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Abstract—Decision tree is a widely used technique to dis-
cover patterns from consistent data set. But if the data set
is inconsistent, where there are groups of examples (objects)
with equal values of conditional attributes but different deci-
sions (values of the decision attribute), then to discover the
essential patterns or knowledge from the data set is challenging.
We consider three approaches (generalized, most common and
many-valued decision) to handle such inconsistency. We created
different greedy algorithms using various types of impurity and
uncertainty measures to construct decision trees. We compared
the three approaches based on the decision tree properties of the
depth, average depth and number of nodes. Based on the result
of the comparison, we choose to work with the many-valued
decision approach. Now to determine which greedy algorithms
are efficient, we compared them based on the optimization and
classification results. It was found that some greedy algorithms
(Mult_ws_entSort , and Mult_ws_entML) are good for both
optimization and classification.

I. INTRODUCTION

O
FTEN in a decision table, we have different examples
with the different values of decision and we call such

table as a consistent decision table or single-valued decision
table. But it is pretty common in real life problems to
have inconsistent decision tables where there are groups of
examples (objects) with equal values of conditional attributes
and different decisions (values of the decision attribute).

In this paper, instead of the group of examples with equal
values of conditional attribute, we consider only one example
for this group and attach the set of decisions to it. We will
call such tables as many-valued decision tables.

In the rough set theory [1], generalized decision (GD) has
been used to handle inconsistency. In this case, an inconsistent
decision table is transformed into the many-valued decision
table and after that, each set of decisions has been encoded
by a number (decision) such that equal sets are encoded by
equal numbers and different sets by different numbers (see
Figure 1). We have also used another approach named the
most common decision (MCD) which is derived from the
concept of using most common value in case of missing
value [2]. Instead of a group of equal examples with (probably)
different decisions, we consider one example given by values

T 0 =

f1 f2 f3
1 1 1 1
0 1 0 1
0 1 0 3
1 1 0 2
0 0 1 2
0 0 1 3
1 0 0 1
1 0 0 2

T 0
MVD

=

f1 f2 f3
1 1 1 {1}
0 1 0 {1, 3}
1 1 0 {2}
0 0 1 {2, 3}
1 0 0 {1, 2}

T 0
GD

=

f1 f2 f3
1 1 1 1
0 1 0 2
1 1 0 3
0 0 1 4
1 0 0 5

T 0
MCD

=

f1 f2 f3
1 1 1 1
0 1 0 1
1 1 0 2
0 0 1 2
1 0 0 1

Fig. 1: Transformation of inconsistent decision table T 0 into
decision tables T 0

MVD
, T 0

GD
and T 0

MCD

of conditional attributes and we attach to this example the most
common decision for examples from the group (see Figure 1).

In our approach, we can say that for a given example, we
have multiple decisions that can be attached to the example
but the goal is to find a single decision for each example. We
refer this approach as many-valued decision (MVD) approach
(see Figure 1). This approach is used for classical optimization
problems (finding a Hamiltonian circuit with the minimum
length or finding nearest post office [3]) where we have
multiple optimal solutions but we have to give only one
optimal output.

We studied a greedy algorithm for construction of decision
trees for many-valued decision tables using the heuristic based
on the number of boundary subtables in [4]. Besides, we have
studied this algorithm in the cases of most common decision,
and generalized decision approaches in [5]. In addition to
this, we studied various greedy algorithms as well as dynamic
programming algorithm to minimize the average depth in [6],
minimize depth in [7], and as well as minimize size of the
constructed decision tree in [8].
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This paper is a continuation of the current research. We
have compared three approaches MVD , MCD , and GD by
comparing the complexity of constructed decision trees. We
choose MVD approach based on the result of the comparison.
After that, we have shown the average relative difference
between greedy algorithm results and optimal results obtained
by dynamic programming algorithms for the depth, average
depth, and number of nodes of the constructed decision trees.
Subsequently, we compare the performance of the classifica-
tion error rates among classifiers constructed by the various
greedy algorithms. We have presented results in the form of
critical difference diagram [9] as well as average error rates
using data sets from UCI ML Repository [10] and KEEL [11]
repository. Finally, we found some of the greedy algorithms
are in the top list for both optimization and classification tasks.

II. RELATED WORKS

In literature, these types of tables are often referred as
multi-label decision tables [12]. These tables are found in the
problem of semantic annotation of images and videos, music
categorization into emotions, functional genomics (gene and
protein functions), and text classification (news article, email,
bookmarks). There are two ways to solve the classification
problem from these data sets: first one is algorithm adaptation
method where usual classification methods are adapted or
modified to handle multi-label data, and the second one is
the problem transformation method where the multi-label
data set is transformed into single label data set to work
with usual classification methods without any modification of
the algorithm. These papers solve the inconsistency of the
decision table by dividing full set of decisions into relevant
and irrelevant decision set for each example. The goal is to
find the relevant set of decisions for unknown object.

There is another way to handle inconsistency which is
mentioned in different names in literature: partial learning
[13], ambiguous learning [14], and multiple label learning
[15]. In this learning problem, each example is associated with
multiple labels but only one label is correct, and all others are
incorrect. The goal is to find out which label is correct. In
[13], [15], the authors shows probabilistic methods to solve
the learning problem whereas in [14], the author used standard
heuristic approach to exploit inductive bias to disambiguate
label information.

Our approach of MVD is different from the above men-
tioned approaches in two ways:
- we assume that all our decisions are correct and there is no
incorrect decisions attached with any of the examples,
- we assume that it is enough to find out one decision from
the set of decisions rather than the relevant set of decisions.

Therefore, one can use our approach when it is enough to
find one decision from the set of decisions.

III. PRELIMINARIES

A. Many-valued Decision Table

A many-valued decision table, T is a rectangular table
whose rows are filled by nonnegative integers and columns

are labeled with conditional attributes f1, . . . , fn. If we have
strings as values of attributes, we have to encode the values as
nonnegative integers. There are no duplicate rows, and each
row is labeled with a nonempty finite set of natural numbers
(set of decisions). We denote the number of examples (rows)
in the table T by N(T ).

TABLE I: A many-valued decision table T ′

T ′ =

f1 f2 f3
0 0 0 {1}
0 1 1 {1,2}
1 0 1 {1,3}
1 1 0 {2,3}
0 0 1 {2}

If there is a decision which belongs to all of the set of
decisions attached to examples of T , then we call it a common

decision for T . We will say that T is a degenerate table if T
does not have examples or it has a common decision. We give
an example of degenerate table in the Table II where 1 is the
common decision.

TABLE II: A degenerate many-valued decision table

T ′′ =

f1 f2 f3
0 0 0 {1}
0 1 1 {1,2}
1 0 1 {1,3}

A table obtained from T by removing some exam-
ples is called a subtable of T . We denote a subtable

of T which consists of examples that at the intersec-
tion with columns fi1 , . . . , fim have values a1, . . . , am by
T (fi1 , a1), . . . , (fim , am). Such nonempty tables (including
the table T ) are called separable subtables of T . For example,
if we consider subtable T ′(f1, 0) for table T ′, it will consist
of examples 1, 2, and 5. Similarly, T ′(f1, 0)(f2, 0) subtable
will consist of examples 1, and 5.

TABLE III: Example of subtables of many-valued decision
table T ′

T ′(f1, 0) =

f1 f2 f3
0 0 0 {1}
0 1 1 {1,2}
0 0 1 {2}

T ′(f1, 0)(f2, 0) =
f1 f2 f3
0 0 0 {1}
0 0 1 {2}

We denote the set of attributes (columns of table T ), such
that each of them has different values by E(T ). For example,
if we consider table T ′, E(T ′) = {f1, f2, f3}. Similarly,
E(T ′(f1, 0)) = {f2, f3} for the subtable T ′(f1, 0), because
the value for the attribute f1 is constant in subtable T ′(f1, 0).
For fi ∈ E(T ), we denote the set of values from the attribute
fi by E(T, fi). As an example, if we consider table T ′ and
attribute f1, then E(T ′, f1) = {0, 1}.

The minimum decision which belongs to the maximum
number of sets of decisions attached to examples of the table
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T is called the most common decision for T . For example,
the most common decision for table T ′ is 1. Both 1 and 2
appears 3 times in the sets of decisions, but 1 is the most
common decision as it is the minimum. We denote the number
of examples for which the set of decisions contains the most
common decision for T by Nmcd(T ).

B. Decision tree

A decision tree over T is a finite tree with root in which each
terminal node is labeled with a decision (a natural number),
and each nonterminal node is labeled with an attribute from
the set {f1, . . . , fn}. A number of edges start from each
nonterminal node which are labeled with the values of that
attribute (e.g. two edges labeled with 0 and 1 for the binary
attribute) .

Let Γ be a decision tree over T and v be a node of Γ.
We denote T (v) as a subtable of T that is mapped for a
node v of decision tree Γ. If the node v is the root of Γ
then T (v) = T i.e. the subtable T (v) is the same as T .
Otherwise, T (v) is the subtable T (fi1 , δ1) . . . (fim , δm) of the
table T where attributes fi1 , . . . , fim and numbers δ1, . . . , δm
are respectively nodes and edge labels in the path from the
root to node v. We will say that Γ is a decision tree for T if
Γ satisfies the following conditions:
- if T (v) is degenerate then v is labeled with the common
decision for T (v),
- otherwise v is labeled with an attribute fi ∈ E(T (v)). In this
case, k outgoing edges from node v are labeled with a1, . . . , ak
where E(T (v), fi) = {a1, . . . , ak}.

An example of a decision tree for the table T can be
found in Fig. 2. If the node v is labeled with the nonterminal
attribute f3, then subtable T (v) corresponding to the node
v will be the subtable T (f1, 0) of table T . Similarly, the
subtable corresponding to the node labeled with 2 will be
T (f1, 0)(f3, 1) and here 2 is the common decision.

f1

3 f3

1 2

1 0

0 1

Fig. 2: Decision tree for the many-valued decision table T ′

C. Impurity Functions and Uncertainty Measures

In greedy algorithm, we need to choose attributes to par-
tition the decision table into smaller subtables until we get
degenerate table which then be used to label the terminal node.
To choose which partition to consider for tree construction,
we need to evaluate the quality of partition by impurity
function. We assume that, the smaller the impurity function
value, the better is the quality of partition. Impurity function
can be calculated based on uncertainty measures for the
considered subtables corresponding to the partitions. If we

Algorithm 1 Greedy algorithm AI

Input: A many-valued decision table T with conditional
attributes f1, . . . , fn.

Output: Decision tree AI(T ) for T .
Construct the tree G consisting of a single node labeled
with the table T ;
while (true) do

if No one node of the tree G is labeled with a table then

Denote the tree G by AI(T );
else

Choose a node v in G which is labeled with a subtable
T ′ of the table T ;
if U(T ′) = 0 then

Instead of T ′ mark the node v with the common
decision for T ′;

else

For each fi ∈ E(T ′), compute the value of the
impurity function I(T ′, fi); Choose the attribute
fi0 ∈ E(T ′), where i0 is the minimum i for which
I(T ′, fi) has the minimum value; Instead of T ′

mark the node v with the attribute fi0 ; For each
δ ∈ E(T ′, fi), add to the tree G the node vδ and
mark this node with the subtable T ′(fi0 , δ); Draw
an edge from v to vδ and mark this edge with δ.

end if

end if

end while

have a common decision, then there is no uncertainty in the
data, and uncertainty measure is zero, otherwise uncertainty
measure is positive.

1) Uncertainty Measures: Uncertainty measure U is a
function from the set of nonempty many-valued decision tables
to the set of real numbers such that U(T ) ≥ 0, and U(T ) = 0
if and only if T is degenerate.

Let T be a many-valued decision table having n conditional
attributes, N = N(T ) examples and its examples be labeled
with sets containing m different decisions d1, . . . , dm. For i =
1, . . . ,m, let Ni be the number of examples in T that has been
attached with sets of decisions containing the decision di, and
pi = Ni/N . Let d1, . . . , dm be ordered such that p1 ≥ · · · ≥
pm, then for i = 1, . . . ,m, we denote by N

′

i the number
of examples in T such that the set of decisions attached to
example contains di, and if i > 1 then this set does not contain
d1, . . . , di−1, and p

′

i = N
′

i/N . We have the following four
uncertainty measures (we assume 0 log2 0 = 0):

• Misclassification error: me(T ) = N(T ) − Nmcd(T ). It
measures difference between total number of examples
and number of examples with most common decision.

• Sorted entropy: entSort(T ) = −
∑m

i=1
p

′

i log2 p
′

i ([14]).
First we sort the probabilities for all decisions. After that,
for each example, keep the decision having maximum
probability and discard others. Then we calculate entropy
for this modified decision table.

• Multi-label entropy: entML(T ) = 0, if and only if T is
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degenerate, otherwise, it is equal to −
∑m

i=1
(pi log2 pi+

qi log2 qi), where, qi = 1− pi. ([16]).

• Absent: abs(T ) =
m
∏

i=1

qi, where qi = 1− pi. It measures

the multiplication of all absent probability qi’s.

2) Impurity Functions: Let U be an uncertainty measure,
fi ∈ E(T ), and E(T, fi) = {a1, . . . , at}. The attribute fi
divides the table T into t subtables: T1 = T (fi, a1), . . . , Tt =
T (fi, at). We now define three types of impurity function I
which gives us the impurity I(T, fi) of this partition.

• Weighted max (wm):
I(T, fi) = max1≤j≤tU(Tj)N(Tj).

• Weighted sum (ws):
I(T, fi) =

∑t
j=1

U(Tj)N(Tj).
• Multiplied weighted sum (Mult_ws):

I(T, fi) = (
∑t

j=1
U(Tj)N(Tj))× log2 t.

IV. GREEDY ALGORITHMS FOR DECISION TREE

CONSTRUCTION

Let I be an impurity function based on the uncertainty
measure U . The greedy algorithm AI , for a given many-valued
decision table T , constructs a decision tree AI(T ) for T (see
Algorithm 1).

It constructs decision tree sequentially in a top-down fash-
ion. It greedily chooses one attribute at each step based
on the considered impurity function. We have total 12 (=
4 × 3) algorithms. The complexities of these algorithms are
polynomially bounded above by the size of the tables.

V. DATA SETS

We consider five decision tables from UCI Machine Learn-
ing Repository [10]. There were missing values for some
attributes which were replaced with the most common values
of the corresponding attributes. Some conditional attributes
have been removed that take unique value for each exam-
ple. For the sake of experiments, we removed from these
tables more conditional attributes. As a result, we obtained
inconsistent decision tables which contain equal examples with
equal or different decisions. The information about obtained
inconsistent (represented as many-valued decision) tables can
be found in Table IV. These modified tables have been
renamed as the name of initial table with an index equal to
the number of removed conditional attributes.

We also consider five decision tables from KEEL [11] multi-
label data set repository. Note that, these tables are already
in many-valued decision format. The information about these
table can be found in Table V. The decision table ‘genbase’ has
one attribute with unique value for each example and therefore,
it was removed, and renamed as ‘genbase-1’.

Table IV and V also contain the number of examples
(column “Row”), the number of attributes (column “Attr”), the
total number of decisions (column “Label”), the cardinality
of decision (column “lc”), the density of decision (column
“ld”), and the spectrum of this table (column “Spectrum”).
The decision cardinality, lc, is the average number of decisions
for each example in the table. The decision density, ld, is

the average number of decisions for each example divided
by the total number of decisions. If T is a many-valued
decision table with N examples (xi, Di) where i = 1, . . . , N ,
then lc(T ) = 1

N

∑N
i=1

|Di|, where |Di| is the cardinality of
decision set in i-th example, and ld(T ) = 1

|L| lc(T ), where L
is the total number of decisions in T . Spectrum of a many-
valued decision table is a sequence #1, #2,. . . , where #i,
i = 1, 2, . . ., is the number of examples labeled with sets
of decisions with the cardinality equal to i. For some tables
(marked with * in Table V), the spectrum is too long to fit
in the page width. Hence, we show what allows in the page
width limit.

VI. COMPARISON OF THREE APPROACHES

We compared the three approaches MVD , MCD , and GD

to handle inconsistency. We have published the results of the
comparison using the decision tree complexity (depth, average
depth and number of nodes) in [17]. For the sake of the
discussion, we reproduced the result in Table VI for the above
10 decision tables using the algorithm AI (see Algorithm 1)
which uses misclassification error uncertainty measure and
weighted sum impurity type.

Data sets from KEEL are already in MVD format. These
tables are converted into formats MCD (in this case, the
first decision is selected from the set of decisions attached
to a row) and GD by the procedure described in Section
I. Conversely, inconsistent tables from UCI ML Repository
were converted into MVD , MCD and GD . We then used
such data sets to construct decision trees by the algorithm AI ,
and further we listed the depth, average depth and number
of nodes in the constructed decision trees. Note that, we
interpreted single valued decision tables, i.e. TGD , TMCD , as
many-valued decision tables where each row is labeled with
a set of decisions that has one element. Hence, we can apply
the same algorithm for all three cases.

Table VI shows the result of depth, average depth and
number of nodes for decision trees AI(TMVD), AI(TGD) and
AI(TMCD). Moreover, we took average among the 10 data
sets. Since, the result varies in the range of the parameter, we
took the normalized average. The normalization has been done
by taking the value and dividing by the maximum of three
approaches. For example, the maximum depth of the three
approaches for the table ‘bibtex’ is 43. Then the normalized
depth of MVD approach will be 39/43 = 0.91. Similarly, the
normalized depth of MCD approach will be 42/43 = 0.98, and
for GD will be 1.

If we look at the result, the MVD approach in many cases
gives minimum depth, average depth and number of nodes.
When we took the normalized average, this claim is pretty
clear. If our goal is to represent knowledge from the given
data using the decision tree, we should use MVD approach
as it produces simpler trees compared to other approaches.
Therefore, we have used MVD approach for the rest of the
paper.
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TABLE IV: Characteristics of modified UCI inconsistent data represented in MVD format

Decision Row Attr Label lc ld Spectrum

table T #1 #2 #3

CARS-1 432 5 4 1.43 0.36 258 161 13
FLAGS-5 171 21 6 1.07 0.18 159 12
LYMPHOGRAPHY-5 122 13 4 1.07 0.27 113 9
NURSERY-1 4320 7 5 1.34 0.27 2858 1460 2
ZOO-DATA-5 42 11 7 1.14 0.16 36 6

TABLE V: Characteristics of KEEL multi-label data

Decision Row Attr Label lc ld Spectrum
table T #1 #2 #3 #4 #5 #6 #7 #8 #9

bibtex∗ 7355 1836 159 2.41 0.015 2791 1825 1302 669 399 179 87 46 18
COREL5K 4998 499 374 3.52 0.009 3 376 1559 3013 17 0 1 0 0
enron∗ 1561 1001 53 3.49 0.066 179 238 441 337 200 91 51 15 3
GENBASE-1 662 1186 27 1.47 0.054 560 58 31 8 2 3 0 0 0
MEDICAL 967 1449 45 1 0.027 741 212 14 0 0 0 0 0 0

TABLE VI: Depth, average depth, and number of nodes for decision trees AI(TMVD), AI(TGD) and AI(TMCD) for UCI and
KEEL data sets using misclassification error uncertainty measure and weighted sum impurity type

Decision Depth Average Depth Number of Nodes
table T MVD MCD GD MVD MCD GD MVD MCD GD

BIBTEX 39 42 43 11.52 12.24 12.97 9357 10583 13521
CARS-1 5 5 5 1.958 2.583 3.813 43 101 280
COREL5K 156 156 157 36.1 36.41 36.29 6899 8235 9823
ENRON 28 26 41 9.18 9.62 11.18 743 1071 2667
FLAGS-5 6 6 6 3.754 3.801 3.836 210 216 223
GENBASE-1 12 12 11 4.718 4.937 5.762 43 49 81
LYMPHOGRAPHY-5 7 7 7 3.787 4.115 4.311 77 94 112
MEDICAL 16 16 16 8.424 8.424 8.424 747 747 747
NURSERY-1 7 7 7 2.169 3.469 4.127 198 832 1433
ZOO-DATA-5 4 7 7 3.214 3.714 4.119 19 25 41

AVERAGE 28 28.4 30 8.48 8.93 9.48 1833.6 2195.3 2892.8

NORMALIZED AVERAGE 0.92 0.96 0.99 0.82 0.9 0.99 0.56 0.7 1

VII. DECISION TREE OPTIMIZATION

We can optimize the depth, average depth and number
of nodes of the constructed decision tree based on dynamic
programming algorithms as shown in [6], [8], [7]. It builds all
possible separable subtables from the root to the leaf. After
that, it considers all possible decision trees by the bottom up
approach based on the given criteria of minimizing depth or
average depth, or number of nodes. We have compared the av-
erage relative difference (in %) ARD = greedy−optimal

optimal
×100

between the sub-optimal results from the greedy algorithms
and optimal result from the dynamic programming algorithm.
ARD shows how close the greedy result compared to the opti-
mal solution. We have produced the ARD results in Table VIIa,
VIIb and VIIc for 3 top algorithms from 12 algorithms (see
Section IV).

VIII. DECISION TREE CLASSIFIER

The examples in the many-valued decision table T have
been attached with sets of decisions D ⊂ L where L is the
set of all possible decisions in the table T . We denote D(x)
as the set of decisions attached to the example x. If X is the

TABLE VII: ARD (in %) between results of greedy and
dynamic algorithms

Algorithm ARD

ws_entSort 4.58
ws_entML 5.47
ws_me 6.03

(a) Average depth

Algorithm ARD

wm_me 12.08
wm_entSort 12.08
ws_me 12.08

(b) Depth

Algorithm ARD

Mult_ws_entML 21.22
Mult_ws_entSort 24.58
ws_abs 25.03

(c) Number of nodes

domain of the examples to be classified, the goal is to find a
classifier h : X → L such that h(x) = d, where d ∈ D(x),
that means to find a decision from the ground truth set of
decisions attached to the example. To solve the problem, we
use decision tree as our model. We construct different kinds
of decision trees using various impurity functions.
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A. Evaluation Measure

Here we use the common evaluation measure of classifi-
cation error percentage. Let us assume, we have unknown
instance x′ and corresponding decision set is D(x′). The
classifier h is applied on the new instance x′ and it gives
the decision d = h(x′). If d ∈ D(x) then error(x′) = 0,
otherwise error(x′) = 1. Let us assume, we have total M
unknown instances to classify, then the error rate will be
1

M

M
∑

i=1

error(xi).

B. Methodology

Let T be a many-valued decision table with conditional
attributes f1, . . . , fn, and the decision attribute D. We have
to divide the initial subtable into three subtables: training
subtable T1, validation subtable T2, and test subtable T3.
The subtable T1 is used for construction of initial classifier.
The subtable T2 is used for pruning of the initial tree. Let
Γ is a decision tree for T1. For each node v of Γ, we
construct a subtable T1(v) of the table T1. If v is the root,
then T1(v) = T1, otherwise T1(v) = T1(fi1 , a1) . . . (fim , am)
where fi1 , . . . , fim are the conditional attributes attached to
nodes of the path from the root of Γ to v, and a1, . . . , am are
numbers attached to edges of this path.

We denote α(v) = U(T1(v))/U(T1), where U(T1) is the
misclassification error uncertainty of table T1. Let Γ contain t
nonterminal nodes, and v1, . . . , vt be all nonterminal nodes of
Γ in an order such that α(v1) ≤ α(v2) . . . ≤ α(vt). For any
i ∈ {1, . . . , t− 1}, if α(vi) = α(vi+1) then the distance from
the root of Γ to vi is at least the distance from the root to vi+1.
We now construct a sequence of decision trees Γ0,Γ1, . . . ,Γt

where Γ0 = Γ (initial tree). The procedure of such decision
tree construction is described below in an inductive way:

Let assume that, for some i ∈ 0, . . . , t− 1, the decision
tree Γi is already constructed. We now construct the decision
tree Γi+1 from the decision tree Γi. Let D be a subtree of
Γi with the root vi+1. We remove all nodes and edges of D
from Γi with the exception of vi+1. After that, we transform
the node vi+1 into a terminal node which is labeled with the
most common decision for T1(vi+1). As a result, we obtain
the decision tree Γi+1.

For i = 0, . . . , t, we used the decision tree Γi to calculate
the classification error rate for the table T2. We choose the
tree Γi which has the minimum classification error rate (in
case of tie, we choose the tree with smaller index). Now this
tree can be used as the final classifier and we can evaluate the
test error rate by using this tree to classify the examples in
table T3.

IX. STATISTICAL COMPARISON OF GREEDY ALGORITHMS

To compare the algorithms statistically, we used Friedman
test with the corresponding Nemenyi post-hoc test as sug-
gested in [9]. Let we have k greedy algorithms A1, . . . , Ak

for constructing trees and M decision tables T1, . . . , TM .
For each decision table Ti, i = 1, . . . ,M, we rank the

algorithms A1, . . . , Ak on Ti based on their performance
scores of classification error rates, where we assign the best
performing algorithm the rank of 1, the second best rank 2,
and so on. We break ties by computing the average of ranks.
Let rji be the rank of the j-th of k algorithms on the decision
table Ti. For j = 1, . . . , k, we correspond to the algorithm Aj

the average rank Rj =
1

M
·

M
∑

i=1

rji . For a fixed significance level

α, the performance of two algorithms is significantly different
if the corresponding average ranks differ by at least the critical

difference CD = qα

√

k (k + 1)

6M
where qα is a critical value

for the two-tailed Nemenyi test depending on α and k.

X. CLASSIFICATION RESULTS

We used 3-fold cross validation to separate test and training
data set for each decision table. The data set is divided into 3
folds, we run the experiment for 3 times. At i-th (i = 1, 2, 3)
iteration, i-th fold is used as the test subset, and the rest of data
is partitioned randomly into train (70%) and validation subset
(30%). The validation subset is used to prune the trained tree.
We successively prune the nodes of the trained decision tree
model based on the accuracy of the classifier from validation
data set unless its accuracy is maximum. After pruning, we
used trained decision tree model to predict the decisions for
test data sets. For each fold, we repeat the experiment 5 times
and take the average of 5 error rates.

We have four uncertainty measures (me, abs, entSort,
entML) and three types of impurity functions (ws, wm,
Mult_ws). So, 12 greedy algorithms have been compared.
We show the names of the algorithms as combined name
of heuristic and impurity function types separated by ‘_’ in
CDD. For example, if the algorithm name is wm_me, this
means it uses wm as a type of impurity function and me
as uncertainty measure. Figure 3 shows the CDD containing
average rank for each algorithm on the x-axis for significance
level of α = 0.05. The best ranked algorithm are shown in the
leftmost side of the figure. When Nemenyi test cannot identify
significant difference between some algorithms, then those are
clustered (connected).

It is clear that, Mult_ws_abs is the best ranked algorithm
to minimize the test error. We have shown classification error
rate for each data sets for the three best ranked algorithm in
Table VIII as well as the average error rate (AER) among
all the data sets. We can see that for most of the data sets
Mult_ws_abs gives minimum error rate than others. On
average it gives the best result. We have also shown the overall
execution time for the three best ranked algorithm in the
Table IX and found that the Mult_ws_entML algorithm is
faster than other algorithms.

Also note that, the Mult_ws_entML algorithm is the best
for minimizing the number of nodes in the tree (see Sec-
tion VII), and it is also one of the top algorithms for minimiz-
ing the classification error rates. Also there are two algorithms
(Mult_ws_entML, and Mult_ws_entSort) for minimizing
number of nodes in the tree intersects with the same two

36 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



algorithms for minimizing the classification error rates. This
result is interesting as we can relate the classification and
optimization problem. It looks like the quality of classification
is connected with the quality of minimizing the number of
nodes.

XI. CONCLUSION

We studied three different approaches to handle inconsistent
decision tables and found MVD approach performs better. We
also have created different greedy algorithms based on various
uncertainty measures and impurity types to construct decision
trees, and compared the results with the optimal results.
Finally, we compared these greedy algorithms statistically for
classification task to get best ranked classifier and considered
also the average error rate across all data sets. We found that
Mult_ws_abs gives lowest classification error rate than others
for most of the data sets. We also found Mult_ws_entML

algorithm is faster than other top algorithms and also good
for both classification and optimization of number of nodes.

In the future, our goal is to construct ensemble of decision
trees to work with larger data sets efficiently. Also we are
planning to consider more sophisticated pruning methods
based on Pareto-optimal points using dynamic programming
algorithms.
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Fig. 3: Critical difference diagram for classification error rates

TABLE VIII: Classification error rate (in %)

Filename Mult_ws_abs Mult_ws_entSort Mult_ws_entML

BIBTEX 56.87 60.09 57.09
CARS-1 3.33 4.49 5.56
COREL5K 74.3 76.57 77.72
ENRON 36.9 26.96 29.69
FLAGS-5 58.83 62.11 63.27
GENBASE-1 5.73 3.79 3.69
LYMPHOGRAPHY-5 27.18 25.4 25.87
MEDICAL 24.05 26.66 26.6
NURSERY-1 2.06 2.69 2.62
ZOO-DATA-5 22.86 27.62 25.24

AER (AVERAGE ERROR RATE) 31.21 31.64 31.73

TABLE IX: Overall execution time (in sec)

Filename Mult_ws_abs Mult_ws_entSort Mult_ws_entML

BIBTEX 285.42 2012.34 117.55
CARS-1 0.0046 0.006 0.0042
COREL5K 127.95 853.3 82.19
ENRON 6.82 14.35 5.45
FLAGS-5 0.0098 0.0176 0.0102
GENBASE-1 0.1174 0.17 0.111
LYMPHOGRAPHY-5 0.0046 0.0056 0.0042
MEDICAL 1.2352 6.9238 1.1488
NURSERY-1 0.0408 0.0622 0.0416
ZOO-DATA-5 0.0024 0.0028 0.0028

AVERAGE 42.16 288.72 20.65
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