, is the application of a map-

ping i sending an element a ∈ F to the constant polynomial

p(X) = a. The mapping i is an isomorphism between F
and its i-image in F [X] (which is a subfield of F [X]). Thus,

identifying a with a(x) actually means replacing the image of

i with F , which then formally gives an isomorphic copy C of

F under the isomorphism i, such that C ⊆ F [X]:

theorem

for F being Field

ex R being Ring st

R, Polynom-Ring F are_isomorphic &

F is a Subfield of R;

and

theorem

for F being Field,

a being Element of F holds

a|F is Unit of Polynom-Ring F

iff a is non zero;

This is nice and handy, because it allows to work with the

easier objects of F when appropriate. In a proof assistant,

however, it gives rise to quite a number of additional work

and theorems: one has to define i.
Working with polynomials, however, is not the same in

isomorphic polynomial rings, even if we restrict ourselves to

polynomial rings over isomorphic fields. One has to apply the

isomorphism i to translate from one into the other. Note, that

formally i ◦ p is an extension of i transforming p ∈ F [X]
into a polynomial over E, that is i is applied to all of p’s

coefficients:

theorem

for F, E being Field,

p being Polynomial of F,

x being Element of F,

i being Isomorphism of F,E holds

i(p(x)) = (i p)(i x);

theorem

for F, E being Field,

p being Polynomial of F,

x being Element of F,

i being Isomorphism of F,E holds

p(x) = 0.F iff (i p)(i x) = 0.E;

Things can get even worse. The quotient field

F [X]/ < p(X) >, for a irreducible polynomial p, formally

consists of equivalence classes [q(X)]<p(X)>, where

q(X) ∈ F [X] – this is the field in which p(X) has a root.

However, in [35], after showing that F [X]/ < p(X) > is

a field, the author states:

... to give an explicit description of the field E =
F [X]/<p(X)>. Let p(X) ∈ F [X] be an irreducible

polynomial of degree n, p(X) = anX
n + · · · + a0.

By taking representatives of equivalence classes we

may regard

E = {g(X) ∈ F [X] | deg g(X) < n}

as a set. Addition in E is the usual addition of

polynomials, while multiplication in E ...
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Actually, this means only that E with the new defined

operations is isomorphic to F [X]/<p(X)>. Afterwards, the

following consequence is drawn in [35]:

If π : F [X] −→ F [X]/<p(X)> is the canonical

projection, then π|F is an injection, and using this

we also regard F ⊆ F [X]/<p(X)>.

XVII. CONCLUSION

Even if mathematicians have developed and used some

human “mechanisms of obviousness”, for hundreds of years,

new technologies impose the need for new standards. Com-

puterized systems should undoubtfully deliver the answers of

some human questions and to construct models, which cannot

be created by hand in a reasonable time – this is the testbed for

computer algebra systems and model finders. Proof assistants,

in order not to break human standards, should however support

the traditional way of thinking, so there is a place for finding

a reasonable balance between writability and readability of the

source code, as we believe the MIZAR system can deliver. We

hope that we convinced the reader that the problem of the

equality treatment is harder than it looks like at the very first

sight, and if automated proof-assistants are taken into account,

we should take care on something more than what we called

absolute equality – Davenport’s data structure equality.
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