
Abstract— A novel and unified design approach for reliable

distributed and parallel data processing in wide-area and large-

scale networks  consisting of high- and of  low-resource nodes

(ranging from generic computers to microchips) using mobile

agents is introduced. The development of sensor clouds of the

future integrated in daily use computing environments and the

Internet is enabled. Agents can migrate between different hard-

ware and software platforms by migrating the program code of

the agent, embedding the state and the data of an agent, too.

Agent mobility crossing different execution platforms, agent in-

teraction by using tuple-space databases, and agent code recon-

figuration enable the design of reliable distributed sensor and

information processing networks.  The Agent Processing Plat-

form exists in hardware (microchip level), software (embedded

system),  and  simulation.  This  works  adds  a  JavaScript  im-

plementation including client-side browser applications. All im-

plementations  are  compatibility  on  operational  and  commu-

nication level. A graph-linked multi-broker service and a distri-

buted co-ordination layer are established for this platform class

to provide service ports and the access of the agent platform

from the  outside  in  browser  applications,  which  can usually

only act as clients and are usually hidden by a private network

and firewalls.

I. INTRODUCTION

RENDS recently emerging in engineering and micro-

system  applications  such  as  the  development  of

sensorial  materials  [3][11] show  a  growing  demand  for

distributed  autonomous  sensor  networks  of  miniaturized

low-power smart sensors embedded in technical structures.

Multi-agent systems (MAS) can be used for a decentralized

and  self-organizing  approach  of  data  processing  in  a

distributed  system  like  a  resource-constrained  sensor

network  (discussed  in  [11] and  [12]),  enabling  smart  and

adaptive  distributed  information  extraction,  e.g.,  based  on

pattern  recognition  (e.g.,  referring  [13] and  [14]),   by

decomposing complex tasks in simpler cooperative agents. It

can be shown that MAS-based data processing approaches

are scalable from generic computer to single microchip level

platforms which can aid the material-integration of Structure

and System Monitoring applications. On one hand there are

currently only few proposed agent processing platforms that

can be scaled to microchip level, and on the other hand there

are  no  unified  solutions  to  integrate  these  low-resource

nodes in large-scale networks and the Internet.

T

In  [11] the agent-based architecture considers sensors as

devices used by an upper layer of controller agents. Agents

are  organized  according  to  roles  related  to  the  different

aspects  to  integrate,  mainly  sensor  management,

communication  and  data  processing.  This  organization

isolates  largely  and  decouples  the  data  management  from

changing networks, while encouraging reuse of solutions. 

The deployment of agents can overcome interface barriers

and closes the gap arising between platforms and environ-

ments  differing  considerably  in  computational  and

communication capabilities, enabling, e.g., the integration of

sensor  networks  in  large-scale  WWW  applications  and

providing  Internet  connectivity,  shown  in  Fig.  1.  This  is

addressed  in  this  work  by  using a  unified  reactive  agent-

based programming and interaction model, independent  of

the  underlying  processing  platform.  For  the  proposed

advanced agent processing platform architecture there exist

suitable  hardware  (microchip),  software  (C,  OCaML,

JavaScript),  and simulation model implementations, which

can be functionally interconnected in networks creating one

big machine.  They are  compatible  on the  operational  and

execution  level,  thus,  agents  can  migrate  between  these

different implementation platforms. 

Agent  mobility  crossing  different  execution  platforms,

agent interaction by using tuple-space databases, and global

signal propagation aid solving data distribution and synchro-

nization  issues  in  the  design  of  distributed  wide-area

networks.

Usually sensor processing and information computation

require known world models including mechanical models,

e.g.,  in  load  monitoring  use  cases  of  technical  structures.

Self-organizing  MAS  [2][14] are  useful  in  unreliable  and

partially unknown environments, which can overcome world

environment and model limitations successfully. Adaptation

of the agent behaviour, i.e., based on learning, offers a relia-

ble  reaction  mechanism in  the  presence  of  environmental

changes, e.g., changes in network connectivity or node fail-

ures, ensuring the QoS. This adaptivity is addressed in this

work  by a behavioural  reconfiguration  at  run-time,  which

bases  on  Dynamic  Activity-Transitions  Graphs  (DATG).

Mobility - the ability to migrate an agent processing unit to a

different  execution  platform  or  node  -  and  autonomy

together  with  a  high  degree  of  independency  from  the

processing platform ensure robust data processing in large-

scale networks.

It can be shown that agent-based computing can be used

to  partition  complex  computations  in  off-line  and  on-line

parts  resulting  in  an  increased  overall  system  efficiency

(performance  and  energy  demands),  e.g.,  for  Load  and

Structural  Health Monitoring (LM/SHM) systems, outlined

in [2]. 
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Fig.  1 (Left) Deployment of Agents in Sensor Clouds and Internet Applications (Right) Bigraph, composed of Link and Structure place graphs used for

a unified modelling of network environments and networks of networks (Bottom) AAPL agents in the Bigraph Model with a bottom port for the APP

link and top port for tuple space and signal link ports. Shown are two connected nodes. [A: Agent, APP: Agent Processing Platform, TS: Tuple Space].

One major goal of the deployment of MAS is overcoming

heterogeneous platform and network barriers arising in large

scale  hierarchical  and  nested  network  structures  (i.e.,  net-

works  of  networks),  consisting  and  connecting,  e.g.,  the

Internet,  sensor  networks,  body networks,  production  and

manufacturing  Cyber-Physical  System  (CPS)  networks,

shown in Fig. 1 on the left. The large diversity of execution

platforms, network topologies, services provided by network

nodes, and the programming environments require a unified

and abstract behavioural and structural representation model.

The Bigraphical  model proposed by Robin Milner  models

the  entire  "computing"  environment  with  place  and  link

graphs, composing finally bigraphs [15], shown on the right

of  Fig.  1.  They  include  agents,  and  they  are  offering  a

unified model and platform for ubiquitous systems and the

foundation  for  an  Ubiquitous  Abstract  Machine,  and

supporting  reconfigurable  spaces  (dynamic  topologies).

Bigraphs virtualize communicating  processes  (agents) and

information  objects (tuple-spaces),  and they  originate  in

process  calculi  for  concurrent  systems, especially the pi-

calculus  [16] and the calculus of mobile ambients  [17] for

modelling  spatial  configurations  of  networks   with   a

dynamic  topology.

The environment  consists  of  places  where  computation

occurs, e.g.,  computers (processing agents),  agents, rooms,

buildings, machines, and so on. The links are abstract, pro-

viding the possibility of interaction between different places,

i.e., transferring of agents and their mobile processes. Agents

are treated  as active computational units.  Places  introduce

spatial and logical  bindings. Bigraphs allow the nesting of

nodes  and  places,  natural  for  many real-world  computing

environments, and they can be applied for wide reactive sys-

tems. All nodes have a fixed number of ports, providing an

endpoint for links. Agents have two ports: a processing port

link  and  an  interaction  (communication)  link.  Bigraphs,

which represents the system state,  can be modified by the

application of reaction rules, which changes the linking and

place relations. Bigraphs can be composed of other bigraphs

matching inner and outer interfaces.

A link  is  a  hyperedge  connection  that  connects  nodes,

outer, and inner names, where names are open linkings that

support  additional  connectivity,  i.e.,  used for  the  dynamic

composition of bigraphs at "run-time". Connectivity not only

provides the platform for agent migration between different

places, it provides information exchange, which is provided

here by place-bounded tuple-spaces and signals. Migration

of mobile processes is just another form of interaction with

and the modification of the environment.

To adapt this Bigraphical Reactive System (BRS) model

to  a  MAS it  is  necessary  to  distinguish  subjects  (entities

which  can  perform  actions,  the  agents)  and  objects  (here

data, tuples, tuple-spaces, signals, and processing platforms

themselves).

The novelty of this work can be summarized as follows:
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• A unified Agent design and processing framework basing

on a reactive activity-transition agent behaviour and pro-

gramming model. Agent interaction is provided by tuple

spaces and signal propagation between agents.

• Stack based Virtual Machines (SVM) are used to execute

optimized program code embedding the agent behaviour,

data and control state in code frames

• The SVM is  operating system independent  and can  be

implemented directly in hardware and software including

JavaScript

• The JavaScript implementation of the SVM enables the

integration  of  sensor  networks  and  agent-based  sensor

and information processing in  the Internet  and Intranet

domains.

• The SVM can be embedded in HTML content and turns a

browser in an agent processing platform.

• A object-capability-based Remote Procedure Call (RPC)

communication interface  and a distributed graph-linked

broker  service  enables  the  deployment  of  client-side

applications like browser as agent processing platforms.

II. THE STATE-BASED REACTIVE AGENT BEHAVIOUR

MODEL AND AAPL PROGRAMMING LANGUAGE 

The agent model summarized in this section (for details

see  [1][3][4])  bases  on the mobile processes  model  intro-

duced by Milner [16] several decades ago. An agent can be

considered as a computational unit  situated in an environ-

ment  and  world,  which  performs  computation,  basically

hidden for the environment, and interacts with the environ-

ment  to  exchange  basically  data.  A common computer  is

specialised to the task of calculation,  and interaction with

other machines is encapsulated by calculation and performed

traditionally by using messages. An agent behaviour can be

reactive or proactive, and it has a social ability to communi-

cate,  cooperate,  and  negotiate  with  other  agents.

Proactiveness  is  closely related  to  goal-directed  behaviour

including estimation and intentional capabilities.

II-A. Activity-Transition Graphs

The behaviour of an activity-based agent is characterized

by an agent state, which is changed by activities. Activities

perform perception, plan actions, and execute actions modi-

fying the control and data state of the agent. Activities and

transitions between activities are represented by an activity-

transition graph (ATG). The transitions start activities com-

monly  depending  on  the  evaluation  of  agent  data  (body

variables), representing the data state of the agent. The ATG

behaviour  model  is  fundamental  for  Activity-based  Agent

Programming Language (AAPL).

An activity-transition graph, related to the agent classes,

discussed later, consists of a set of activities  A={A1,A2,..},

and a set of transitions  T={T1 (C1),T2 (C2),..}, which repre-

sent the edges  of  the directed graph.  The execution of an

activity,  composed  itself  of  a  sequence  of  actions  and

computations,  is  related  with  achieving  a  sub-goal  or  a

satisfying  a  prerequisite  to  achieve  a particular  goal,  e.g.,

sensor data processing and distributions. 

Usually agents are used to decompose complex tasks in

simpler ones. Agents can change their behaviour based on

learning and environmental changes, or by executing a par-

ticular  sub-task  with  only  a  sub-set  of  the  original  agent

behaviour.

An  ATG  describes  the  complete  agent  behaviour.  Any

sub-graph and part of the ATG can be assigned to a subclass

behaviour of an agent. Therefore modifying the set of activi-

ties  A and  transitions  T of  the  original  ATG  introduces

several sub-behaviour for implementing algorithms to satisfy

a diversity of different goals. The reconfiguration of activi-

ties A = { A1 ⊆ A,  A2 ⊆ A, ..} from the original set  A and

the modification or reconfiguration of transitions  T = { T1,

T2, ..} create dynamic supersets of ATGs and enable agent

sub-classing at run-time.

II-B. The Activity-based Agent Programming Language 

(AAPL)

The AAPL programming model should optimally match

the requirements of MAS deployed in unreliable sensor and

wide-area distributed networks, keeping low-resource nodes

with low computational power in mind. On one hand, AAPL

should reflect the core concepts of agents, on the other hand

AAPL should provide core concepts of traditional program-

ming  language  to  ease  the  programming  of  widely  used

algorithms.

The  agent  behaviour,  perception,  reasoning,  and  the

action on the environment are encapsulated in agent classes,

with  activities  representing  the  control  state  of  the  agent

reasoning engine, and conditional transitions connecting and

enabling  activities.  Activities  provide  a  procedural  agent

processing  by  a  sequential  execution  of  imperative  data

processing  and  control  statements.  Agents  can  be

instantiated by other agents from a specific class at run-time.

A multi-agent  system composed  of  different  agent  classes

enables  the factorization of  an overall  global  task in  sub-

tasks, with the objective of decomposing the resolution of a

large problem into agents in which they communicate and

cooperate with one other.

AAPL supports the following statements and constructors:

• Agent  Class  Definition  consisting  of  body  variables,

activities, transitions, handlers, and common functions;

• Computational and control flow statements: assignment,

branches, loops, exception handling;

• Cooperation and Communication with tuple spaces  and

signal messages (carrying simple data);

• Agent instantiation from agent classes, forking, destroy-

ing;

• Agent mobility by migration;

• Agent  behaviour  modification  (e.g.,  ATG  reconfigura-

tion).
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II-C. Multi-Agent Interaction

In  parallel  and  distributed  systems  the  communication,

synchronization, and data exchange of a collection of data

processing  units  (processes  or  agents)  gains  significant

importance.  A common approach  for  parallel  systems is a

shared memory based communication paradigm, but which

generates  a  high  computational  dependency  of  the

processing  units  among  themselves  and  regarding  the

platform.  Loosely  coupled  distributed  systems  like  MAS

require a different communication strategy. 

Tuple-Spaces. One  well  known  and  common  distributed

interaction model is the tuple-space. Agents can communi-

cate  with  each  other  by accessing  a  tuple  space  database

service available on each network node and that is provided

by  the  agent  processing  platform  (a  node  in  the  Bigraph

model,  see  bottom of  Fig  1),  used  for  synchronized  data

exchange  among  a  collection  of  individual  agents,  which

was proposed in [18] and [19] as a suitable MAS interaction

and  coordination  paradigm..  A tuple  space  is  a  logically

shared memory and is used for synchronized data exchange

between  producer  and consumer,  a  common approach  for

solving  communication  problems  of  loosely  coupled

autonomous  or  semi-autonomous  processing  units.  Tuple

spaces are generative, which means a tuple can survive the

creator  beyond  its  lifetime.  The  scope  and  visibility  of  a

tuple  space  database  can  be  unlimited  and  visible  and

distributed in the whole network, or limited to a local scope,

e.g., network node level. A tuple space provides abstraction

from the underlying platform architecture, and offers a high

degree of  platform independency, vital  in a heterogeneous

network environment.

For the sake of simplicity the scope of a tuple space can

be limited to the node boundary, such that there are multiple

tuple spaces distributed in the network. Information can be

carried by mobile agents between nodes. A tuple space com-

munication  model  has  the  advantage  of  shielding  the

underlying node and agent  processing platform. Access  of

tuple spaces  require only a small  set  of simple operations

{out,  in,  rd,  in?,  rd?,  rm,  eval}, which transfer  tuples

between a producer or consumer and the database.   Since

tuples consist  of type-tagged values and patterns the tuple

space communication is type-safe and strong computational

bindings can be avoided.

AAPL Agents. In the Bigraph model AAPL agents have dif-

ferent ports. One static port is the platform link, required to

execute an agent process. Another port is used for the linking

of an agent with a tuple-space (#=1).  An  AAPL agent can

have only one tuple-space access and link at any time maxi-

mal. The propagation of signals introduce further ports and

dynamic  links  to  other  agents  (#=0..n),  see  Fig.  1.  The

communication  links  introduce  virtual  domains,  in  Fig.  1

these are the agent groups {A2, A3, A4} and {A5, A6}. These

virtual domains are dynamic, regarding the spatial location

and extension, and the agents which are part of the virtual

domain.  Often  agent  parent-child  trees  spawn  the  virtual

domains  using  signal  interaction,  but  agents  of  initially

different  virtual  domains  can  interact  by  using  the  tuple-

spaces,  extending  and  merging  different  virtual  domains.

The spatial extension of virtual MAS domains is constrained

by the connectivity graph of the processing nodes. 

Signal propagation from a source to a destination agent

requires the connectivity of nodes if the agents are executed

on spatially different nodes. Tuples stored in tuple-spaces are

persistent. That means a tuple t, which was produced by an

agent Ag1 and stored in a tuple-space TS1, and agent Ag1  is

finally migrating to another node location, can be consumed

by a different agent Ag2, now having a historical relation and

link to the other agent Ag1.

Signals. In contrast, signals, which can carry additional sca-

lar data values, can be used for local (in terms of the node

scope) and global (in terms of the network scope) domain

agent interaction. In contrast to the anonymous tuple-space

interaction, signals are directly addressed to a specific agent

or a group of agents. The delivery of signals is not reliable in

the case the agents raising and receiving the signal are not

processed on the same node. An agent being ready to receive

signals  has  to  provide  a  signal  handler  for  this  signal,  a

function that is executed asynchronously to the agent ATG

execution. 

III. THE AGENT CODE PROCESSING PLATFORM

 In  this  work,  the  agents  are  implemented  with  Agent

Forth  program  code  that  is  executed  on  virtual  stack

machines, which can be implemented alternatively on hard-

ware  (System-on-Chip),  simulation,  and  software  level,

which can be embedded in microcontroller, desktop applica-

tions,  web  applications,  or  server  programs.  The  agent

program  code  (see  [1])  is  a  self-containing  and  self-

initializing unit embedding the (private) agent data and the

current control state of the agent, which simplifies migration

significantly. This machine program is encapsulated in code

frames with a specific layout. The program is able to modify

itself  by  using  code  morphing,  leading  to  a  low

computational  dependency  from  the  current  execution

environment,  which  is  vital  to  strong  heterogeneous

environments. There is only a small set of knowledge about

the program which is  required  by the VM to execute the

agent program, and vice versa. Migration of agents requires

only the  transfer  of  the  code frame from one platform to

another. The data and control state of an agent program is

stored in the code frame, too. There are two different Agent

FORTH levels,  one  supporting  high-level  constructs  like

loops and branches (AFL), and one low-level machine sub-

set  (AML)  that  can  be  directly  executed  by  the  AFVM

platform. AFL has similar operational semantics than AAPL.

Thus  the  AAPL agent  class  behaviour  definition  can  be

directly compiled to the AFL level, finally compiled to AML

with a specific code frame layout. 

In [2] and [3] there is an example for the AAPL behaviour

model of a simple explorer agent that is sent out from an

agent on a specific network node. The explorer agent has the

goal to find another node having a specific feature that  is

stored  in  the  (local)  tuple  space  database.  If  the  explorer

agent found the feature (activity  check), it will return the

original root node and stores the feature in the tuple space

with the relative delta position of the node where the feature
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tuple  was  found  (activity  deliver).  The  explorer  agent

moves through the  network  in  a  random direction  until  a

maximal number of hop counts is reached (parameter radius,

activity  migrate).  The respective  AFL program (see  [1])

reflects  roughly the operational semantics and structure of

the  AAPL program  source.  The  compiled  AML machine

program that can be executed by the AVM consists of a boot

section at the beginning of the code frame, followed by a

data  section  storing  the  private  agent  variables  and

parameters.  Finally  all  activities  and  the  transition  table

conclude. The entire machine program requires less than 400

words  (800  bytes  for  a  16  Bit  machine),  which  can  be

efficiently transferred between different processing hosts.

III-A. AFVM Platform Architecture

The virtual  machine (AFVM,  discussed in depth in  [1])

executing  tasks  bases  on  a  traditional  FORTH stack

processor architecture and an extended zero-operand word

instruction set (αFORTH). Most instructions operate directly

on the data stack DS and the control return stack RS. A code

segment  CS stores the program code with embedded data.

The program is mainly organized by a composition of words

(functions). A word is executed by transferring the program

control  to  the  entry  point  in  the  CS;  arguments  and

computation results are passed only by the stack(s).  There

are  multiple  virtual  machines,  each  attached  to  (private)

stack and code segments. There is one global code segment

CCS storing global available functions and code templates

which can be accessed by all programs. A dictionary is used

to  resolve  CCS code  addresses  of  global  functions  and

templates.

The program code frame of an agent is a standalone and

auto-initializing unit that encapsulates basically four parts: 1.

A look-up table and embedded agent body variable defini-

tions, 2. Word definitions defining agent activities and signal

handlers (procedures without arguments and return values)

and generic functions, 3. Bootstrap instructions for the setup

of agents in a new environment (i.e., after migration or on

first run), and 4. The transition table calling activity words

and  branching  to  succeeding  activity  transition  rows

depending  on  the  evaluation  of  conditional  computations

with private data (variables). The transition table section can

be modified by the agent by using special instructions. Code

morphing  can  be  applied  to  the  currently  executed  code

frame or to any other code frame of the VM.

Each VM processor is connected with an agent process

manager (AM). The VM and the agent manager share the

same VM code  segment  and  the  process  table  (PT).  The

process  table  contains  only  basic  information  about

processes required for the process execution.

Commonly the number of agent tasks  NA executed on a

node is  much larger  than  the  number  of  available  virtual

machines  NV.  Thus,  efficient  and  well-balanced  multi-task

scheduling is required to get proper response times of indi-

vidual  agents.  To provide  fine  grained  granularity  of  task

scheduling, a token based pipelined task processing architec-

ture was chosen. A task of an agent program is assigned to a

token holding the task identifier of the agent program to be

executed. The token is stored in a queue and consumed by

the virtual machine from the queue. After a (top-level) word

was executed, leaving an empty data and return stack, the

token is  either  passed back to  the processing queue or  to

another queue (e.g.,  of the agent manager).  Therefore,  the

return from an agent activity word execution (leaving empty

stacks) is an appropriate task scheduling point for a different

task waiting in the VM processing token queue. This task

scheduling  policy  allows  fair  and  low-latency  multi-agent

processing with fine grained  scheduling.  Furthermore,  this

kind  of  task  scheduling  enables  the  JavaScript

implementation, discussed in Sec. IV-E.

IV. THE JAVASCRIPT WEB PLATFORM JAVM

The mobility of agents is handled basically by the agents

themselves, and there is no advanced routing provides by the

platform. They make decisions about the migration direction

and  the  selection  of  neighbour  nodes,  usually  basing  on

some geometrical structures given by the network topology.

For  example,  a  material-integrated  sensor  network

embedded in a wind energy wing used for Load Monitoring

has a mesh-like network topology consisting of nodes that

are connected with their nearest  neighbours.  Delivering of

sensor data to dedicated computing nodes can be performed

simply by travelling to the outside of the network and by

searching. In the Internet context this geometrical structure

and the neighbourhood connectivity do not exist, or at least

they are not visible, increasing the decision and reducing the

knowledge  space  of  agents  significantly.  First  of  all,  the

migration decision of agents must base on different features

and knowledge.  Furthermore,  the  Internet  consists  of  two

different  kinds  of  network  nodes:  Nodes  capable  of

providing a public visible service, called servers, and nodes

that cannot publish server ports. But in distributed systems

each  node  must  be  capable  of  offering  services.  Two

computers  can  only  connect  if  at  least  one  computer  has

public server ports, otherwise an external brokerage service

is  required.  Web browsers  are  usually processed  on client

computer  nodes  and  are  not  visible  in  the  network.

Therefore, agents can’t select a client-interface-only node or

process for migration directly and autonomously due to the

missing visibility in the communication network, as this is

the case in traditional sensor or embedded networks.

Two  main  issues  arising  in  Internet  applications  using

mobile agents must be addressed: 1. The definition and the

knowledge representation of virtual/artificial neighbourhood

connectivity in loosely coupled and hierarchical graph-based

networks based on semantic rather on physical connectivity.

2. The visibility and deployment of pure client-side applica-

tions like Web browsers and computers hidden in private or

restricted networks as agent processing platforms capable of

receiving, processing, and sending of agents.
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Def.  2 RPC-based client-server communication types, operations, and protocol schema (phases of  a transaction)

To enable the distributed agent  processing in browser and

applications running on generic computers connected by the

Internet,  the  previously  introduced  Agent  Forth  Virtual

Machine (AFVM) platform was implemented in JavaScript

that can be executed either by a node.js interpreter or by any

browser capable to execute JavaScript code. The AFVM was

integrated  in  a  distributed  operating  system  layer,  also

implemented  entirely  in  JavaScript,  discussed  in  the

following subsections, composing the  JAVM platform. The

transition  from  peer-to-peer  networks  to  routed  and

hierarchical  networks  like  the  Internet  requires  some

methodological  and  architectural  changes,  introducing  the

aforementioned broker service, discussed below.

IV-A. Inter-Node Communication and RPC

Nodes offering agent processing capabilities connected in

the Internet domain usually not communicating peer-to-peer

like  in  sensor  networks  with  mesh  topologies.  Instead

routing is used to establish communication between different

application processes executed on nodes probably located far

away.  One  well  known  inter-process  communication

approach is the Remote Procedure Call (RPC), e.g., exten-

sively used in the distributed operating system Amoeba [21],

or on the top of existing operating system, e.g., offered by

the distributed Common Object Request Broker Architecture

(CORBA) framework. The capability-based RPC communi-

cation  from  the  Amoeba  OS  was  already  successfully

implemented in VM environments executed on top of exist-

ing operating systems (VAMNET, [5]).

The RPC communication interface is used in this work

for the inter-platform communication, e.g.,  for transferring

agent  program  code  to  another  platform  or  to  access

distributed  file  and  naming  services.  The  RPC  ontology

consists of servers and clients communicating by using a set

of operations.  A server  performs a  GETREQ operation to

publish  a  listening  on  a  public  server  port,  and  a  client

performs a transaction TRANS operation to access a server

identified by the public server port. Each server handles a set

of objects, identified by capabilities that are tuples 〈port, obj,

rights, rand〉, consisting of the server port, an object number,

a rights field, and a private protection field authorizing the

rights  field.  A  transaction  operation  transfers  object

capabilities to the server that handles the request and finally

replies by using the PUTREP operation. Therefore, a client

transaction is synchronous and blocks the client process until

the  reply  arrives  or  an  error  occurred  (time-out).  The

localization of the server and the routing of the messages is

hidden  by  the  RPC  layer,  or  more  precisely  by  the

underlying protocol layer, shown in Def. 1. The localization

is basically performed by broad- or multicasting  LOCATE

messages  to nodes in the current  domain and finally to a

limited number of boundary domains. Each node monitors

the locally registered servers, and replies with a IAMHERE

message. Nodes are identified with ports, too.

The RPC communication is encapsulated in  HTTP mes-

sages with  XML content and transferred  using the generic

HTTP protocol, discussed in section IV-C. The RPC header

and data is stored inside XML tags with compacted hexadeci-

mal  coded  text,  on  one  hand  complaining  with  the  XML

standard, on the other hand reducing and optimizing the pay-

load. The binary byte data is coded with two hexadecimal

digits for each data byte. Each RPC server (process) can act

as a client, too, and vice versa.

IV-B. Domains as Organization Structures and the 

Directory Name Service

Domains are groups of agent  processing nodes that are

coupled in a network. Agents can migrate between nodes of

a group. A node can be assigned to more than one domain,

enabling  the  migration  of  agents  between  domains.  Node

domain composition bases on

1. Geometrical  localization  and  proximity,  basically

expressing and simulating neighbourhood connectivity

2. Information and data context

3. Tasks to be performed, cooperative goals to be satisfied

4. Logical network domains
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Fig.  2  (Left, Centre) Broker Network with HTTP server ports and client applications (browser, node.js client-side) connecting to the public visible bro-

ker server ports. Client-to-Client communications takes place over the broker servers. (Left, Bottom) The JavaScript agent platform JAVM and the mod-

ules and services available on each host (Right) Different nodes can be bound to (overlapping) domains published in the DNS.

Domains can be expressed by paths similar to directory trees

that  are  handled  usually by a  file  system.  In  this  work  a

distributed  and  unified  Directory  Name Service  (DNS)  us

used that  provides a database to publish (capability-name)

pairs  organized  in  trees.  Each  object  in  the  distributed

system  is  related  to  a  capability,  which  is  serviced  by  a

specific  server.  For  example,  a  file  containing  the  agent

program  code  is  serviced  by  a  file  server.  A  directory

containing domains is an object, too, handled by the  DNS

server. An agent platform that processes agents programs is

another kind of object, handled by a run server that exists on

each node. Agents are objects in this sense, but they don’t

belong to  a  specific  server,  therefore  they are  handled  as

mobile and autonomous severs. In Fig.  2, an example for a

composition of domains consisting of network nodes that are

not directly connected is shown.

IV-C. Broker Service

The integration  and  network  connectivity  of  client-side

application programs like Web browsers as an active agent

processing platform requires client-to-client communication

capabilities, which is offered in this work by a broker server

that is visible in the Internet  or Intranet  domains.  Though

there  are  already  some  approaches  for  interconnecting

browser  applications  directly  (client-to-client

communication  using  WebSockets or  WebRTC [20] and

HTML5 standards), they are not supported by all browsers

and  require  some  external  server  for  the  connection

brokerage,  too.  Furthermore,  WebSockets are  still  under

development and there are many browser incompatibilities.

To  provide  compatibility  with  and  among  all  existing

browser applications none of these technologies were used.

Instead,  an  object-capability-based  RPC  inter-process

communication with a broker  server  operating as  a  router

was  invented.  Client  applications  communicate  with  the

broker by using the generic  HTTP client  protocol and the

GET and  PUT operations. RPC messages are encapsulated

in HTTP requests. If there is a RPC server request passed to

the broker, the broker will cache the request  until another

client-side  host  performs  a  matching  transaction  to  this

server port. The transaction is passed  to the original RPC

server host in the reply of a HTTP GET operation. 

But  the deployment  of  one central  broker  server  intro-

duces  a  single-point-of-failure  and  is  limiting  the

communication bandwidth and the scaling capability signifi-

cantly. To overcome these limitations, a hierarchical broker

server network is used. Each broker in this broker graph can

be the root of a sub-graph and can be a service end-point
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(i.e.,  providing  directory  and  name  services),  a  router

between clients and other  broker servers,  and an interface

bridge to a non-IP based network, e.g., a sensor network. A

broker is just an application program capable of running on

any computer visible globally in the Internet or more locally

in some Intranet domains.

An agent processing node (e.g.,  a host application) that

cannot publish IP server  ports must connect to one of the

broker servers visible in the network. Usually this should be

a server located nearby. Each node is associated with a host

port that is communicated to the broker server now handling

and forwarding service requests for this specific host, shown

on the lower left side of Fig. 2. Each client-side host collects

periodically pending and queued service  request  messages

(or replies of services requests) from the broker server and

passes  services  replies  back  to  the  broker  server  that

forwards  the  reply  to  the  appropriate  host  performing

originally a transaction. If the two hosts involved in a RPC

transaction are not handled by the same broker server, the

source  broker  server  must  forward  request  and  reply

messages to the appropriate destination broker server, shown

in Fig. 2 by the green dotted path line. Furthermore, a broker

server  must handle local  RPC transactions  and local  RPC

servers and, too.

IV-D. The Node Service Platform

In addition to the services provides by the agent process-

ing  platform (i.e.,  the  agent  manager  and  the  tuple-space

database),  each  network  broker  node  and  optionally  each

browser or client-side application provide a file system serv-

ice (Atomic File System Service  AFS), the aforementioned

Directory and Naming Service (DNS), and a run server con-

nected to the agent  processing platform (required  on each

host). The run server provides the public port for agent exe-

cution, migration, and signal message propagation between

agents.

IV-E. The JavaScript Implementation

There are basically two different execution environments

for the execution of  JavaScript (JS) programs: The server-

side  standalone  node.js interpreter  and  the  client-side  JS

interpreter  embedded in browser  applications.  The  node.js

interpreter can execute a  JS program directly (with source-

to-machine  code  compilation  on  demand),  whereas  the

browser executes JS embedded in HTML content only. There

are  node.js modules  enabling  the  setup  of  HTTP servers,

modules  for  accessing  files  on  the  local  file  system,  and

many more OS related programming interfaces not available

in the client-side browser JS.

The implementation of the entire network node services,

the RPC communication, and the agent processing platform

with JavaScript is a challenge, but offers significant advan-

tages  with  respect  to  portability,  compatibility,  and  the

design  unification  for  server-side  and  client-side-only

platforms (e.g., browsers). The basic modules implemented

on each host (and browser application) are shown on the left

bottom side of Fig. 2, consisting at least of the RPC module,

the  HTML wrapper,  and  the  agent  processing  platform

AFVM.

JavaScript  is  executed  strictly  single  threaded,  though

functions can be executed in parallel and concurrently, there

is no concept of process blocking or any other synchroniza-

tion.  In  JavaScript  programs  input-output  operations  are

mainly performed with asynchronous callback functions. But

all RPC services, the agent processing platform, and servers

operate inherently multi-threaded and synchronously.

To overcome this execution limitation, a  Task Scheduler

(TSCH)  was  invented  that  simulates  parallel  multiprocess

execution and enables virtual process blocking for the syn-

chronization of processes. Each process consists of a set of

activities (functions) that are enabled by a conditional transi-

tion  expression  (that  can  be  a  constant  true  value).  The

scheduler  executes  all  activity  functions  sequentially  that

have a satisfied transition condition. Blocking of a process

sets a process specific blocking variable (the guard GD) that

is part of the transition condition from the blocking activity

to the next one to be executed after the process was woken

up again. Furthermore, there are block, conditional, and loop

scheduling  constructors  easing  the  programming  of  proc-

esses.  All  RPC operations  are  prepared  for  the  scheduler

management. Though callback functions are still used, a sin-

gle  program  flow  of  processes  can  be  constructed  on

programming level.

The client-side Browser  JS implementation is created by

compacting and relocating server-side dependencies  (using

browserify, envify, and uglifyjs for minimizing), and requires

typically about 500kB text size.

V. USE-CASE: CLOUD BASED ADAPTIVE MANUFACTURING

AND ROBOTS AS PRODUCTS

This section outlines  a big application use-case  for  the

introduced  agent  processing  platform with  an  architecture

for additive and adaptive manufacturing based on a closed-

loop sensor processing approach, extended with data mining

concepts  combined  with  Internet-of-thing  architectures.

Additive  and  adaptive  cloud-based  design  and

manufacturing are attractive in the field of robotics, not only

limited  to  industrial  production  robotics,  mainly  targeting

service robots and semi-autonomous carrier robots. In cloud-

based  manufacturing,  the  consumer  of  the  products  is

integrated  in  the  cloud-based  manufacturing  process  [6],

directly  involved  in  the  manufacturing  process  using

distributed  cloud  computing  and  distributed  storage

solutions.

Robots can be considered as active, mobile, and autono-

mous  data  processing  units  that  are  commonly  already

connected to computer networks and infrastructures. Robots

use inherent  sensing capabilities for their control  and task

satisfaction,  commonly  using  integrated  sensing  networks

with sensor preprocessing, deriving some inner state of the

robot,  e.g.,  mechanical  loads  applied  to  structures  of  the

robot  or  operational  parameters  like  motor  power  and

temperature.  The  availability  of  the  inner  perception

information of robots enable the estimation of working and

health  conditions  initially  not  fully  considered  at  design

time. The next layer in cloud-based adaptive manufacturing

process  can  be  the  inclusion  of  the  products  themselves
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delivering  operational  feedback  to  the  current  design  and

manufacturing  process,  leading  to  a  closed-loop  evolving

design  and  manufacturing  process  with  an  evolutionary

touch, shown in Fig. 3. This evolutionary process adapts the

product design, e.g. the mechanical construction, for future

product  manufacturing  processes  based  on  a  back

propagation  of  the  perception  information  (i.e.,  recorded

load histories, working and health conditions of the product)

collected  by  living  systems  at  run-time.  The  currently

deployed and running series of the product enhances future

series, but not in the traditional coarse-grained discrete series

iteration. This process can be considered as a continuously

evolving improvement of the robot by refining and adapting

design  parameters  and  constraints  that  are  immediately

migrated to the manufacturing process. A robot consists of a

broad range of parts,  most of them are critical  for system

failures.  The  most  prominent  failures  are  related  to

mechanical  and electro-mechanical  components,  which are

caused  by  overload  conditions  at  run-time  under  real

conditions not to be considered or unknown at initial design

time.

The integration of robots as product and their condition

monitoring in a closed-loop design and manufacturing proc-

ess is a challenge and introduces distributed computing and

data distribution in strong heterogeneous processing and net-

work environments. One major question to be answered is

the  sensing  of  meaningful  condensed  product  condition

information and the delivery to the designer and factory. The

proposed  mobile  agent  model  offers  a  self-contained  and

autonomous virtual  processing  unit  that  is  well  suited  for

such large-scale applications.  The mobile agents  represent

mobile  computational  processes  that  can  migrate  in  the

Internet domain and as well in sensor networks. 

Agents are already deployed successfully for scheduling

tasks  in  production  and  manufacturing  processes  [7],  and

newer trends poses the suitability of distributed agent-based

systems for the control of manufacturing processes [8], fac-

ing  not  only  manufacturing,  but  maintenance,  evolvable

assembly systems, quality control, and energy management

aspects, finally introducing the paradigm of industrial agents

meeting the requirements of modern industrial applications.

The  MAS paradigm  offers  a  unified  data  processing  and

communication model suitable to be employed in the design,

the manufacturing, logistics, and the products themselves.

The scalability of complex industrial  applications using

such large-scale cloud-based and wide area distributed net-

works deals with systems deploying thousands up to million

agents. But the majority of current laboratory prototypes of

MAS deal with less than 1000 agents [8].  Currently,  many

traditional processing platforms cannot yet handle big num-

bers with the robustness and efficiency required by industry

[9][10]. In the past decade the capabilities and the scalability

of  agent-based systems have increased  substantially, espe-

cially addressing efficient processing of mobile agents.

There   programmable  agent  processing  platform  intro-

duced in this work can be deployed in strong heterogeneous

network environments, ranging form single microchip up to

WEB JavaScript implementations, all being fully compatible

on  operational  and  interface  level,  and  hence  agents  can

migrate between these different platforms. Multi-agent sys-

tems can be successfully deployed in sensing applications,

e.g., structural load and health monitoring, with a partition in

off-  and  online  computations  [2].  Distributed  data  mining

and  Map-Reduce  algorithms  are  well  suited  for  self-

organizing  MAS.  Cloud-based  computing,  as  a  base  for

cloud-based  manufacturing,  means  the  virtualization  of

resources, i.e., storage, processing platforms, sensing data or

generic information.

Fig.  3  Additive and adaptive Manufacturing with back propagation of 

sensing data using mobile AAPL agents and the JAVM/PAVM platform.

Traditional  closed-loop  processes  request  data  from

sources (products, robots) by using continuos request-reply

message streams. This approach leads to a significant large

amount  of  data  and  communication  activity  in  large-scale

networks. Event-based sensor data and information distribu-

tion from the sources of sensing events, triggered by the data

sources (the robots) themselves, can improve and reduce the

allocation  of  computational,  storage,  and  communication

resources significantly.

A cloud in terms of data processing and computation is

characterized by and composed of: 1. A parallel and distrib-

uted system architecture;  2. A collection of interconnected

virtualized  computing  entities  that  are  dynamically  provi-

sioned;  3.  A unified  computing  environment  and  unified

computing resources based on a service-level architecture; 4.

A  dynamic  reconfiguration  capability  of  the  virtualized

resources (computing, storage, connectivity and networks).

Cloud-based  design  and  manufacturing  is  composed  of

knowledge  management,  collaborative  design,  and  distrib-

uted  manufacturing.  Adaptive  design  and  manufacturing

enhanced with perception delivered by the products incorpo-
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rates  finally  the  products  in  the  cloud-based  design  and

manufacturing process.

Agent Classes. Different agent classes are defined that sat-

isfy  different  sub-goals:  event-based  sensor  acquisition

including sensor fusion (Sensing), aggregation and distribu-

tion of data, preprocessing of data and information mapping,

search  of  information  sources  and  sinks,  information

delivery  to  databases,  delivery  of  sensing,  design,  and

manufacturing information, propagation of new design data

to and notification of manufacturing processes, notification

of  designer,  end  users,  update  of  models  and  design

parameters.  Most  of  the  agents  can  be  transferred  in

messages with a size lower than 4kB.

VI. CONCLUSION AND OUTLOOK

In this work, a novel Agent Processing Platform archi-

tecture  for  code-based  mobile  agents  in  large-scale  and

wide-area  heterogeneous  networks  including  low-resource

microchip  nodes  embedded  in  sensor  networks  was

introduced.  The  standalone  agent  processing  platform,  a

multi-core stack processor, can be implemented entirely on

microchip  level,  and requires  no operating system and no

boot  code.  Alternatively,  the  processing  platform  can  be

implemented  efficiently  in  software  with  code  and

operational  compatibility,  enabling  the  deployment  in

heterogeneous  network  environments,  inter-connecting

hardware  and  software  platforms  executed  on  generic

microprocessors.  The  JavaScript implementation  of  the

processing  platform  together  with  a  minimal  distributed

operating layer  consisting of a broker, RPC, run, file,  and

naming  services  enables  the  integration  of  body  area,

ambient,  and  sensor  networks  in  the  Internet  domain,  a

prerequisite for the future of Internet-of-Things and Sensor

Clouds  in  daily  use  computing  environments.  Agents  can

migrate between different hardware and software platforms

(they are compatible on the execution level) by migrating the

program code of the agent, embedding the state and the data

of an agent, too. A broker service enables the integration of

hosts  (generic  computers,  mobile devices,  ...)  that  are  not

visible  in  the  Inter-  or  Intranet  domains  and  that  cannot

publish server communication ports.  

Using this broker service, which is composed of a graph-

based  network  of  single  broker  server  applications,  each

computing device capable of executing JavaScript code can

act as an agent processing platform.  This agent processing

platform is capable of receiving mobile agents form other

platforms  and  hosts.  The  broker  service  creates  virtual

connectivity based on domains.
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