&l

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 991-996

DOI: 10.15439/2015F247
ACSIS, Vol. 5

1

Generating Database Access Code From Domain
Models

Nassima Yamouni Khelifi*', Michal Smiatek*, Rachida Mekki'
*Warsaw University of Technology, Poland
Email: {nassima, smialek } @iem.pw.edu.pl
tUniversity of Sciences and Technologies of Oran-Mohamed Boudiaf-, Algeria
Email: {nassima.yamounikhelifi, rachida.mekki } @univ-usto.dz

Abstract—Automatic processing of requirements (e.g. to gen-
erate code) remains a challenge in contemporary software de-
velopment. Requirements are still treated as secondary artifacts
by software developers, as they are written in natural languages
which causes ambiguity. In this paper, we present an approach
to generate working code from requirements through applying
precisely formulated domain models. As the source, we use the
Requirements Specification Language (RSL) which is a precise
constrained language, based on a central domain model composed
of domain notions. These notions are linked from use case
scenarios and create a form of a ‘wiki’. Notions are graphically
visualized in RSL, and resemble UML classes with attributes.
Notions can be used in phrases that can represent various
operations used within use case scenarios. In our approach we
introduce model transformation algorithms that allow to generate
database access code associated with operations to persist (store,
retrieve) data in a database system. To focus our work, we
present code generated for Hibernate which is an object relational
mapping framework.

Index Terms—model-driven requirements engineering, model
transformations, database access, metamodelling

I. INTRODUCTION AND BACKGROUND

YPICAL requirements specifications in contemporary
Tsoftware projects use natural language, possibly with
some elements of modelling. This poses a significant challenge
for approaches to automate the process of turning requirements
into working code. A prominent field of research that aims
at changing this situation is Model-Driven Requirements
Engineering (MDRE) [1]. In MDRE, requirements are
expressed as models, often by using the Unified Modelling
Language (UML) [2]. Such models are intended to be
comprehensible to both software developers and end-users.
This comprehension is most often assured by introducing
a comprehensive vocabulary of the problem domain in the
form of a domain model. This allows to use the techniques of
domain engineering [3]. Most often, UML class diagrams are
used. Classes represent domain objects (noun phrases) with
associated atomic attributes (also nouns) and operations (verb
phrases). What is more, class models can define relationships
between domain objects (notions), thus allowing to build a
certain semantic network of related notions.

Still, UML does not offer any means to associate domain
models with the remaining models and it has no precise syntax
for textual elements like scenarios. Thus, in this paper we will
use a language dedicated to formulating precise requirements

978-83-60810-66-8/$25.00(©2015, IEEE

models, called the the Requirements Specification Language
(RSL) [4], [5]. The syntax of RSL is defined through a meta-
model using the Meta-Object Facility (MOF) meta-language
[6]. An important feature of RSL is that it introduces precise
(hyper-)linking of domain models within textually expressed
requirements units.

To link textual requirements with domain models, we need
to represent requirements by using notions from the domain
model in a consistent way [7]. This means — for instance —
that use case [8] scenarios should be composed of links to
domain model elements — noun phrases and verb phrases,
contained in a central domain model. In RSL, this is done
very consistently: all the scenario sentences are in fact links
to phrases contained in the domain model. This makes the
whole RSL-based specification resemble a ‘wiki’ system (see
Fig. 8 for an illustration) with consistent use of hyperlinks to
specific vocabulary notions.

This consistency of RSL allowed Smiatek et al. [9], [10],
[11] to formulate formal translational rules for generating code
from requirements models (use cases and their scenarios) down
to UML design models and Java code. The resulting code
follows the Model-View-Presenter (MVP) [12] architectural
pattern. The rules focus on generating full code for the View
and the Presenter layers, and method stubs for the Model
layer. They also permit to generate Data Transfer Objects,
that facilitate control flow between the three layers. Unlike
for other approaches in MDRE, these rules allow for a fully
automatic translation from high-level requirements models
(use cases, scenarios, domain vocabularies) down to fully
operational code.

The above approach with RSL still lacks rules for generating
code associated with persistence operations at the Model layer.
Thus, in the current work, we concentrate on defining and
implementing rules for generating database access code that
is responsible for processing and persisting data. We want this
code to be consistent with that for the View and Presenter
layers as introduced in the previous paragraph. For this, we
will use the Hibernate framework [13] which is an Object
Relational Mapping (ORM) that allows for mapping Java
Classes (DTOs) to database tables, and for managing data with
the Data Access Object (DAO) design pattern [14]. We give
rules to generate general Create/Read/Update/Delete (CRUD)
operations for persisting Java objects in database tables.

In the following sections we introduce our approach which

991

992

is consistent with typical model transformation approaches of
Model-Driven Software Development [15], [16]. In Section II
we briefly present the domain vocabulary part of RSL which is
the source language for our transformations. In Section III we
present the transformation itself: selected rules and algorithms
that implement them. The rules define the translation from
RSL to UML with inserted operational Java code. The algo-
rithms are expressed in a graphical transformation language
called MOLA (MOdel Transformation LAnguage) [17], [18].
The last section presents conclusions stemming from imple-
menting the presented algorithms within the RSL environment
called ReDSeeDS [19] and using a UML tool (Enterprise
Architect - EA, from Sparx Systems, sparxsystems.eu) to
visualise the generated UML models and to generate the final
Java code.

II. REQUIREMENTS SPECIFICATION LANGUAGE:
OVERVIEW OF THE DOMAIN NOTIONS PART

Requirements Specification Language (RSL) is a semi-
formal language for specifying precise requirements [5], [20].
The fundamental idea behind RSL is separation of concerns:
separating description of the system’s application behavior
and the description of the system’s problem domain. The
behavior of the system is described with use cases and their
textual scenarios written in constrained natural language. The
domain specification is defined using notions (words). Phrases
in scenario sentences constitute the application logic, and are
linked to notions that constitute the domain logic. Notions
can be composed of both “nouns” and “verbs”.

The RSL’s grammar is defined formally through a meta-
model written in MOF which is standardized by the Object
Management Group (OMG, www.omg.org) [6]. The primary
goal of MOF is to allow metamodels to be defined using basic
class model syntax (classes with attributes and relationships).
The full description of RSL consists of the abstract syntax (i.e.
the metamodel), the concrete syntax (definitions of visual lan-
guage elements), and informally specified semantics (natural
language descriptions similar to those in the UML specifica-
tion [21]). It can be found in a comprehensive report from the
ReDSeeDS project [4] which uses the ‘Complete’ (CMOF)
dialect of MOF. A variant that uses the ‘Essential’ dialect
of MOF (EMOF) is presented in the book by Smiatek and
Nowakowski [11]. The book also presents a comprehensive
approach to defining RSL’s semantics in a formal, translational
way.

Figure 1 presents a small excerpt from the RSL. metamodel
pertaining to notions and their relationships. As we can notice,
in contrast to UML, Notions contain notionAttributes that are
also Notions. Attributes can be distinguished from regular
notions by their possession of an AttributeDataType. The
possible data types include:

o “text”: string-like textual description;

e “number”: an integer number;

o “floating number”: a number with a possible decimal;
o “truefalse”: a boolean value;

o “date”: a value containing date or time;

PROCEEDINGS OF THE FEDCSIS. £ODZ, 2015

DomainElementRelationship | +toTarget +source | pomzinElement

- directed :boclsan -
- sourceMultiplicity string | TtoScurce
- tergethultiplicity :String [z

: i

1
+target

P e &
NotionRelationship +notionAttribute .
_999‘95_15“5” - dafaultValue :Sfring
isPersistent - isPessistent :boolean
sourceRole +parentMotion 0..1
targetRole +noticn =

+dataType |0..1

AttributeDataT
aenumerations I i

AttributeDataTypes

= 7%

number
true/false PrimitiveDataType
date

fleat

Enumeration

typeMame AttributeDataType - name :String

Fig. 1. Part of the RSL’s metamodel for notions and their relationships

It can be noted that to represent requirements for software
we need to define domain elements in two areas: 1) the prob-
lem (business) domain, and 2) the application domain. The
problem domain is the actual reality that the software supports.
It is stable and quite independent from the application to be
built and changes when the reality changes. The application
domain changes when the application changes and contains
various parameters and user interface elements.

Here we will concentrate on the the problem domain that
consists of domain notions (e.g. “book”, “publisher”, “au-
thor”...etc), and their attributes (e.g. “title”, “name”, “address”
..etc.). The concrete notation for domain notions in RSL is
similar to that found in UML class models. An example is
shown in Figure 2. The basic type of Notion in RSL is
the “Concept”. Graphically, it resembles a UML class. The
second type of Notion is the “Attribute”. We can notice that
unlike in UML, attributes are not contained graphically in the
“Concepts”. This is a feature of RSL that facilitates sharing
attributes between various notions, especially of the ‘view’
type (see below).

Concepts and attributes are presented as rectangles adorned
with appropriate tags. Attribute elements additionally contain
information about the data type included in brackets. We
should note that the data types are not limited and can be
easily extended in the metamodel, depending on the problem
domain (e.g. with sound, graphics, etc.), but should be defined
in advance prior to developing a transformation.

Other notion types in RSL are called “Data views” and are
divided into two kinds: “Simple data view”, and “List data
view”. Data views point to sets of attributes. “Simple data
views” serve to present single instances of combined attributes.
“List data views”, are used to present lists, containing many
instances. “Data views” and other RSL elements are not treated
in detail in this paper, for more details please refer to the book
by Smiatek an Nowakowski [11].

NASSIMA YAMOUNI KHELIFI ET AL.: GENERATING DATABASE ACCESS CODE FROM DOMAIN MODELS

Merribute (Descriptionl| - Artribute (True/Falial| Wrtribute (Numbert

Eummary ard cover number of pages

[rtribute (Datel
ssue date
Wrrribute [Taxth
shn

__"Qfoncapr
[irrbure (T pook
kitle = *

[Conceat
ublisher

AN (AN

[Comcept
Feview

[Arrribure (Numbed| [rtribute (Description)| Hrribure {Dare) firtribute (Ten [irtribute (Texth
Fating komment when added ublishers name| pddress
[irtribure {Tevy)
Buthors name
\‘:‘T—\}Coxcem
- Buthor —
W rtribute (Datel
bithdate |~ .
[stribute {Descristion|
bicgraphy

Fig. 2. Example of notions and their relationships in RSL’s concrete notation

The different types of domain elements are connected
by “relationships”. The first kind of relationship is denoted
similarly to associations in UML. It relates two concepts, and
can have multiplicities. The second type of relationship is
containment of attributes within concepts, where the diamond
is placed on the concept side. The notation of containment
relationship is also taken from UML and resembles aggrega-
tions.

In RSL, we can define all kinds of problem domains
(e.g. Physics, Aeronautic, Finance, etc.). Figure 2 illustrates
an example of RSL model for the “Library Management”
problem domain. In this domain we have four elementary
concepts: book, author, publisher and reviewers. Each concept
can hold a number of attributes (shown via the containment
relationship). For example, the “book™ concept has attributes
like: ISBN, title, number of pages, issue date, etc. The four
concepts are connected via associations, that have appropriate
multiplicities (one-to-many, many-to-one, many-to-many, ...
etc.).

III. GENERATING DATABASE ACCESS CODE FROM RSL

This section consists of two parts. In the first part we intro-
duce selected transformation rules that constitute translational
semantics for RSL’s domain vocabulary constructs, where the
target languages are UML and Java. In the second part we
present algorithms expressed in MOLA that implement these
transformation rules.

A. Transformation Rules

In order to generate database access code from RSL we
need to explain its semantics concerning this aspect. For this,
we will use a pragmatic translational approach [22], which
is based on translating a “Source language” to a “Target
language” which has already well-defined semantics [23], [24].
In our case, the source language is “RSL”, and the target
languages are “UML” and “Java”. The reason behind choosing
Java and UML as target languages, is that they are widely used
and understood by a large community of software developers.

We will define a set of translation rules to generate data
base access code from RSL domain models. For this, we will
use the Data Access Object (DAO) design pattern [14], that
implements the access mechanism required to work with the
data source (e.g. Relational Database Management Systems
like: MySQL, Oracle, PostgreSQL, etc.). We will apply this
pattern in the context of the Hibernate framework, which
is an open source Object-Relational-Mapping (ORM) that
allows for persisting and storing data in a database [13],
via CRUD (Create/Read/Update/Delete) operations within the
DAO classes.

Hibernate maps Java persistent classes to database tables,
and from Java data types to SQL data types, and provides
data query and retrieval facilities. The Java persistent classes
are Data Transfer Objects (DTOs) [25] or POJOs (Plain Old
Java Objects). Hibernate uses XML files for mapping Java
classes into tables, which are: Hibernate Configuration file,
and Hibernate Mapping files. The Hibernate Configuration file
contains all the required information related to the database,
and other related parameters. The Hibernate Mapping files
should be generated for each DTO class, and should contain
information related to associations between database tables.

In the following, we will present two translation rules
that defines semantics of RSL domain models in terms of
DAO classes, and Hibernate classes. Other rules, that allow
to generate Data Transfer objects and configuration files are
out of scope of this work.

o Rule R1: Every “Concept” in the RSL domain model
is translated into a DAO class. The name of the class is
derived from the Concept’s name and concatened with
the “DAO” string. Each class contains four operations:
“Create”, “Read”, “Update”, and “Delete”, plus the “com-
mon”’ operation. The operations’ names are derived from
the name of one the CRUD operations, concatenated
with the name of the “Concept”. Figure 3 provides a
description of Rule R1. In this example we can see that
the “book” concept in RSL, is first translated into a UML
class named “BookDAO” with four CRUD operations
(createBook, readBook, updateBook, and deleteBook),
plus the “common” operation. The UML class is then
translated into a “BookDAQ” Java class. The “common”
operation (lines 11-17) initialises various variables re-
quired by Hibernate. In lines 19-26, we show a fragment
of code for the “readBook” operation, which takes two
parameters as input: the Class (i.e. the DTO class) and
the identifier (ID), and reads the proper object using the
“load” method of the ‘session’ object.

993

994

Concest
book

BookDAO

commen() -void
createBook() woid
deleteBock() :woid
readBoockiClass, long) wvoid
updateBook() 'veid

LR

public class BookDRO {

public BookDAO () {

i
private static Session session;
private static Transaction tx;

-1 s G R

Book book=new Book():

[=JT=Rye]

public void. common [} {
Configuration cfg=new Configuration /()
cfg.configure():
SesszionFactory sf=cfg.buildSessionFactozrv():
session=sf.openSession():
tx=szession.beginTransaction();

I T SR SR

17 }

m

¥e]

public woid readBook({Class clazz,
Cbject obj;
tryvi

common () ;

obj= session.load(clazz,

long id){

[N ST

e

id);

[SRR Y

BB
B R L
-
)

(%]
m
-

Fig. 3. Generation of the “BookDAO” class with CRUD operations

« Rule R2: Every “Concept” with its attributes in the RSL
domain model is translated into a mapping class. The
class’ name is derived from the concept’s name. Each
mapping class contains a constructor with a parameter,
and the “mapping” operation. Rule R2 is illustrated in
Figure 4. The example shows a fragment of the code for
the “mapping” operation. This operation is responsible
for mapping of the Book class into the book table which
exists already in a database, this table of course has a
unique identifier (ID). Each attribute is mapped into a
column in a database table (see lines 27-31).

B. Transformation Algorithm

The presented rules define the expected outcome of a
transformation from RSL’s domain models to database access
code. To implement these rules, we have developed appro-
priate transformation algorithms. Here we introduce them by
using MOLA, a language dedicated to model transformations,
developed at the University of Latvia [17], [18]. The MOLA
notation is graphical, as illustrated in Figures 5-7 and is based

PROCEEDINGS OF THE FEDCSIS. £ODZ, 2015

frerbute (Dot Rrerdute (Texd
ssue date sbn

A rerbute (Floating podnt number)
pverage rating

prerdune (Number
humber of pages

perrdbute Texti
kitle
Rrribute (True/Fakse)

hard cover T
book

prerbute (Description) _O

Eummary

Book
:File {bag}

- f=null

+ Book(File)
- mapeing() -void

public class Book {
private File f=null;

public Book(File f){

5 . O Y S R

}

wom

public void mapping(){

10 tryd

11 DocumentBuilderFactory dbf:;

dbf= DocumentBuilderFactory.newlInstanced();
DocumentBuilder db;

db= dbf.newDocumentBuilder ()

Document doc = db.newDocument () ;

el, id, eol, pri|

3

3

r= doc.createElement [("h
cl = doc.createElement (”
cl.setAttribute ("na
cl.setAttribute ("t
id =
id.=setActribute ("na
id:setArttribute ("t

o]
]

[R5 I L R)

P s

25 cl.appendChild{id):

28 Bk

27 col= doc.creaceElement ("co
28 pr=doc.createElement {"p

29 pr.setAtcribute ("nams",

pr.setAtcribute ("tybe”,
col.setActribute ("nama",
pr.appendChild (col) ;
cl.appendChild(pr) :

P

e

LW
o
o

Fig. 4. Generation of Hibernate mapping code for the "Book™ concept

on graph-grammar rules that are defined in the context of UML
activity diagrams.

MOLA is a procedural language, and Figure 5 shows a
sequence of 6 procedure calls. This forms the main procedure
of our algorithm. After cleaning-up the target model, the
procedure creates a general package structure. Then, it creates
appropriate Data Transfer Objects and Data Access Objects.
Finally, it generates Hibernate mappings and configuration
files.

In this current short introduction to the transformation
algorithm we will concentrate on creating the DAOs (cf. Rule
1 in the previous section). The appropriate procedure for

NASSIMA YAMOUNI KHELIFI ET AL.: GENERATING DATABASE ACCESS CODE FROM DOMAIN MODELS

®

v

(ClesnUpTargetModel))—---D(CrasteMV PPackageStmucturel))

(== Jae(i)

(HibernateMappingl))—---l::(HibernateConfiguration ())

Fig. 5. Main steps of the algorithm expressed in MOLA

.

_|>(wtl_GatNotionType(@n, Etyps) }__ l:‘ @WDE="'EQCOWEP‘")
H
wtl_ToP: \
=,

n : Notion
{MNotions}

p: Package ot Class
{Kernel} kage {Kernel}
F—
{name="DAC"} packagedElemen nzme:=@out+"DAC"
T
AV
(uﬂ_r son{@d, "DAC. DAOInterface”, ime)
- ™
@l i Class iszlloc ¢ IsAllocatedTo
{Kernel} allocationTarge {sclkarnal}
allocationToRSH,
allocationTolUpMI
allocationSource
&n : Notion
{Notions}
_ y

(uﬂ CraateClassDependency(@d, "java.utilList”, ___(
utl_CresteClassDependency{@c, "org hibernate, }----D(

cfg.*", true)
v
)<|_ _(SpechcCrese(@d, @s, @out)

(SpecficUpde{@d, @s, Bout))_ _____ I>(SpacificDelete(Ec], @5, Gout)

utl OemedassDependeltv{@d- ‘ong,
hibernate, ®"

‘CommonDAC{Ed)

(SpecificResd(@¢|, @, out)

AT N S

Fig. 6. Procedure for creating DAOs (“CreateDAO”) expressed in MOLA

®

od : Class 1 ‘@name ; String @out 1 String
3
(e :Z :

(" ™
@cl; Class op | Orperation
{Kemel} class {Kemel}
ownedOperatiod name: ="read"+Soug
visibility: = PUBLIC
operatiod operatio
T ——— i | Parameter
type : PrimitiveType = . srEm ownedParanhets
{Ken type {Karmel}
{Kemel}
m w typedi name:="id"
name: ="long
ownedParamets
typel : PrimitiveType clzzz ¢ Parzmater
{Keensl) D= {Kernel}
name: ="Class" i namei="rlazz"
~ S
v
'ruﬂ_AddOpaaﬁonCnde{@op, " "+@out+" "+@name+";in tyin comman()iin "+Ename+"= sessio
boad{cl=zz, id]; }\n catch (HibernateException &) {if {ba=null) turollback(;\n e, printStackTrace();\n}
finzlhy{session.close{)in}"

b

i
Fig. 7. MOLA rule for “SpecificRead” operation

implementing this is presented in Figure 6. The procedure
iterates over all the Notion objects (refer to Figure 1) found
in the source model (see the object ‘n:Notion’ in the top-
left of the figure). Note that in MOLA, loops are represented
by rectangles with thick borders which encompass all the
actions to be performed within them. For each notion, the loop
determines the notion’s type, and if it is of type ‘concept’ it
creates a new Class type object (see ‘cl: Class’). This object
is placed inside an existing Package (see ‘p:Package’) named
‘DAO’. Additionally, the newly created class is related through
a realisation relationship to a DAO interface object and through
a mapping relationship (see ‘isalloc:IsAllocatedTo’) — to the
original notion object. It is also completed by generating some
relations to other elements that allow for importing certain
elements specific to the Hibernate framework.

The main loop concludes by generating four CRUD op-
erations within the new class. One of these procedures is
illustrated in Figure 7. This procedure takes two parameters
as input — the class and its name. In the class it creates
an operation (see ‘op:Operation’ with two parameters (see
‘id:Parameter’ and ‘clazz:Parameter). As we can see, the main
MOLA rule presented in Figure 7 shows a configuration of
5 objects to be created (one operation, two parameters and
two primitive types). This configuration is consistent with
the UML’s metamodel which can be found in its official
specification [21].

Note that the generated operation matches code illustrated
in line 19 in Figure 3. In addition, by using a simple text
processing statement (see ‘utl_AddOperationCode’), the pro-
cedure appends the method of the operation with the code like
in lines 20-24 in the same figure.

996

L. System saves book data Systemto SimpleView + :(rlm v :'system v|

:Systtm o Simple View

v |Update »/ system ¥

Domain statements:

Name Action Type
) update book data Update
) save book data Creste

Fig. 8. Linking domain elements from scenarios

IV. CONCLUSION AND FUTURE WORK

To validate the presented approach we have implemented
the above introduced algorithm within the framework of the
the ReDSeeDS (Requirements-Driven Software Development
System) tool suite [19] (see: www.redseeds.eu). The tool
offers a full Model-Driven Software Development (MDSD)
life cycle: i.e. from requirements to UML models down to
Java code. In our application, the source RSL. domain model
with its notions were specified using the ReDseeDS editor
(see Fig. 2). After writing and testing the transformation
rules using the MOLA environment (see: mola.mii.lu.lv) we
have integrated them into the ReDSeeDS tool. The MOLA
transformation has been compiled and made available within
the ReDSeeDS transformation menu. More details about this
integration process can be found in the book by Smiatek
and Nowakowski [11]. The transformations generate UML
classes with embedded method code. These UML classes are
then handled by the UML tool (Enterprise Architect) and its
standard code generator, to produce Java code.

The resulting transformation from RSL to Hibernate ORM
produced good quality, consistent code that could be used
directly to implement the data access layer. In current work we
did not approach at generating the database tables, but it can
be noted that our solution shows that a complete persistence
layer could be generated automatically from domain models
in RSL. This is an interesting research direction and we treat
this as future work.

Moreover, our future work will also include integration of
the persistence layer within the Model-View-Presenter (MVP)
[12] architectural pattern. The upper layers (View and Presen-
ter) of a complete software system can be fully generated from
RSL models as shown by Smialek et al. [10], [11], [26]. This
approach does not generate any contents of the Model layer.
However, we can approach at generating meaningful code for
the CRUD operations. Such operations are used frequently
in RSL scenarios, as illustrated in Figure 8. Links between
scenario sentences (e.g. ‘System saves book data’) and domain
statements (e.g. ‘save book data’) can be transformed into
calls from the Presenter layer to the Model layer. The RSL
environment allows for determining the type of operation (e.g.
Create or Update) and thus appropriate database access code
can be provided in proper places.

PROCEEDINGS OF THE FEDCSIS. £ODZ, 2015

REFERENCES
[1] B. Berenbach, “A 25 year retrospective on model-driven
requirements engineering,” in [EEE Model-Driven Requirements

Engineering Workshop (MoDRE’12),
10.1109/MoDRE.2012.6360078.

[2] B. A. Berenbach, “Comparison of UML and text based requirements
engineering,” in Companion 19th OOPSLA Conference, 2004, pp. 247—
252, DOI: 10.1145/1028664.1028766.

[3] D. Bjorner, “Roéle of domain engineering in software development. why
current requirements engineering is flawed!” Lecture Notes in Computer
Science, vol. 5947, pp. 2-34, 2010, DOI: 10.1007/978-3-642-11486-1_2.

[4] H. Kaindl, M. Smialek, P. Wagner et al., “Requirements specification
language definition,” ReDSeeDS Project, Project Deliverable D2.4.2,
2009, www.redseeds.eu.

[5] M. gmialek, A. Ambroziewicz, J. Bojarski, W. Nowakowski, and
T. Straszak, “Introducing a unified requirements specification language,”
in Proc. CEE-SET’2007, Software Engineering in Progress. Nakom,
2007, pp. 172-183.

[6] OMG Meta Object Facility (MOF) Core Specification, version 2.4.1,
Sformal/2013-06-01, Object Management Group, 2013.

[71 M. Smiatek, J. Bojarski, W. Nowakowski, A. Ambroziewicz, and
T. Straszak, “Complementary use case scenario representations based
on domain vocabularies,” Lecture Notes in Computer Science, vol. 4735,
pp. 544-558, 2007, MODELS’07, DOI: 10.1007/978-3-540-75209-7.

[8] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[9] M. Smialek, W. Nowakowski, N. Jarzebowski, and A. Ambroziewicz,
“From use cases and their relationships to code,” in Second IEEE
International Workshop on Model-Driven Requirements Engineering,
MoDRE 2012, 2012, pp. 9-18, DOI: 10.1109/MoDRE.2012.6360084.

[10] M. Smialek, N. Jarzebowski, and W. Nowakowski, “Translation of use
case scenarios to Java code,” Computer Science, vol. 13, no. 4, pp. 35—
52,2012, DOIL: 10.7494/csci.2012.13.4.35.

[11] M. Smiatek and W. Nowakowski, From Requirements to Java in a Snap:
Model-Driven Requirements Engineering in Practice. Springer, 2015.

[12] M. Potel, “MVP: Model-View-Presenter the Taligent programming
model for C++ and Java,” Taligent Inc., Tech. Rep., 1996.

2012, pp. 87-91, DOL

[13] C. Bauer and G. King, Hibernate in Action (In Action Series). Green-
wich, CT, USA: Manning Publications Co., 2004.
[14] H. Feddema, DAO Object Model: The Definitive Reference. O’Reilly

Media, 2000.

[15] T. Stahl, M. Voelter, and K. Czarnecki, Model-Driven Software Devel-
opment: Technology, Engineering, Management. Wiley, 2006.

[16] A. G. Kleppe, J. B. Warmer, and B. Wim, MDA Explained, The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

[17] A. Kalnins, J. Barzdins, and E. Celms, “Model transformation language
MOLA,” Lecture Notes in Computer Science, vol. 3599, pp. 62-76,
2005, MDAFA’04, DOI: 10.1007/11538097_5.

[18] The MOLA Language, Reference Manual, Version 2.0 final, University
of Latvia, 2007, http://mola.mii.lu.lv/.

[19] M. Smialek and T. Straszak, “Facilitating transition from require-
ments to code with the ReDSeeDS tool,” in 20th IEEE Require-
ments Engineering Conference (RE’12), 2012, pp. 321-322, DOI:
10.1109/RE.2012.6345825.

[20] W. Nowakowski, M. gmialek, A. Ambroziewicz, and T. Straszak,
“Requirements-level language and tools for capturing software system
essence,” Computer Science and Information Systems, vol. 10, no. 4, pp.
1499-1524, 2013, DOI: 10.2298/CSIS121210062N.

[21] OMG Unified Modeling Language, version 2.5, ptc/2013-09-05, Object
Management Group, 2013.

[22] J. van Wijngaarden and E. Visser, “Program transformation mechanics:
A classification of mechanisms for program transformation with a survey
of existing transformation systems,” Utrecht University, Tech. Rep. UU-
CS-2003-048, 2003.

[23] A. Kleppe, Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley, 2008.

[24] J. Evermann and Y. Wand, “Toward formalizing domain modeling
semantics in language syntax,” IEEE Transactions on Software Engi-
neering, vol. 31, no. 1, pp. 21-37, 2005, DOI: 10.1109/TSE.2005.15.

[25] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley, 2002, p. 401.

[26] M. Smialek, N. Jarzebowski, and W. Nowakowski, “Runtime semantics
of use case stories,” in IEEE Symp. Visual Languages and Human-
Centric Computing (VL/HCC’12). 1EEE, 2012, pp. 159-162, DOI:
10.1109/VLHCC.2012.6344506.

