
Developing an Integrative Modelling Language for
Enhancing Road Traffic Simulations

Alberto Fernández-Isabel
Rubén Fuentes-Fernández

{afernandezisabel@estumail, ruben@fdi}.ucm.es

Universidad Complutense de Madrid

Madrid, Spain

Abstract—Road traffic is a pervasive aspect in modern societies
that affects millions people. The study of its multiple aspects is
a very demanding task. Due to its complexity, traffic simulations
become a key tool. Their development demands multidisciplinary
teams, where communication problems are frequent. Model-
driven engineering alleviates this situation providing graphical
instruments for designing Modelling Languages (MLs) and semi-
automatic transformations. This work presents a model-driven
infrastructure composed by an integrative ML, a model editor,
and a code generator. The ML is based on related literature and
facilitates modelling different theories and simulations based on
them. It considers the roles of individuals involved in road traffic,
and partially adopts agent-based methodologies to model their
decision-making. A case study shows how to produce a simulation
specification adapting an existing traffic theory to the ML, and
adjust this specification to a simulation platform for testing. It
provides the basis for comparison with related work.

I. INTRODUCTION

R
OAD traffic is a complex phenomenon. Its study re-

quires considering a large amount of variables, and it

affects a variety of aspects, such as pollution, economical

factors, leisure organisation, and health issues. The individuals

involved play multiple roles in a broad range of scenarios,

being able to establish complex relationships among them.

These features make difficult studies based on experiments

in real settings, which leads researchers to limit the variables

considered and focus only on very specific aspects. In order

to alleviate these restrictions, traffic simulations appear as a

possible solution. Nevertheless, simulations present their own

weak points [1]. Some of the most relevant are related to the

difficulties to align (and check this alignment) the theories,

goals, code, and results of the simulation, particularly because

of the different backgrounds of people involved and the use

of implicit information.

Approaches based on Model-Driven Engineering (MDE)

[2] have been proposed to deal with these issues. They are

organised around models, which are compliant with MLs, and

generate other artefacts via semi-automatic transformations.

MDE processes are usually incremental and iterative, allowing

introducing improvements and modifications at any part of

their workflows. MDE requires an initial effort for developing

the elements of its infrastructure. This effort is higher than

just implementing a simulation, but it compensates it with

reusability (i.e. the resources can be used as a basis for other

projects) and the explicit description of all the information

(with MLs, models, and transformations).

Our approach provides a complete and integrative MDE

infrastructure for road traffic simulations, focused on mod-

elling individual behaviours. It introduces a Traffic Modelling

Language (TML) and two development tools. A graphical

editor supports describing the specifications, and a code gen-

erator helps to produce the semi-automatic transformations to

generate the source code for a target simulation platform from

those specifications.

The TML pursues being able to integrate (i.e. support

the modelling and combination of) different theories related

to road traffic. It considers the multiple viewpoints of the

involved individuals (i.e. drivers, pedestrians, and passengers)

and the roles in development teams (e.g. traffic expert and

programmer). In this sense, it is a Domain-Specific ML

(DSML) for this kind of problem. Faced to the traditional

dichotomy in MLs between general and specific ones [3], our

work chooses limiting the applicability of the approach to

traffic simulations in order to provide better support in terms of

guidance and tools to experts. The language is also intended to

be platform-independent, so the details of the target platform

can be considered just in late design tasks.

Following common practices in MDE, a metamodel de-

scribes the TML. It is organised using inheritance and com-

position hierarchies. The inheritances provide specialisation

of concepts, while compositions are based on relationships of

purpose, functional groups, physical links, or similarity. The

metamodel is divided into three clusters: a Mental cluster

where the different features of individuals are considered,

an Environmental cluster to specify environment information,

and an Interactive cluster to represent the interactions among

individuals and the environment and the decision-making.

The Mental cluster considers the psychological features of

individuals [4]. It plays a role similar to the mental state

of the agent paradigm [5]. It adopts the BDI model [6],

incorporating some of its knowledge concepts to model the

current information that an individual or group possesses.

The Environmental cluster is based on the Driver-Vehicle-

Environment (DVE) [7] approach. It considers that individuals

can interact among them or with the environment, either

directly or using their means of transport. These dynamic in-

teractions influence the individual behaviours. This assumption

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1745–1756

DOI: 10.15439/2015F248

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1745

fits with Agent-Based Modelling (ABM) [8], where agents are

intentional entities that can establish communications among

them for different purposes (e.g. collaborate or interact).

The Interactive cluster models the decision-making of the

individuals. It adapts this aspect from methodologies based

on Agent-Oriented Software Engineering (AOSE) (e.g. INGE-

NIAS [9] or Tropos [10]). Goals represent the people’s objec-

tives, and tasks are the instructions to execute in order those

satisfy goals. These elements are considered in a perceive-

reason-act cycle [11].

Regarding the development tools, the graphical editor allows

designing the model instances compliant with the TML. The

code generator takes as input these instances, and provides a

set of functionalities to generate source code and adapt it to

the target traffic simulation platform.

A case study shows the suitability of the MDE infrastructure

to develop traffic simulations. It specifies the work in [12]

using the ML. The graphical editor tool supports and guides

this process, which produces a model specification and default

source code templates for the primitives of the ML. These

artefacts are the input of the code generator tool. It supports

the completion of these templates with graphical wizards that

assist users. This code is finally adapted to a specific traffic

simulation platform, MATSim [13]. For this purpose, the code

generator allows adding specific classes and code snippets to

modify available code (e.g. using libraries or algorithms).

The rest of the paper is organised as follows. Section II

presents the basic concepts of MDE and the related tools. The

TML is introduced in Section III through its metamodel and

clusters. Section IV presents the two development tools based

on the TML, the model editor and the code generator. The case

study in Section V illustrates the application of the approach.

Then, Section VI compares this with related work. Finally,

Section VII discusses some conclusions and future work.

II. MODEL-DRIVEN ENGINEERING

MDE [2] is a development methodology that is composed

around models, in contrast to traditional approaches that are

based on source code. The development process is focused

on the production of iterative and incremental specifications

of models going to abstract to accurate, where developers

refine and add new elements to them at each step. During this

process, transformations are introduced in order to automate

repetitive modifications in models. For instance, generating

patterns or concrete specialisations to target platform in order

to produce models. Other related elements (e.g. source code

or documentation) are compliant to these considerations, as

they can be obtained from models using manual settings and

transformations.

This development approach is based on modelling lan-

guages. In the case of graph-oriented languages, which are

the most popular ones [14], the main instrument to achieve

these definitions is the metamodel. Metamodels are commonly

selected to describe their abstract syntax, but also they can

be used to define their specific syntax or semantics [15].

Also, these metamodels are defined using meta-modelling

languages. The Meta-Object Facility (MOF) [16] provided

by the Object Management Group (OMG) is the standard

in the domain. Nevertheless it presents some limitations.

The absence of extensive tool support promotes that users

frequently choose alternative languages or develop their own

related tools. The Ecore meta-modelling language [17] is

considered as an alternative as it is supported by multiple

Eclipse modelling tools. These tools are organised around the

Eclipse Modelling Framework (EMF) [17] and the Graphical

Editing Framework (GEF) [18]. Also, Ecore adopts the Object

Constraint Language (OCL) [19] to define model constraints

and it is almost compliant to Essential MOF (EMOF). EMOF

is a part of MOF focused on object oriented concepts and able

to specify reflective operations. These features encourage this

approach to select Ecore as its meta-modelling language in

order to develop the TML.

Fig 1 shows the principal primitives of Ecore. An instance

of EClass plays the role of its similar entities at the model

level (i.e. classes). It clusters EAttribute and EReference el-

ements. EAttribute instances provide features coming from

EDataTypes (i.e. primitive types) to EClass instances. These

primitive types include the most common (e.g. integer, char

or string). An EReference instance symbolises a binary rela-

tionship in only one direction among two EClass instances.

It allows creating containment and non-containment relation-

ships. The EReferenceType of a specific EReference instance is

indicated by its target EClass. Multiple EClass instances can

be considered by ESuperType relationship in order to express

inheritance among them. EPackage instances contemplate the

possibility of grouping the structures of the metamodel.

Regarding the transformations, they are the other core

instrument of MDE. They present different types of inputs

and outputs, being able to be classified in [20]: Model-to-Text

(M2T), Text-to-Model (T2M) and Model-to-Model (M2M)

[21]. These transformations can be developed using general-

purpose programming languages or transformation languages.

In the first case, a module uses programming structures to

manage its inputs and outputs. In the second case, the module

is developed using a specific language for transformations and

presents an engine that executes it in order to accomplish the

process.

In this work, a module defined by a general-purpose pro-

gramming language (i.e. Java) is adopted (see Section IV), as

it can use techniques from reflection-based programming [20]

and integrates several wizards that assist developers.

III. TRAFFIC METAMODEL

Road traffic is a pervasive phenomenon that involves ele-

ments and situations. In order to study it, there are different

theories that consider its aspects from multiple backgrounds

and purposes. The same situation occurs with traffic simula-

tions, where infrastructures differ on their modelling approach

and goals.

In order to facilitate the integration and modification of

elements in the TML and its study, this approach uses a

metamodel [17] defined with Ecore.

1746 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 1. Extract of the Ecore model selected from [17]

Regarding the concepts of the TML,they are mainly based

on ABM [8] and structured into three clusters. The Mental and

Environmental clusters gather the different concepts obtained

from traffic literature. The Mental cluster represents the inner

state of the participants in traffic [4]. The Environmental

cluster includes the DVE approach [7]. These clusters have

similar structures (see later in this section). The Interactive

cluster is focused on representing the goals and actions of

people involved in traffic. It is based on the guidelines of

methodologies coming from Agent-Oriented Software Engi-

neering (AOSE), integrating a perceive-reason-act cycle [11].

The core concept of the metamodel is the Person meta-

class. It represents the types of people involved in traffic.

According to their means of transport, they can be drivers,

passengers, or pedestrians. These Person instances can interact

with an Environment instance. This interaction is direct (in

the case of pedestrians), or indirect when a Vehicle instance

is used for it (for drivers and passengers). People’ features

are modelled with Profile instances, and the information they

possess with Knowledge instances. Their acts are motivated by

Goal instances, and the potential ways to achieve them are rep-

resented by Task instances. Evaluator instances determine how

people have actually to act according to the circumstances, and

Actuator instances execute the planned tasks.

The previous elements are arranged in inheritance hierar-

chies, adding the needed specialisation and structure to the

metamodel. All concepts inherit from the GeneralElement

meta-class (see Figs. 2 and 3). This meta-class provides the

EInherits reference in order to represent inheritance among

elements of the same type in model instances. The Gener-

alRelationship meta-class (see also Figs. 2 and 3) supports

the introduction of relationships (e.g. affects or influences)

among other elements. The RInherits reference allows its

specialisation. Both types of references are constrained by

expressions written with OCL [19]. For instance, constraints

only allow inheritance among instances of the same type of

meta-classes (e.g. a Knowledge instance only extends another

Knowledge instance using a EInherits reference).

The internal structure of the Mental and Environmental

clusters allows composition hierarchies using the XComponent

(e.g. KComponent or VComponent) meta-classes. These meta-

classes can be decomposed into others of their same types.

All these compositions are constrained by OCL expressions.

For instance, a Profile instance can be decomposed only into

PComponent instances, while these PComponent instances can

be only decomposed into others of the same type.

The meta-classes of the metamodel include attributes and

predefined methods. Attributes can be specific for certain

meta-classes or common (with similar name and meaning)

to several meta-classes. An example of the first case is the

AvailableArea attribute in the Environment meta-class; the

XValues attributes (e.g. PValues or EValues) for storing the

impact that an element has in the rest of the elements of a

model instance are examples of the second group. Methods

are placeholders for specifications that describe behaviour or

attributes derived from others. For instance, code snippets can

be attached to these methods in the model specification for

code generation.

Next sub-sections discuss these aspects in detail. Subsection

III-A describes the mental state and features of participants in

traffic. Subsection III-B focuses on concepts to describe the

traffic setting according to the DVE model [7], i.e. vehicles

and the environment. Subsection III-C introduces the concepts

to represent interactions among the previous elements and

decision-making.

A. Mental cluster

The Mental cluster (see Fig. 2) represents the different

concepts that can appear in the road traffic domain influencing

the behaviour of individuals [4]. These concepts are classified

as features of people or their current state.

ALBERTO FERNÁNDEZ-ISABEL, RUBÉN FUENTES-FERNÁNDEZ: DEVELOPING AN INTEGRATIVE MODELLING LANGUAGE 1747

Fig. 2. Excerpt of the Mental and Environmental clusters of the metamodel.

The cluster includes three main meta-classes: Person, Pro-

file, and Knowledge. Profile represents the different features

of people in traffic. Knowledge considers the current mental

state (but the goals) that a Person uses when dealing with

traffic. It can be factual (e.g. traffic signs), procedural (e.g.

how to overtake a vehicle), and normative (e.g. drivers should

respect safe distances with other vehicles) knowledge. Profile

instances describe people features (e.g. age or fatigue).
Both knowledge and features of people can specify informa-

tion that does not change in simulation time (e.g. gender or

meaning of signs), or does it (e.g. stress or mood). Proper

calculate methods and their associated attributes must be

specified to describe how to calculate them later.
The instances of the Knowledge meta-class and their com-

position meta-classes can represent information belonging to

individuals (e.g. the current route), or global information

available for every participant in the simulation (e.g. the speed

limit in a specific type of road). The KIsGeneral attribute

differentiates both uses.
This cluster is closely related to the agent paradigm [5]. For

instance, the Knowledge meta-class can consider the Beliefs of

people involved in road traffic, which are contemplated in the

BDI model [6].

B. Environmental cluster

The Environmental cluster (see Fig. 2) adapts the concepts

of the DVE model [7], as this is focused only on the driver

role and the TML considers others. Thus, here it is considered

that an individual can get information from the environment

(any participating person) and the vehicle (only drivers and

passengers). These elements can be extended to facilitate the

potential accommodation of other theories.

The cluster considers how individuals relate to their means

of transport and environment. It comprehends three main

meta-classes: Person, Environment, and Vehicle. Environment

represents the place where people (i.e. Person instances)

interact, including the physical conditions that can occur (e.g.

weather and road conditions). A model specification has a

unique Environment instance shared by all the individuals.

The Vehicle represents the means of transport, considering the

different roles of people in road traffic (i.e. driver, passenger,

and pedestrian). Drivers and their passengers relate to the

Environment through their vehicles, but only drivers can use

them to act on it. In the case of pedestrians, they have a direct

relationship with the environment.

The mutual influences among Person, Environment, and

Vehicle instances because of their relationships are partially

represented in the metamodel with some attributes. The Envi-

ronment meta-class has an AvailableArea attribute. It indicates

the part of the environment that can be perceived. The Person

and Vehicle meta-classes include the VisibleInfo attribute to

specify which information from the Environment instance can

be perceived in or through their instances.

1748 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

C. Interactive cluster

The Interactive cluster (see Fig. 3) describes how Person

instances act on the traffic situations considered by the Mental

and Environmental clusters (see Sections III-A and III-B).

Its components are organised into two groups. The first one

describes the objectives of people and their capabilities to

achieve them. The second one represents the elements that

carry out the acting cycle.

The first group includes the Goal and Task elements. These

two concepts come from Multi-Agent Systems (MAS) [22],

and agent-based methodologies. These methodologies include

a specific acting architecture where agents play multiple roles

and try to meet the requirements of their different goals. These

goals are enabled according to the agents’ mental states and are

directly related to task elements that can satisfy them. These

goals can be decomposed into others, generating OR or AND

compositions. Tasks can be decomposed in a similar way in

order to describe complex jobs.

In our work, the Mental cluster represents the mental state

of agents, and the Environmental cluster provides information

from the environment and the vehicle (only in the case of

drivers and passengers). The Goal meta-class represents a state

of some traffic elements a person aspires to keep or reach, and

the Task meta-class models person’s capabilities. Both meta-

classes hold specific attributes to characterise them. Goals

have Satisfaction attributes that represent their satisfaction

conditions. Tasks include Instructions attributes to specify the

atomic actions that implement them.

These meta-classes can be decomposed into others of their

type (constrained with OCL expressions), following the struc-

ture already seen for sub-components in the other two clusters.

However, semantics are different. Here, they are related to sat-

isfaction instead of determining the features of a component.

The Goal and Task meta-classes present the GType and TType

attributes in order to specify the type of compositions (e.g.

OR or AND). The GType attribute represents the type of goal

satisfaction compositions, while the TTYpe attribute indicates

if the current task is accomplished by completing one or all its

sub-tasks. These semantics are flexible, as both attributes could

be modified to support different structures and classifications.

The second group represents those elements of a person

that are in charge of evaluating the actual known state and

executing actions. It follows a classical perceive-reason-act

cycle [11] with evaluators and actuators (based on [23]).

The information perceived from the environment is stored

in the elements of the Environmental cluster (including the

Person meta-class), the reasoning is carried out by Evaluator

instances, and the acting is achieved with Actuator instances.

Evaluator instances can be decomposed into others using

the EVDecomposes reference, being able to distribute the

liabilities among them. In the case of Actuator instances, they

cannot be decomposed into others. They can use inheritance

through EInherits references, but each Person instance (i.e. a

person type modelled) can only present one Actuator instance

related to it (see the Utilizes reference in Fig 3).

Fig. 3. Excerpt of the Interactive cluster of the metamodel.

Evaluator instances assess the information obtained from

the Environment and Vehicle instances, the elements they are

composed, and the available relationship instances linked to

their Person instance. From that, they update the internal state

of the Person instance. All this information determines the

current state of goals. Once a candidate goal is selected, an

Actuator instance picks its associated tasks. It executes these

Task instances through its Instructions or subtasks.

IV. DEVELOPMENT TOOLS

The MDE approach presented in this paper is supported by

two main tools: a graphical editor where the model specifi-

cations are developed, and a code generator where multiple

operations to produce source code from models are achieved

through semi-automatic transformations. Their implementation

is based on the Eclipse Modelling Framework (EMF) [17] and

the Graphical Editing Framework (GEF) [18].

The graphical editor is an Eclipse plug-in that guides

users in the development of model specifications. It generates

models compliant with the TML through a visual interface.

This interface provides a canvas and a palette for displaying

the model and the concepts of the metamodel. The model

generated can be validated to ensure its compliance.

The code generator tool takes as input the model spec-

ifications produced by the graphical editor. In a first step,

it associates to the classes in the model the source code

EMF generates automatically for their meta-classes. Also, it

provides options to integrate other external files, e.g. specific

ALBERTO FERNÁNDEZ-ISABEL, RUBÉN FUENTES-FERNÁNDEZ: DEVELOPING AN INTEGRATIVE MODELLING LANGUAGE 1749

libraries coming from the target platform or even the entire

simulation with its associated dependencies. This can be used

later to modify the preliminary code.

Over that input, the tool presents a graphical interface for

displaying the information captured in the model specifica-

tions, allowing an intuitive navigation of them. The informa-

tion about a selected element instance includes the methods

associated (original and newly created), the decomposed ele-

ments it presents, the GeneralRelationship instances where it

acts as the origin, and the elements from which it inherits (see

Fig.4).

The code generator implements operations related to source

code transformation and model adaptation, and operations

related to specialisation to target simulation platform. Most

of them are partially automated through wizards in order to

provide guidance to users. A text editor, an internal graphical

editor, and a compiler are integrated in the infrastructure in

order to support these features.

Regarding the code transformation, main functionalities

are: source code injection for platform adaptation, design

and storage of self-contained Interactive clusters (see Section

III-C), and cluster integration.

The injection of source code offers two alternatives. They

are based on techniques from reflection-based programming

[20] in order to modify and compile dynamically the default

EMF implementation. The first one redefines only the body

of the methods of the classes adding different instructions,

using suitable code snippets for the target simulation platform.

The second one is more complex, being able to complete the

entire class or extending it from another one of the same

type previously redefined. This allows adding new attributes

and methods. As these operations require some programming

skills, the graphical interface and the integrated modules (i.e.

text editor and compiler) assist to examine the metamodel and

model elements, and their code. This facilitates these tasks and

produces a more intuitive development environment. There is

also on-line help and examples to guide users in this point.

The design and storage of self-contained Interactive clusters

uses the integrated graphical editor. It provides (in a similar

way to the graphical editor plug-in explained above) a canvas

and a palette to create the multiple elements (i.e. Goal, Task,

Evaluator, Actuator, and GeneralRelationship instances) and a

validation tool. After that, the generated cluster can be loaded

into the tool in order to perform other tasks, such as code

injection or storage of the development stage. In the last case,

a wizard creates a compressed file including the current stage

and the model designed, which allows continuing with the

graphical design in the future.

The cluster integration functionality is linked to the previous

one. It merges a model specification only with elements from

the Mental and Environmental clusters previously loaded in

the tool, and a stored self-contained Interactive cluster. A

graphical wizard facilitates the process showing to users the

available elements in each cluster in order to link them through

references from the TML. Also, GeneralRelationship instances

can be added or completed (i.e. relationships with origin in

Fig. 4. Graphical interface of the code generator tool.

elements of Mental and Environmental clusters and destination

in elements of Interactive cluster or vice versa). This func-

tionality is particularly useful since models of the Interactive

cluster can frequently be reused with different models of the

Mental and Environmental clusters. Moreover, their attached

code is the most depending on the target platform. Once the

integration is completed, the rest of the tool functionalities can

be used taking the new integrated model specification as the

current one.

Regarding the platform adaptation, the code generator tool

presents two main functionalities that promote the special-

isation of the design and a better integration between the

model specification and the target traffic platform: a dynamic

compiler insertion and new classes generation.

The dynamic insertion assists in the attachment of libraries

provided by the target platform (i.e. as external files) to the

code generator, making them available to the compiler. Once

the library or libraries are selected, the process is internally

managed by the tool making it transparent to users. It allows

producing platform-related elements in the source code of a

model specification class.

The new class generation functionality supports the creation

of new classes extending the original ones coming from these

external libraries. It uses a wizard that eases the selection

among the available classes. These classes are inserted dy-

namically in the path of the compiler and can be used as the

others. This allows the creation of new objects of these classes

in the model specification classes or vice versa.

Finally, when both the code transformation and platform

adaptation are completed, the final file is produced. It can

be generated using two different approaches: a specific plug-

in and a new adjusted platform, being both supported by

wizards to make the process more intuitive. The specific plug-

in approach builds a compressed file packaging the model

1750 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

specification, the dependencies, and the classes generated that

could be used or inserted into the target platform. The new

adjusted platform approach integrates the entire target simula-

tion platform and their dependencies (if they are needed), using

external libraries, with the model specification and the classes

modified and generated. The result is a runnable compressed

file that contains the target platform. This platform is able

to develop simulations considering the model specification

inserted.

In both cases, configuration files can be created by another

wizard. These files can be added to the compressed files in

order to indicate parameters related to the simulation that must

be considered.

The functionalities of these tools support our MDE approach

for traffic simulation. They facilitate the process allowing

the graphical examination of elements and the integration of

multiple artefacts (e.g. model specifications or code snippets).

Also, they encourage reusability and incremental development,

reducing manual coding.

V. CASE STUDY

The case study shows the use of the MDE infrastructure

(i.e. the TML and the development tools) in order to produce

a road traffic simulation. It integrates a model specification

(compliant with the TML) that adapts a theory of the domain

with the specialisation to a target traffic simulation platform.

In this case, the selected traffic theory [12] describes a

classification of potential risk factors for drivers, and how these

factors can influence their behaviour. It is modelled with the

proposed TML, and uses the resulting model for generating

source code through a semi-automatic process. Specific code

snippets and classes are inserted for generating an adaptation

that can run a simulation using the MATSim platform [13].

The original classification of risk factors presents multiple

aspects structured around two main concepts: Individual dif-

ferences and Situational factors. This classification does not

follow the DVE [7] approach required by the TML, but its

adaptation seems feasible, as both cover common aspects. For

instance, the Vehicle size factor in [12] can be represented

through the VComponent meta-class, the Age factor with the

PComponent meta-class, and the Trip purpose factor using the

KComponent meta-class.

The first step to model the traffic theory is focused on elab-

orating a modelling plan. This describes an initial evaluation

of the elements coming from the traffic theory to model that

can match with the types of the metamodel. Once this task is

completed, these elements are mapped to the selected types

of the Mental and Environmental clusters (see Sections III-A

and III-B) that fit properly with them. This planning produces

a starting schema as a result. These guidelines are represented

as a model using the graphical editor tool as follows.

Users start producing a simple structure that contains only

the needed instances from the root meta-classes of the meta-

model to represent the concepts of the theory (i.e. the starting

schema). In this case, the FPerson class (an instance of the

Person meta-class) is the root of the model design. The other

classes are related to it using their appropriate references, e.g.

connecting the FEnvironment class (an instance of the Envi-

ronment meta-class) and the FKnowledge class (an instance of

the Knowledge meta-class) to the FPerson class.

The previous structure is the basis to integrate the rest of the

theory. After creating it, users add the elements of the TML

that represent the other factors considered in [12], and link

them with the relevant main elements following the modelling

plan. The FProfile class acts as a root of its own tree substruc-

ture, being decomposed into two PComponent children. They

represent Individual Differences and Individual factors from

the theory. Each one of them is in turn decomposed into several

children (e.g. Individual Differences into Age and Gender;

and Individual into Impairment and Hurry/Distraction). The

FKnowledge class is decomposed into two KComponent chil-

dren (i.e. Trip purpose and Length of drive). The FVehicle class

is decomposed into two VComponent children (i.e. Size and

Performance Characteristics). Finally, the FEnvironment class

is decomposed into four EComponent children (e.g. Weather

and Road condition). This completes the adaptation of the

original model to the TML (see Fig. 5).

Once the model specification based on the Mental and

Environmental clusters is completed, the next step is designing

the elements of the Interactive cluster. This can be done

with the graphical editor tool adding the elements previously

defined, or with the graphical editor integrated in the code

generator tool. In order to show how models can be reused,

the second option is chosen, developing a self-contained model

specification.

A self-contained specification is an independent model that

comprises only elements of the Interactive cluster and Gen-

eralRelationship instances. These components can be devel-

oped according to the requirements of a particular simulation

platform, promoting their specialisation. The resulting model

can be merged with other models based on the Mental and

the Environmental clusters, which facilitates the integration of

multiple traffic theories with the target platform.

In this case, the self-contained model takes as basis the

approach presented in [23]. It provides a Goal and Task tree

structure with AND and OR compositions. That comes from

agent-based methodologies and the BDI model [6]. This tree

structure presents tasks associated with most of the goals.

These tasks achieve the actions of the individuals following

a set of instructions.

The root goal called ArrivedFastDestination represents the

basic goal of individuals involved in traffic. It is decomposed

into two sub-goals that must be fulfilled (i.e. AND com-

position): Actuated and EndedRoute. In turn, the Actuated

goal is decomposed into a set of alternative goals (i.e. OR

composition) that represents the different actions individuals

can choose while they are interacting in road traffic (see Fig.

6). These goals are decomposed into the alternatives to achieve

them (e.g. the SearchedObstacle goal is decomposed into the

SearchedOnLeft or SearchedForward sub-goals). When any of

these goals that represent actions is satisfied, the Actuated

goal is satisfied too. Meanwhile, the end of the route is

ALBERTO FERNÁNDEZ-ISABEL, RUBÉN FUENTES-FERNÁNDEZ: DEVELOPING AN INTEGRATIVE MODELLING LANGUAGE 1751

Fig. 5. Excerpt of the TML specification of the Factors model.

checked (EndedRoute goal satisfaction). If the EndedRoute

goal is satisfied, then individuals have achieved their purpose,

satisfying the ArrivedFastDestination root goal; if not, the

process starts again. This sequence of actions models the

processes in real-life, and assumes that at least one action

must be done to reach the root goal.

In this self-contained model specification, Goal and Task

instances present their own attributes and methods to manage

these type of compositions. In Goal instances, the GType

attribute indicates the type of goal composition (i.e. AND

or OR). Code snippets are inserted into the body of the

calculateSatisfaction method. These code snippets check if

the sub-goal elements are satisfied. In Task instances, the

TType attribute indicates the type of task composition (i.e.

AND or OR), while code snippets complete the body of the

setInstructions method. These code snippets validate if the

associated sub-tasks and the atomic instructions are achieved

successfully.

The Interactive cluster of the metamodel provides the means

to model a perceive-reason-act cycle [11] of people. It uses

the Evaluator and Actuator meta-classes based on [23].

In this case, Evaluators have a hierarchical decomposition

that follows the goal tree. The root Goal ArrivedFastDesti-

nation is considered only by the EvaluateDestination Evalu-

ator instance, the EndedRoute Goal is checked only by the

EvaluateRoute Evaluator instance, and the Actuated Goal and

the rest of Goals related to actions are controlled by the

EvaluateActions Evaluator instance. This last Evaluator is

in charge of selecting the best Goal. It considers the input

parameters provided by both the Mental and the Environmental

cluster, or the other two Evaluator instances. It also evaluates

if the satisfaction of the selected Goal is produced in order to

check if its parent Goal instances can be satisfied.

Once the structure in charge of evaluating the goals is

completed, an Actuator instance is added to the self-contained

model specification. It considers every task, executing its in-

structions when the appropriate evaluator selects its associated

goal.

After that, this part of the model specification must be stored

using the corresponding wizard of the code generator tool to

generate a compressed file. In turn, the model based on the

Mental and Environmental clusters generated in the graphical

editor is loaded as input by the code generator tool. Then,

navigating through the elements of the model specification,

code snippets can be inserted into the setXValues body method

of each one of the elements with the purpose of redefining the

1752 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 6. Excerpt of the goal tree structure of the self-contained model specification.

calculation procedure of the XValue attributes (see Section III).

In this case, the code snippet applies a formula based on Fuzzy

logic [24]. The value of an element is obtained adding every

value of the children and its own value and dividing this result

by its number of children plus one, establishing a relationship

among the children components and the parent. This step can

be changed to consider other formulas and theories.

This model based on the Mental and Environmental clusters

can be stored using the appropriate code generator function-

ality. This allows reusing the fuzzy formula and the structure

generated in other projects.

As soon as the fuzzy logic is inserted into the model,

the wizard in charge of the cluster integration functionality

can be selected to apply it. The wizard links the FPerson

instance with the root Goal instance of the self-contained

model specification (i.e. ArrivedFastDestination) through a

Pursues reference. Then, the FPerson instance is linked to

the Evaluator root instance (i.e EvaluateDestination) and

vice versa using the references Harnesses and IsHarnessed

respectively. Finally, the Actuator instance is connected to the

FPerson instance by means of Utilizes reference. When the

process is completed and every reference is established, both

clusters become a single model specification.

The same wizard supports the integration of GeneralRela-

tionship instances among both clusters of the single model

specification. These GeneralRelationship instances indicate

the influence of target elements over the Task instances asso-

ciated with each Goal instance. These GeneralRelationships

are considered by the appropriate Evaluator instance in order

to select the best candidate Goal. It evaluates the Xvalues

attributes (previously configured using Fuzzy logic) of each

related element of the Mental and Environmental clusters in

order to generate real-time decisions.

Here, the addition of GeneralRelationship instances follows

the factors structure. Environment factors (i.e. RoadCondition

or TimeOfDay) directly affect Overtake or Brake instances,

Fig. 7. Excerpt of the elements implicated in the overtaken interaction.

establishing multiple GeneralRelationship instances among

them (see example in Fig.7). IndividualDifferences factors

(i.e. Age or RiskTakingPropensity) affect Accelerate or Re-

turnLane Task instances. Individual factors (i.e. Impairment or

Hurry/Distraction) affect SearchObstacle or Accelerate Task

instances. Vehicle factors (i.e. Size or PerformanceCharacter-

istics) affect Accelerate or Turn Task instances. Knowledge

factors (i.e. TripPurpose or LengthOfDrive) affect Overtake

or SearchObstacle Task instances.

When the integration of these GeneralRelationship instances

is completed, all these concepts and other possible evaluation

criteria must be considered by the Evaluator instances. For

this, the appropriate code snippets must be inserted into the

body of the evaluateGoals method.

ALBERTO FERNÁNDEZ-ISABEL, RUBÉN FUENTES-FERNÁNDEZ: DEVELOPING AN INTEGRATIVE MODELLING LANGUAGE 1753

In order to illustrate how the code generator tool generates

specific source code for a target platform, this case study

considers MATSim. This agent platform presents different

functionalities, but it only supports route configuration and

optimisation using a path to follow (i.e. the interactions of

individuals are not considered). It is made available to the

code generator tool as an external compressed file, adding all

its libraries and dependencies to the compiler.

The integration requires developing and adding a new class

using the related wizard. This class is in charge of merging

the model specification and the platform by establishing com-

munications between them through programming procedures

(i.e. the model specification is encapsulated being able to be

integrated as a class in the MATSim source code).

Some classes of the MATSim platform need to be extended

in order to consider the model specification structure. The

original classes only plan the route, and now they must also

consider, for instance, overtaking or lane changes. The new

classes are integrated into the project, being considered by the

compiler of the code generator.

The Instructions attribute of Task instances must be adapted

and redefined to the way of functioning and the source code

provided by MATSim. This allows generating the proper

platform-specific actions to get the intended behaviour.

Once the specialisation is achieved, a configuration file is

generated through the corresponding wizard of the code gen-

erator tool. The initial parameters of the XValues attributes are

defined. These parameters can be modified with the purpose of

obtaining different influences of elements. Also, another class

is developed in the code generator and integrated into the path

of its compiler in order to load this configuration file when the

road traffic simulation starts.

Finally, the code generator tool produces a compressed file.

It directly runs the MATSim platform with the embedded

model specification generated and integrating the configuration

file.

VI. RELATED WORK

Road traffic simulation is related to multiple areas of

research. The presented approach considers the modelling of

people’s behaviour and environmental features affecting traffic,

and the development process of simulations.

Existing road traffic simulation platforms are mainly based

on multiple drivers that follow paths, though some of them

allow random behaviours. The differentiation of their features,

the decision-making and the interaction among them or with

the environment are considered only in limited ways [13], [25].

Pedestrians and the influence of people around (e.g. passen-

gers) over drivers are also important elements to evaluate, but

frequently disregarded. For instance, [26] can model pedestrian

interacting with the environment and drivers, but passengers

and their possible impact are not contemplated.

The proposed metamodel considers the different roles of

the individuals involved in traffic (i.e. drivers, pedestrians

and passengers). It corresponds to microscopic models, as it

models the multiple individual artefacts involved in road traffic

(e.g. instances of Person and Vehicle). Although not fully

considered now, mesoscopic models (i.e. those combining the

individual and group levels), could also be integrated in the

ML. The ABM approach adopted in the ML facilitates this

extension, as it is frequently adopted for such kind of models

[27]. The metamodel structure improves existing approaches in

order to embody multiple social features. Most of approaches

consider a fixed set of these features and their relationships,

e.g. [9]. Knowledge instances are designed to be specialised

and combined, providing instruments to add facts that affect

groups of entities or the overall simulation.

Regarding the internal modelling of individual participants

involved in traffic, there is not a widely accepted approach.

Models range from simple, mainly reactive ones, to quite

complex, usually deliberative. For instance, in [28] agents use

simple logical rules to interact with the environment. This

environment is mainly composed of crossroads where agents

react to the behaviour of others. A more complex approach

appears in [29], where driver’s actions are decomposed into

workflows considering the multiple situations that can occur

during their execution.

The decisions achieved by agents in the previous approaches

can be combined in hierarchical architectures, where there are

several abstraction layers that organize acting. An example of

this is the Michon’s hierarchical control model for drivers [30].

The metamodel supports the hierarchical composition of most

of its elements, but not the definition of abstraction layers as

required by hierarchical architectures.

Another point of discussion in literature is related to which

of the features of participants and the environment have

influence on road traffic. Approaches such as [31], [32] review

some of these features. The metamodel is intentionally open

in this aspect. Meta-classes such as Vehicle and Environment

in the Environmental cluster, and Knowledge and Profile

in the Mental cluster, present sub-components to classify

other related elements or characteristics. The metamodel also

allows introducing additional concepts (i.e. through the Gen-

eralElement meta-class) and relationships (i.e. through the

GeneralRelationship meta-class), and extending them using

the different inheritance hierarchies. These aspects entail that

the TML is highly customisable for the multiple requirements

of the road traffic domain.

Regarding the development process, most of reviewed works

do not cite the approach they follow. Those that do it, in

general assume common development processes focused on

source code, where models play only a documentation and

communication role. The advantages of MDE in this scenario

have been already discussed in the related literature [33]:

explicit representation of the information, higher involvement

of experts, enhanced model validation, and reusability.

VII. CONCLUSIONS

This paper has presented a metamodel that defines a TML

to support a MDE approach for the development of road

traffic simulations. It defines this extensible ML focused on

the behaviour of individuals. Development tools compliant

1754 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

with the metamodel are provided to support the process.

The adoption of MDE facilitates the exchange of information

among groups of experts with different backgrounds. It also

promotes the reutilisation of artefacts between projects, as

there is a clear separation of concerns and all the information is

explicit. For instance, this facilitates deployments in multiple

platforms. It also encourages the incremental development, as

models and transformations can be more easily modified than

code.

The metamodel is designed with the purpose of being

able to integrate multiple theoretical works from the domain.

It follows an ABM [8] approach in order to consider the

social interactions of the individuals involved in road traffic.

It has three main clusters: a Mental cluster, an Environmental

cluster, and an Interactive cluster. The first one includes

the different psychological attributes that can influence the

behaviour of individuals [4]. These concepts are classified

into two groups: the features of people and their current

state. It considers aspects of the mental state in the agent

paradigm [5], particularly the BDI model [6]. The second

cluster is based on the DVE approach [7] for modelling the

different interactions of the individuals involved in road traffic,

considering the relationships among vehicles, environment,

and people. Many of the existing studies can fit their concepts

into this structure, as it includes widely accepted notions to

describe traffic settings. The last cluster uses concepts like

goal and task. A perceive-reason-act cycle [11] is integrated

through the evaluator and actuator concepts.

The meta-classes of the metamodel are designed to support

internal hierarchical substructures, e.g. the container Profile

meta-class and its sub-components with the PComponent

meta-class. Inheritance between elements of the same type is

introduced to make possible specialisations. Other types of

relationships among elements are also considered.

Development tools are based on Eclipse facilities [17], [18].

The graphical editor provides a visual interface and a palette

for describing the model specifications. These specifications

can be validated to guarantee its compliance with the ML.

The code generator provides a set of functionalities that guide

users in the production of source code for a given target traffic

simulation platform.

The case study exemplifies the use of the complete MDE

infrastructure. The development tools support the design of

a model specification according to a theory, its specialisation

to the MATSim platform, and the generation of the source

code associated. The MATSim platform presents a route

optimisation feature to simulate individuals involved in traffic.

This feature does not consider interactions among individuals

and only generates a path to follow. Here, it is improved

adding decision-making actions based on [23] through a goal-

task hierarchical structure with OR and AND compositions.

A tailored perceive-reason-act cycle [11] is integrated using

the Evaluator and Actuator meta-classes. Also, the resulting

model integrates a taxonomy related to the traffic domain

based on the risk factors for drivers [12]. Individual actions

are influenced by the related factors, producing different

behaviours in individuals when those factors change.

The presented approach has several open issues. The TML

must be tested with other types of road traffic theories (e.g.

interactions among drivers and pedestrians) in order to check

its primitives and structure. The development tools must also

be used to generate source code specialisations for other

traffic agent platforms (e.g. SUMO [25] or VISSIM [26]). The

introduction of social norms, the influence of traffic signals

(e.g. crossings or traffic lights) and the types of vehicles (e.g.

ambulances or motorbikes) could be considered.

ACKNOWLEDGMENT

This work has been done in the context of the project “So-

cial Ambient Assisting Living - Methods (SociAAL)” (grant

TIN2011-28335-C02-01) supported by the Spanish Ministry

for Economy and Competitiveness, and the research pro-

gramme MOSI-AGIL-CM (grant S2013/ICE-3019) supported

by the Autonomous Region of Madrid and co-funded by EU

Structural Funds FSE and FEDER.

REFERENCES

[1] A. Crooks, C. Castle, and M. Batty, “Key challenges in agent-based
modelling for geo-spatial simulation,” Computers, Environment and

Urban Systems, vol. 32, no. 6, pp. 417–430, 2008.
[2] R. France and B. Rumpe, “Model-driven development of complex

software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[3] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography.” Sigplan Notices, vol. 35, no. 6, pp. 26–36,
2000.

[4] D. Shinar, Psychology on the Road. The Human Factor in Traffic Safety.
John Wiley & Sons, 1978.

[5] Y. Shoham, “Agent-oriented programming,” Artificial Intelligence,
vol. 60, no. 1, pp. 51–92, 1993.

[6] A. S. Rao and M. P. Georgeff, “An abstract architecture for rational
agents,” in Proceedings of Knowledge Representation and Reasoning

(KR&R-92), vol. 92, 1992, pp. 439–449.
[7] A. Amditis, K. Pagle, S. Joshi, and E. Bekiaris, “Driver–vehicle–

environment monitoring for on-board driver support systems: Lessons
learned from design and implementation,” Applied Ergonomics, vol. 41,
no. 2, pp. 225–235, 2010.

[8] M. A. Janssen, “Agent-based modelling,” Modelling in Ecological

Economics, pp. 155–172, 2005.
[9] J. Pavón, J. J. Gómez-Sanz, and R. Fuentes, “The INGENIAS method-

ology and tools,” Agent-Oriented Methodologies, vol. 9, pp. 236–276,
2005.

[10] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Au-

tonomous Agents and Multi-Agent Systems, vol. 8, no. 3, pp. 203–236,
2004.

[11] J. Lind, “Issues in agent-oriented software engineering,” in Proceedings

of the First International Workshop on Agent-Oriented Software Engi-

neering (AOSE). Springer, 2001, pp. 45–58.
[12] T. A. Ranney, “Psychological factors that influence car-following and

car-following model development,” Transportation Research Part F:

Traffic Psychology and Behaviour, vol. 2, no. 4, pp. 213–219, 1999.
[13] Transport Systems Planning and Transport Telematics Group, Trans-

port Planning Group and Senozon Company, “MATSim, Multi-agent
transport simulation,” http://www.matsim.org/, 2015, [Online: accessed
08-May-2015].

[14] J. Bézivin, “Model driven engineering: An emerging technical space,” in
Generative and Transformational Techniques in Software Engineering.
Springer, 2006, pp. 36–64.

[15] S. Kent, “Model driven engineering,” in Integrated Formal Methods.
Springer, 2002, pp. 286–298.

[16] Object Management Group, “Meta-Object Facility (MOF) Core Speci-
fication, Version 2.4.2,” 2014.

ALBERTO FERNÁNDEZ-ISABEL, RUBÉN FUENTES-FERNÁNDEZ: DEVELOPING AN INTEGRATIVE MODELLING LANGUAGE 1755

[17] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse

Modeling Framework. Pearson Education, 2008.
[18] D. Rubel, J. Wren, and E. Clayberg, The Eclipse Graphical Editing

Framework (GEF). Addison-Wesley Professional, 2011.
[19] Object Management Group, “Object Constraint Language (OCL), Ver-

sion 2.4,” http://www.omg.org/, 2014, [Online: accessed 07-May-2015].
[20] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-

mation approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645,
2006.

[21] M. Wimmer and L. Burgueño, “Testing m2t/t2m transformations,” in
Model-Driven Engineering Languages and Systems. Springer, 2013,
pp. 203–219.

[22] W. Van Der Hoek and M. Wooldridge, “Multi-agent systems,” Founda-

tions of Artificial Intelligence, vol. 3, pp. 887–928, 2008.
[23] A. Fernández-Isabel and R. Fuentes-Fernández, “An agent-based plat-

form for traffic simulation,” in Soft Computing Models in Industrial and

Environmental Applications, 6th International Conference SOCO 2011.
Springer, 2011, pp. 505–514.

[24] C. P. Pappis and E. H. Mamdani, “A fuzzy logic controller for a traffic
junction,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 7,
no. 10, pp. 707–717, 1977.

[25] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo-
simulation of urban mobility-an overview,” in SIMUL 2011, The Third

International Conference on Advances in System Simulation, 2011, pp.
55–60.

[26] Visual Solutions, Incorporated, “VisSim, A graphical language for sim-

ulation and model-based embedded development,” http://www.vissim.
com, 2015, [Online: accessed 08-May-2015].

[27] M. Vasirani and S. Ossowski, “A market-inspired approach to
reservation-based urban road traffic management,” in Proceedings of

The 8th International Conference on Autonomous Agents and Multiagent

Systems-Volume 1. International Foundation for Autonomous Agents
and Multiagent Systems, 2009, pp. 617–624.

[28] A. Doniec, R. Mandiau, S. Piechowiak, and S. Espié, “A behavioral
multi-agent model for road traffic simulation,” Engineering Applications

of Artificial Intelligence, vol. 21, no. 8, pp. 1443–1454, 2008.
[29] B. Burmeister, A. Haddadi, and G. Matylis, “Application of multi-agent

systems in traffic and transportation,” in IEEE Transactions on Software

Engineering, vol. 144, no. 1. IET, 1997, pp. 51–60.
[30] J. A. Michon, “A critical view of driver behavior models: what do we

know, what should we do?” in Human Behavior and Traffic Safety.
Springer, 1985, pp. 485–524.

[31] H. Greenberg, “An analysis of traffic flow,” Operations Research, vol. 7,
no. 1, pp. 79–85, 1959.

[32] P. Paruchuri, A. R. Pullalarevu, and K. Karlapalem, “Multi agent simu-
lation of unorganized traffic,” in Proceedings of the First International

Joint Conference on Autonomous Agents and Multiagent Systems: Part

1. ACM, 2002, pp. 176–183.
[33] R. Fuentes-Fernández, S. Hassan, J. Pavón, J. M. Galán, and A. López-

Paredes, “Metamodels for role-driven agent-based modelling,” Compu-

tational and Mathematical Organization Theory, vol. 18, no. 1, pp. 91–
112, 2012.

1756 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

