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Abstract—The following study deals with static analysis of
Java source codes and it is dedicated to those readers who are
interested in techniques aiming at evaluation of programming
abilities of job candidates or students. In our case, the goal of
the static analysis is to assemble the most significant and inter-
esting data about source code author (programmer). If properly
visualized, such assembled data may form programmer’s profile
which, to impartial observer, may further determine author’s
real programming abilities and his/her habits, both good and
the bad ones. The present study represents first experiments
attempting to form programmer’s profile by static analysis of
language element frequency. Conclusion offers a broader view,
combining also other techniques as a future plan to generate
knowledge profiles more precisely.

I. INTRODUCTION

K
NOWLEDGE, skills and their level are often the focus of
attention in many disciplines. In order to be successful,

people are often compared with each other. In the area
of programming it is similar, however, the range of skills-
tracking possibilities is quite limited. In the following study,
we present early stages of profile-driven source code analysis
where our interest is focused on source code exploration with
the intention of knowledge profile generation. Such a profile
represents an objective evaluation of current knowledge and
skills, individual progress compared to the past, or possible
deficiencies to be addressed.

Knowledge profile may be beneficial for both beginners and
experienced programmers as well as for lecturers. Profiles
can be helpful during overall student assessment, moreover,
they can be used when identifying course drawbacks towards
improvement of the course. In labor market, job candidates
may find programming profile generators beneficial as well.
That is, this study is dedicated to those researchers who deal
with source code analysis, focusing on author of the code.

There exists a large variety of automated tools dedicated
to source code analysis. These tools deal with code from
various perspectives, e.g. security evaluation, quality, design
etc. Outputs of such tools mostly include reports reflecting
various metrics, graphs or warnings. They, however, do not
collect a profile of the programmer knowledge [1], [2]. More
from the related work can be found in Section V.

In this study, our intention is to generate a programming
knowledge profile from source code with a possibility of its
comparison with different profiles. This includes comparison
of the current profile with a profile which was actual in
the past. This way, the profile report may point out au-
thor’s progress. Profiles of the group of programmers can

be compared with each other to reveal possible differences
in their knowledge. It should be also possible to compare a
personal profile to some explicitly defined knowledge level
(e.g. needed to fulfill specific task). We consider tracking and
comparing source code in the form of summarizing profiles as
a contribution to a new view of knowledge, to a better analysis
and filtration of irrelevant data. Yet, to our best knowledge,
such a profile-driven tool has not been developed.

In the following sections, we describe the concept of
knowledge profiles (Section II) and we introduce an initial
prototype proposed and developed as a source code exploring
tool (Section III). This tool operates on the basis of static
analysis and it represents a partial solution of the presented
task. The tool works with Java language constructs and it
visualizes knowledge profiles based on various statistics and
metrics. We discuss results generated by the tool on a medium-
sized project as well as on a large project (Section IV).

II. KNOWLEDGE PROFILES

In general, we understand knowledge profile as a description
of knowledge and bindings between its elements necessary to
handle a specific task.

In our study, we focus on knowledge profiles in an area
where it is possible to formally define such a profile and
to construct it automatically from particular input artifacts.
Primarily, we deal with an area of programming where the
artifacts are represented by source code and a profile is
formally defined over a language in which the source code
is created. We distinguish two types of profiles: subject and
object profile.

Subject profile represents an expression of what the subject
(author of the code) knows, how deep is his/her knowledge,
what kind of issues is the subject capable to solve. In pro-
gramming, this means that the subject (programmer) knows,
for example, how to use if command, how to call or declare
a function, how to use generic programming [3]. That is, the
subject profile represents the range of tasks actually solvable
by the programmer.

Object profile represents a profile of knowledge necessary to
handle a specific task (or tasks) over some object. A program-
ming book may define knowledge profile of prerequisites, i.e.
what any reader should know before reading the book in order
to understand its contents. There can even be a differential
object profile determining what is the reader supposed to
learn (know after understanding the book contents). Such a
differential profile can be determined for each book chapter
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Fig. 1. Simplified knowledge profile generator scheme

as well. That is, the object profile represents the range of tasks
which are supposed to be known by the programmer (but the
actual state may be different).

The profile should allow to verify whether a specific pro-
grammer has sufficient knowledge to solve a task. Moreover, it
should identify missing knowledge. For this reason, the profile
needs to be structured. Such an assumption is supported by the
fact that each programming task or its solution are structured
as well [4]. In other words, if an actual (incomplete) task
solution is structured than it is possible to assume that the
same or similar knowledge, which has already been applied,
will be necessary to complete the task.

In an early stage of our research the profile prototype is rep-
resented by a simple table, later we assume its transformation
to a tree or a graph with annotated nodes or edges [5].

A. Profile Construction

A profile can be constructed manually, however, an impor-
tant part of our research is to generate profiles automatically
from artifacts (source code). That is, one profile is supposed to
be constructed after processing a finite number of source code
files through their analysis. This way it is possible to generate
an object profile and also a subject profile provided source
code created by the subject is available. For experimental
purposes, object profiles may be created manually. In order
to construct a subject profile, it is necessary to analyze source
code synthesized (created) by the subject.

The idea is depicted using the scheme in Fig. 1. The object
profile is optional, so it does not have to be necessarily present.
However, language and source code are compulsory. Without
these two artifacts, subject profile cannot be generated. If both
subject and object profiles are present, a comparison profile
can be generated. Such a profile can be bind to a specific task
through the object profile.

Source code analysis can be performed through parser
of a particular language. An assumption is that particular
grammar rules define concepts and the rules used by the
code author mean that the programmer understands language
constructs describing and defining the language. Complete
language syntax is not necessary when processing source code,
however, syntax definition should be accustomed to required
knowledge expression. An appropriate form of rules should be
as expressed in Eq. 1 not 2.

If → ”if” ”(” Expression ”)” Statement (1)

A → ”if” ”(” B ”)” C (2)

That is, the form should be human-interpretable, e.g. in
order to understand if, one should understand expressions and
statements.

Obviously, such a naive approach is not sufficient when
creating a complex profile. The fact that the code author
who called a function might indicate that he understands it,
however, one function call does not provide a clear evidence
that the subject perfectly understands every detail related to
this function. This is why there is a need for metrics definition,
based also on empirical observation. In the metrics, we may
take into account multiplicity of one method use assuming the
more is one method used, the more the subject understands it.
Moreover, we may assess method complexity (code length and
documentation length) [6]. Such metrics definition represents
a separate part of the research regarding knowledge profile
generation.

B. Use cases

Presented approach towards knowledge profiles generation
can find its practical benefits in the following:

• book profile (object profile) – based on subject profile,
one may select the most helpful book,

• candidate selection (subject profile) – regarding a task or
group of tasks (object profile) supposed to be solved,

• determination of skills necessary to handle some task
(object profile) – based on subject profile,

• statistical evaluation of what people frequently use/not
use – may indicate the difficulty of use (subject profiles)

• determination of language constructs complexity or li-
brary complexity.

The verification of the proposed method of knowledge pro-
file generation can be done within the educational process, e.g.
by creating a record of changes in student profile after passing
a programming course. Such a record may be beneficial during
the exam, indicating student improvement.

As stated in [7], static analysis tools generate lots of data.
Therefore, in addition to appropriate techniques of profile
creation, two other topics are related and represent a separate
part of the research: usability and visualization of knowledge
profiles. Assembled data regarding subject or object profile
cannot be beneficial if the way of their visualization as well
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as the user interface are disarranged or too complicated to
make any sense.

III. PROTOTYPE

To evaluate the concept, a prototype has been implemented,
that allows to analyze program source code written in Java
language. The prototype represents only the first iteration
of our research in the area. It uses the counts of language
constructs used in the code to generate a profile. The profile
itself is represented as a table containing the counts for each
source code file and also summary data. The table is serialized
in JSON format.

The data are then visualized in different ways to allow their
further examination and comparison.

The tool provides four ways to display profile data:

1) Detailed tables — display counts of the used language
constructs for each source code file. Constructs are
divided into several logical groups (e.g. arithmetic op-
erators or control flow statements) that are displayed in
separate tables.

2) Summary tables — display summary counts for all files
with values of statistical variables like arithmetic mean,
modus, median, standard deviation etc, that characterize
distribution of a language construct between source code
files.

3) Heat maps — represent a matrix with total counts for
each language construct, where cells of the matrix are
colored according the counts (darker color means higher
occurrence) and additional statistical data is displayed in
a tooltip window (see Fig. 2 that displays comparison
of several profiles).

4) Box plots also called box-and-whisker plots [8] —
visually display summary data together with their dis-
tribution (see Fig. 3).

The tool can display simple profiles – data collected for
some set of source code files that are produced by single
person (subject profile) or are part of a single project (object
profile). In addition, there are two compound types of profiles
that consist of several simple profiles:

• group profiles that display data for several profiles and
allows to summarize and compare them,

• comparison profiles that allow to compare several profiles
with a single master profile.

For the comparison purposes, the most valuable type of
display turned out to be the heat map. It allows to display
a large set of data in a compact form which is easy to
explore and therefore allows to visually find anomalies that
may indicate significant results.

To implement the parser of Java language, ANTLR parser
generator [9] was used. The visualization is based on web
technologies such as AngularJS framework1 and HighCharts
interactive graph plotting library2.

1https://angularjs.org/
2http://www.highcharts.com/

IV. EXPERIMENTS

We have performed several experiments regarding the de-
veloped tool.

A. Analysis of language constructs used in large projects

The tool has been tested on several existing projects, both
medium and large. The goals was to assess how Java language
constructs are used in them and to test extraction of object
profiles.

The results show that in medium-sized projects there is a lot
of language constructs that are not used at all. For example,
one of the tested projects – YAJCo parser generator [10] – did
not adopt any bitwise and bit shift operators, a large part of
the arithmetic operators and some other constructs.

Even in a large project, like Google Guava library3, there
are constructs that are never used, including some bit shift
operators, try-with-resource blocks, and a default argument for
annotation parameters. Bit shift operators, however, have been
used in a form of compound assignment operators. On the
other hand, try-with-resource was added to the language in
version 7, so it has probably been avoided for compatibility
reasons.

On the other hand, in the large project most of the Java
language constructs was used at least once. This means that
profiles based solely on language construct counting would not
be comprehensive enough for such projects. For this reason
we plan to extend the prototype with advanced analysis and
additional metrics.

B. Comparison of student assignments

To evaluate the comparison of profiles, we planned to com-
pare projects of similar size and in the same domain. For this
reason we have chosen source code developed by our students
as part of their assignments. We used the assignments from the
Object-Oriented Programming course. For most students, this
course is a first introduction into Java language and object-
oriented methodology. This way we were able to compare
subjects with similar starting knowledge working on the same
problem. We also added a solution developed by a teacher to
the comparison.

Fig. 2 shows a fragment of the comparison results. Rows
correspond to different language constructs, for example break

statement or try block. Columns represent different projects.
Students’ projects are identified by numbers while teacher’s
project is called master. The table contains a total number of
construct occurrences within analyzed codes. After pointing to
some table cell, a tooltip window appears containing statistical
parameters that represent distribution of the language construct
per source code file (see return statement for student 6 in
Fig. 2).

The comparison has show that in general the results of
both students’ and teacher’s solution are quite similar. There
are, however, some notable differences. For example, student
3 used the largest number of different language constructs,

3https://github.com/google/guava
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Fig. 2. Fragment of the students assignments comparison displayed as a heat map

Fig. 3. Example of the box plot displaying counts of modifiers per source code file

even the ones not used by the teacher. Student 7, on the other
hand, probably encountered problems with understanding the
principles of object-oriented programming, since he used the
static modifier much more often than the other subjects.

Some students missed language constructs used by all the
others. For example, student 1 did not use float and long types,
student 5 did not use switch statement. This may indicate
that they did not understand these types or constructs, or they
simply selected a different implementation strategy. Therefore,
exploration of the source codes themselves is needed in both
cases.

On the other hand, the fact that student 6 did not use final

modifier quite clearly indicates that he does not understand
the importance of immutability in programs.

V. RELATED WORK

There is a number of studies dealing with source code
analysis. Most of them are focused on software security,
detecting bugs, defects and potential vulnerabilities. Two of
such studies are [11] and [12], both dedicated to static analysis
of C/C++ source code. Static analysis tools which are the most

popular usually explore static code and identify a large variety
of bugs and bad programming practice [13].

Usually, static analysis refers to methods of automated
determination of a program behavior during compile time.
Static analysis tools have become part of modern compilers,
however, these tools can only identify elementary errors [14].
E.g. traditional tools cannot identify the presence of deadlocks,
having their own research branch [15], [16], or breaking
mutual exclusion in concurrent applications [17], [18].

A method dedicated to collecting, comparing, and combin-
ing program semantics is refered to as abstract interpretation
and it has been successfully used to derive run time properties
of a program which can be used for program optimization.
Other objectives of static analysis tools are mostly concept
location [19], [20], code transformation [21], [22], security
[23], [24], or reverse engineering [25].

When dealing with techniques of the static analysis, one
may refer to [26], published a decade ago but still actual,
focused on various approaches in software testing based on
automata theory. One may also refer to a newer publication
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[27], of which authors claim that empirical code evaluation
plays an important role in software analysis.

A technique presented in [28] locates computational units
typical for a set of related features through execution profiles.
In order to detect the most feature-specific computational units,
concept analysis is performed [28]. This is combined with
static analysis using the feature-specific computational units
to detect additional units along with the dependency graph.

Static software analysis has been also covered by a number
of surveys, e.g. [29] or [30].

An interesting source of data for programming profile gen-
eration may be software repositories, produced and archived
throughout software development [31]. In order to explore and
examine software repositories, mining software repositories
(MSR) have been created. As stated in [32], MSR exploration
used to be subjected on industrial systems in the past. How-
ever, with an extensive increase of open-source software, this
research has become a new challenge. MSR researchers mostly
focus on clearer understanding of software evolution [33],
development of tools, methods and processes.

Metadata analysis differs with particular exploration ob-
jectives and software repositories. The most common issues
addressed by MRS researchers are [34]:

• detection of change patterns,
• prediction of changes,
• detection of bugs,
• analysis of bug-fixing change,
• source code exploration,
• identification of software developers.

All of the mentioned issues have one main objective in
mind: To augment traditional software engineering techniques
in order to guide decision processes in modern software
projects [35]. That is, while MSR researchers focus on
programming targets (programming result – software), our
attention is paid to the source (software author). Since the
aim of this study is to assess quality of the code author, source
code exploration and developer identification [36] are the most
related issues.

VI. CONCLUSION

Having been first described as a prototype, this study has
dealt with an exploration tool aimed at the Java code of various
programmers. The main objective is to automatically generate
programmer assessment profile. The analysis indicates the
topic is quite extensive and little explored. This is why we
described only a few of the potential methods for the profile
generation.

The proposed tool has been developed and experimentally
evaluated on several code samples including a medium-sized
and large software project. The tool is intended to analyze
knowledge through counting the language constructs. In order
to clarify the results, the method utilizes elements of the
descriptive statistics [37]. Within the experiment, various pos-
sibilities of source code processing have been implemented.
For all the processing types, results are available in JSON

meta-form as well as in various types of graphical web-based
representation.

Since we are still in early stages, the described code-
exploring tool and its continuing maturation will include
the capability of treating more complex code solutions and
utilization of additional metrics. The future plan is to detect
and evaluate more advanced language usage e.g. nested loops,
or programming idioms [38]. The tool should also track used
library classes and method in addition to built-in language
constructs. In order to support this, it would be required to im-
plement processing of references in a programming language
[39]. In distinction to general search-based techniques, future
work will also involve model-based deductive evaluation,
similar to [17]. Moreover, if combined with automated code-
functionality evaluation during the educational process [40],
knowledge profiles may become a significant contribution to
student assessment.

Even with the current implementation it is hard to manually
analyze and compare large number of profiles. This means that
growing amount of data in the profile would require advanced
methods of its visualization and automated analysis.

Apparently, automated knowledge evaluation might not be
completely accurate. In order to achieve more precise profile
results, it will be necessary to perform a lot of experiments
over a large group source code and to combine several types
of metrics or statistics. However, interesting results will be
visible immediately.
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