
Abstract— A novel and unified design approach for reliable

distributed and parallel data processing in wide-area and large-

scale networks consisting of high- and of low-resource nodes

(ranging from generic computers to microchips) using mobile

agents is introduced. The development of sensor clouds of the

future integrated in daily use computing environments and the

Internet is enabled. Agents can migrate between different hard-

ware and software platforms by migrating the program code of

the agent, embedding the state and the data of an agent, too.

Agent mobility crossing different execution platforms, agent in-

teraction by using tuple-space databases, and agent code recon-

figuration enable the design of reliable distributed sensor and

information processing networks. The Agent Processing Plat-

form exists in hardware (microchip level), software (embedded

system), and simulation. This works adds a JavaScript im-

plementation including client-side browser applications. All im-

plementations are compatibility on operational and commu-

nication level. A graph-linked multi-broker service and a distri-

buted co-ordination layer are established for this platform class

to provide service ports and the access of the agent platform

from the outside in browser applications, which can usually

only act as clients and are usually hidden by a private network

and firewalls.

I. INTRODUCTION

RENDS recently emerging in engineering and micro-

system applications such as the development of

sensorial materials [3][11] show a growing demand for

distributed autonomous sensor networks of miniaturized

low-power smart sensors embedded in technical structures.

Multi-agent systems (MAS) can be used for a decentralized

and self-organizing approach of data processing in a

distributed system like a resource-constrained sensor

network (discussed in [11] and [12]), enabling smart and

adaptive distributed information extraction, e.g., based on

pattern recognition (e.g., referring [13] and [14]), by

decomposing complex tasks in simpler cooperative agents. It

can be shown that MAS-based data processing approaches

are scalable from generic computer to single microchip level

platforms which can aid the material-integration of Structure

and System Monitoring applications. On one hand there are

currently only few proposed agent processing platforms that

can be scaled to microchip level, and on the other hand there

are no unified solutions to integrate these low-resource

nodes in large-scale networks and the Internet.

T

In [11] the agent-based architecture considers sensors as

devices used by an upper layer of controller agents. Agents

are organized according to roles related to the different

aspects to integrate, mainly sensor management,

communication and data processing. This organization

isolates largely and decouples the data management from

changing networks, while encouraging reuse of solutions.

The deployment of agents can overcome interface barriers

and closes the gap arising between platforms and environ-

ments differing considerably in computational and

communication capabilities, enabling, e.g., the integration of

sensor networks in large-scale WWW applications and

providing Internet connectivity, shown in Fig. 1. This is

addressed in this work by using a unified reactive agent-

based programming and interaction model, independent of

the underlying processing platform. For the proposed

advanced agent processing platform architecture there exist

suitable hardware (microchip), software (C, OCaML,

JavaScript), and simulation model implementations, which

can be functionally interconnected in networks creating one

big machine. They are compatible on the operational and

execution level, thus, agents can migrate between these

different implementation platforms.

Agent mobility crossing different execution platforms,

agent interaction by using tuple-space databases, and global

signal propagation aid solving data distribution and synchro-

nization issues in the design of distributed wide-area

networks.

Usually sensor processing and information computation

require known world models including mechanical models,

e.g., in load monitoring use cases of technical structures.

Self-organizing MAS [2][14] are useful in unreliable and

partially unknown environments, which can overcome world

environment and model limitations successfully. Adaptation

of the agent behaviour, i.e., based on learning, offers a relia-

ble reaction mechanism in the presence of environmental

changes, e.g., changes in network connectivity or node fail-

ures, ensuring the QoS. This adaptivity is addressed in this

work by a behavioural reconfiguration at run-time, which

bases on Dynamic Activity-Transitions Graphs (DATG).

Mobility - the ability to migrate an agent processing unit to a

different execution platform or node - and autonomy

together with a high degree of independency from the

processing platform ensure robust data processing in large-

scale networks.

It can be shown that agent-based computing can be used

to partition complex computations in off-line and on-line

parts resulting in an increased overall system efficiency

(performance and energy demands), e.g., for Load and

Structural Health Monitoring (LM/SHM) systems, outlined

in [2].

A Unified Distributed Computing Framework with Mobile Multi-

Agent Systems and Virtual Machines for Large-Scale Applications:

From the Internet-of-Things to Sensor Clouds

Stefan Bosse

University of Bremen, Dept. of Mathematics & Computer Science,

Robert Hooke Str. 5, 28359 Bremen, Germany

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 237–246

DOI: 10.15439/2015F252

ACSIS, Vol. 6

c©2015, PTI 237

Fig. 1 (Left) Deployment of Agents in Sensor Clouds and Internet Applications (Right) Bigraph, composed of Link and Structure place graphs used for

a unified modelling of network environments and networks of networks (Bottom) AAPL agents in the Bigraph Model with a bottom port for the APP

link and top port for tuple space and signal link ports. Shown are two connected nodes. [A: Agent, APP: Agent Processing Platform, TS: Tuple Space].

One major goal of the deployment of MAS is overcoming

heterogeneous platform and network barriers arising in large

scale hierarchical and nested network structures (i.e., net-

works of networks), consisting and connecting, e.g., the

Internet, sensor networks, body networks, production and

manufacturing Cyber-Physical System (CPS) networks,

shown in Fig. 1 on the left. The large diversity of execution

platforms, network topologies, services provided by network

nodes, and the programming environments require a unified

and abstract behavioural and structural representation model.

The Bigraphical model proposed by Robin Milner models

the entire "computing" environment with place and link

graphs, composing finally bigraphs [15], shown on the right

of Fig. 1. They include agents, and they are offering a

unified model and platform for ubiquitous systems and the

foundation for an Ubiquitous Abstract Machine, and

supporting reconfigurable spaces (dynamic topologies).

Bigraphs virtualize communicating processes (agents) and

information objects (tuple-spaces), and they originate in

process calculi for concurrent systems, especially the pi-

calculus [16] and the calculus of mobile ambients [17] for

modelling spatial configurations of networks with a

dynamic topology.

The environment consists of places where computation

occurs, e.g., computers (processing agents), agents, rooms,

buildings, machines, and so on. The links are abstract, pro-

viding the possibility of interaction between different places,

i.e., transferring of agents and their mobile processes. Agents

are treated as active computational units. Places introduce

spatial and logical bindings. Bigraphs allow the nesting of

nodes and places, natural for many real-world computing

environments, and they can be applied for wide reactive sys-

tems. All nodes have a fixed number of ports, providing an

endpoint for links. Agents have two ports: a processing port

link and an interaction (communication) link. Bigraphs,

which represents the system state, can be modified by the

application of reaction rules, which changes the linking and

place relations. Bigraphs can be composed of other bigraphs

matching inner and outer interfaces.

A link is a hyperedge connection that connects nodes,

outer, and inner names, where names are open linkings that

support additional connectivity, i.e., used for the dynamic

composition of bigraphs at "run-time". Connectivity not only

provides the platform for agent migration between different

places, it provides information exchange, which is provided

here by place-bounded tuple-spaces and signals. Migration

of mobile processes is just another form of interaction with

and the modification of the environment.

To adapt this Bigraphical Reactive System (BRS) model

to a MAS it is necessary to distinguish subjects (entities

which can perform actions, the agents) and objects (here

data, tuples, tuple-spaces, signals, and processing platforms

themselves).

The novelty of this work can be summarized as follows:

238 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

• A unified Agent design and processing framework basing

on a reactive activity-transition agent behaviour and pro-

gramming model. Agent interaction is provided by tuple

spaces and signal propagation between agents.

• Stack based Virtual Machines (SVM) are used to execute

optimized program code embedding the agent behaviour,

data and control state in code frames

• The SVM is operating system independent and can be

implemented directly in hardware and software including

JavaScript

• The JavaScript implementation of the SVM enables the

integration of sensor networks and agent-based sensor

and information processing in the Internet and Intranet

domains.

• The SVM can be embedded in HTML content and turns a

browser in an agent processing platform.

• A object-capability-based Remote Procedure Call (RPC)

communication interface and a distributed graph-linked

broker service enables the deployment of client-side

applications like browser as agent processing platforms.

II. THE STATE-BASED REACTIVE AGENT BEHAVIOUR

MODEL AND AAPL PROGRAMMING LANGUAGE

The agent model summarized in this section (for details

see [1][3][4]) bases on the mobile processes model intro-

duced by Milner [16] several decades ago. An agent can be

considered as a computational unit situated in an environ-

ment and world, which performs computation, basically

hidden for the environment, and interacts with the environ-

ment to exchange basically data. A common computer is

specialised to the task of calculation, and interaction with

other machines is encapsulated by calculation and performed

traditionally by using messages. An agent behaviour can be

reactive or proactive, and it has a social ability to communi-

cate, cooperate, and negotiate with other agents.

Proactiveness is closely related to goal-directed behaviour

including estimation and intentional capabilities.

II-A. Activity-Transition Graphs

The behaviour of an activity-based agent is characterized

by an agent state, which is changed by activities. Activities

perform perception, plan actions, and execute actions modi-

fying the control and data state of the agent. Activities and

transitions between activities are represented by an activity-

transition graph (ATG). The transitions start activities com-

monly depending on the evaluation of agent data (body

variables), representing the data state of the agent. The ATG

behaviour model is fundamental for Activity-based Agent

Programming Language (AAPL).

An activity-transition graph, related to the agent classes,

discussed later, consists of a set of activities A={A1,A2,..},

and a set of transitions T={T1 (C1),T2 (C2),..}, which repre-

sent the edges of the directed graph. The execution of an

activity, composed itself of a sequence of actions and

computations, is related with achieving a sub-goal or a

satisfying a prerequisite to achieve a particular goal, e.g.,

sensor data processing and distributions.

Usually agents are used to decompose complex tasks in

simpler ones. Agents can change their behaviour based on

learning and environmental changes, or by executing a par-

ticular sub-task with only a sub-set of the original agent

behaviour.

An ATG describes the complete agent behaviour. Any

sub-graph and part of the ATG can be assigned to a subclass

behaviour of an agent. Therefore modifying the set of activi-

ties A and transitions T of the original ATG introduces

several sub-behaviour for implementing algorithms to satisfy

a diversity of different goals. The reconfiguration of activi-

ties A = { A1 ⊆ A, A2 ⊆ A, ..} from the original set A and

the modification or reconfiguration of transitions T = { T1,

T2, ..} create dynamic supersets of ATGs and enable agent

sub-classing at run-time.

II-B. The Activity-based Agent Programming Language

(AAPL)

The AAPL programming model should optimally match

the requirements of MAS deployed in unreliable sensor and

wide-area distributed networks, keeping low-resource nodes

with low computational power in mind. On one hand, AAPL

should reflect the core concepts of agents, on the other hand

AAPL should provide core concepts of traditional program-

ming language to ease the programming of widely used

algorithms.

The agent behaviour, perception, reasoning, and the

action on the environment are encapsulated in agent classes,

with activities representing the control state of the agent

reasoning engine, and conditional transitions connecting and

enabling activities. Activities provide a procedural agent

processing by a sequential execution of imperative data

processing and control statements. Agents can be

instantiated by other agents from a specific class at run-time.

A multi-agent system composed of different agent classes

enables the factorization of an overall global task in sub-

tasks, with the objective of decomposing the resolution of a

large problem into agents in which they communicate and

cooperate with one other.

AAPL supports the following statements and constructors:

• Agent Class Definition consisting of body variables,

activities, transitions, handlers, and common functions;

• Computational and control flow statements: assignment,

branches, loops, exception handling;

• Cooperation and Communication with tuple spaces and

signal messages (carrying simple data);

• Agent instantiation from agent classes, forking, destroy-

ing;

• Agent mobility by migration;

• Agent behaviour modification (e.g., ATG reconfigura-

tion).

STEFAN BOSSE: A UNIFIED DISTRIBUTED COMPUTING FRAMEWORK 239

II-C. Multi-Agent Interaction

In parallel and distributed systems the communication,

synchronization, and data exchange of a collection of data

processing units (processes or agents) gains significant

importance. A common approach for parallel systems is a

shared memory based communication paradigm, but which

generates a high computational dependency of the

processing units among themselves and regarding the

platform. Loosely coupled distributed systems like MAS

require a different communication strategy.

Tuple-Spaces. One well known and common distributed

interaction model is the tuple-space. Agents can communi-

cate with each other by accessing a tuple space database

service available on each network node and that is provided

by the agent processing platform (a node in the Bigraph

model, see bottom of Fig 1), used for synchronized data

exchange among a collection of individual agents, which

was proposed in [18] and [19] as a suitable MAS interaction

and coordination paradigm.. A tuple space is a logically

shared memory and is used for synchronized data exchange

between producer and consumer, a common approach for

solving communication problems of loosely coupled

autonomous or semi-autonomous processing units. Tuple

spaces are generative, which means a tuple can survive the

creator beyond its lifetime. The scope and visibility of a

tuple space database can be unlimited and visible and

distributed in the whole network, or limited to a local scope,

e.g., network node level. A tuple space provides abstraction

from the underlying platform architecture, and offers a high

degree of platform independency, vital in a heterogeneous

network environment.

For the sake of simplicity the scope of a tuple space can

be limited to the node boundary, such that there are multiple

tuple spaces distributed in the network. Information can be

carried by mobile agents between nodes. A tuple space com-

munication model has the advantage of shielding the

underlying node and agent processing platform. Access of

tuple spaces require only a small set of simple operations

{out, in, rd, in?, rd?, rm, eval}, which transfer tuples

between a producer or consumer and the database. Since

tuples consist of type-tagged values and patterns the tuple

space communication is type-safe and strong computational

bindings can be avoided.

AAPL Agents. In the Bigraph model AAPL agents have dif-

ferent ports. One static port is the platform link, required to

execute an agent process. Another port is used for the linking

of an agent with a tuple-space (#=1). An AAPL agent can

have only one tuple-space access and link at any time maxi-

mal. The propagation of signals introduce further ports and

dynamic links to other agents (#=0..n), see Fig. 1. The

communication links introduce virtual domains, in Fig. 1

these are the agent groups {A2, A3, A4} and {A5, A6}. These

virtual domains are dynamic, regarding the spatial location

and extension, and the agents which are part of the virtual

domain. Often agent parent-child trees spawn the virtual

domains using signal interaction, but agents of initially

different virtual domains can interact by using the tuple-

spaces, extending and merging different virtual domains.

The spatial extension of virtual MAS domains is constrained

by the connectivity graph of the processing nodes.

Signal propagation from a source to a destination agent

requires the connectivity of nodes if the agents are executed

on spatially different nodes. Tuples stored in tuple-spaces are

persistent. That means a tuple t, which was produced by an

agent Ag1 and stored in a tuple-space TS1, and agent Ag1 is

finally migrating to another node location, can be consumed

by a different agent Ag2, now having a historical relation and

link to the other agent Ag1.

Signals. In contrast, signals, which can carry additional sca-

lar data values, can be used for local (in terms of the node

scope) and global (in terms of the network scope) domain

agent interaction. In contrast to the anonymous tuple-space

interaction, signals are directly addressed to a specific agent

or a group of agents. The delivery of signals is not reliable in

the case the agents raising and receiving the signal are not

processed on the same node. An agent being ready to receive

signals has to provide a signal handler for this signal, a

function that is executed asynchronously to the agent ATG

execution.

III. THE AGENT CODE PROCESSING PLATFORM

 In this work, the agents are implemented with Agent

Forth program code that is executed on virtual stack

machines, which can be implemented alternatively on hard-

ware (System-on-Chip), simulation, and software level,

which can be embedded in microcontroller, desktop applica-

tions, web applications, or server programs. The agent

program code (see [1]) is a self-containing and self-

initializing unit embedding the (private) agent data and the

current control state of the agent, which simplifies migration

significantly. This machine program is encapsulated in code

frames with a specific layout. The program is able to modify

itself by using code morphing, leading to a low

computational dependency from the current execution

environment, which is vital to strong heterogeneous

environments. There is only a small set of knowledge about

the program which is required by the VM to execute the

agent program, and vice versa. Migration of agents requires

only the transfer of the code frame from one platform to

another. The data and control state of an agent program is

stored in the code frame, too. There are two different Agent

FORTH levels, one supporting high-level constructs like

loops and branches (AFL), and one low-level machine sub-

set (AML) that can be directly executed by the AFVM

platform. AFL has similar operational semantics than AAPL.

Thus the AAPL agent class behaviour definition can be

directly compiled to the AFL level, finally compiled to AML

with a specific code frame layout.

In [2] and [3] there is an example for the AAPL behaviour

model of a simple explorer agent that is sent out from an

agent on a specific network node. The explorer agent has the

goal to find another node having a specific feature that is

stored in the (local) tuple space database. If the explorer

agent found the feature (activity check), it will return the

original root node and stores the feature in the tuple space

with the relative delta position of the node where the feature

240 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

tuple was found (activity deliver). The explorer agent

moves through the network in a random direction until a

maximal number of hop counts is reached (parameter radius,

activity migrate). The respective AFL program (see [1])

reflects roughly the operational semantics and structure of

the AAPL program source. The compiled AML machine

program that can be executed by the AVM consists of a boot

section at the beginning of the code frame, followed by a

data section storing the private agent variables and

parameters. Finally all activities and the transition table

conclude. The entire machine program requires less than 400

words (800 bytes for a 16 Bit machine), which can be

efficiently transferred between different processing hosts.

III-A. AFVM Platform Architecture

The virtual machine (AFVM, discussed in depth in [1])

executing tasks bases on a traditional FORTH stack

processor architecture and an extended zero-operand word

instruction set (αFORTH). Most instructions operate directly

on the data stack DS and the control return stack RS. A code

segment CS stores the program code with embedded data.

The program is mainly organized by a composition of words

(functions). A word is executed by transferring the program

control to the entry point in the CS; arguments and

computation results are passed only by the stack(s). There

are multiple virtual machines, each attached to (private)

stack and code segments. There is one global code segment

CCS storing global available functions and code templates

which can be accessed by all programs. A dictionary is used

to resolve CCS code addresses of global functions and

templates.

The program code frame of an agent is a standalone and

auto-initializing unit that encapsulates basically four parts: 1.

A look-up table and embedded agent body variable defini-

tions, 2. Word definitions defining agent activities and signal

handlers (procedures without arguments and return values)

and generic functions, 3. Bootstrap instructions for the setup

of agents in a new environment (i.e., after migration or on

first run), and 4. The transition table calling activity words

and branching to succeeding activity transition rows

depending on the evaluation of conditional computations

with private data (variables). The transition table section can

be modified by the agent by using special instructions. Code

morphing can be applied to the currently executed code

frame or to any other code frame of the VM.

Each VM processor is connected with an agent process

manager (AM). The VM and the agent manager share the

same VM code segment and the process table (PT). The

process table contains only basic information about

processes required for the process execution.

Commonly the number of agent tasks NA executed on a

node is much larger than the number of available virtual

machines NV. Thus, efficient and well-balanced multi-task

scheduling is required to get proper response times of indi-

vidual agents. To provide fine grained granularity of task

scheduling, a token based pipelined task processing architec-

ture was chosen. A task of an agent program is assigned to a

token holding the task identifier of the agent program to be

executed. The token is stored in a queue and consumed by

the virtual machine from the queue. After a (top-level) word

was executed, leaving an empty data and return stack, the

token is either passed back to the processing queue or to

another queue (e.g., of the agent manager). Therefore, the

return from an agent activity word execution (leaving empty

stacks) is an appropriate task scheduling point for a different

task waiting in the VM processing token queue. This task

scheduling policy allows fair and low-latency multi-agent

processing with fine grained scheduling. Furthermore, this

kind of task scheduling enables the JavaScript

implementation, discussed in Sec. IV-E.

IV. THE JAVASCRIPT WEB PLATFORM JAVM

The mobility of agents is handled basically by the agents

themselves, and there is no advanced routing provides by the

platform. They make decisions about the migration direction

and the selection of neighbour nodes, usually basing on

some geometrical structures given by the network topology.

For example, a material-integrated sensor network

embedded in a wind energy wing used for Load Monitoring

has a mesh-like network topology consisting of nodes that

are connected with their nearest neighbours. Delivering of

sensor data to dedicated computing nodes can be performed

simply by travelling to the outside of the network and by

searching. In the Internet context this geometrical structure

and the neighbourhood connectivity do not exist, or at least

they are not visible, increasing the decision and reducing the

knowledge space of agents significantly. First of all, the

migration decision of agents must base on different features

and knowledge. Furthermore, the Internet consists of two

different kinds of network nodes: Nodes capable of

providing a public visible service, called servers, and nodes

that cannot publish server ports. But in distributed systems

each node must be capable of offering services. Two

computers can only connect if at least one computer has

public server ports, otherwise an external brokerage service

is required. Web browsers are usually processed on client

computer nodes and are not visible in the network.

Therefore, agents can’t select a client-interface-only node or

process for migration directly and autonomously due to the

missing visibility in the communication network, as this is

the case in traditional sensor or embedded networks.

Two main issues arising in Internet applications using

mobile agents must be addressed: 1. The definition and the

knowledge representation of virtual/artificial neighbourhood

connectivity in loosely coupled and hierarchical graph-based

networks based on semantic rather on physical connectivity.

2. The visibility and deployment of pure client-side applica-

tions like Web browsers and computers hidden in private or

restricted networks as agent processing platforms capable of

receiving, processing, and sending of agents.

STEFAN BOSSE: A UNIFIED DISTRIBUTED COMPUTING FRAMEWORK 241

Def. 2 RPC-based client-server communication types, operations, and protocol schema (phases of a transaction)

To enable the distributed agent processing in browser and

applications running on generic computers connected by the

Internet, the previously introduced Agent Forth Virtual

Machine (AFVM) platform was implemented in JavaScript

that can be executed either by a node.js interpreter or by any

browser capable to execute JavaScript code. The AFVM was

integrated in a distributed operating system layer, also

implemented entirely in JavaScript, discussed in the

following subsections, composing the JAVM platform. The

transition from peer-to-peer networks to routed and

hierarchical networks like the Internet requires some

methodological and architectural changes, introducing the

aforementioned broker service, discussed below.

IV-A. Inter-Node Communication and RPC

Nodes offering agent processing capabilities connected in

the Internet domain usually not communicating peer-to-peer

like in sensor networks with mesh topologies. Instead

routing is used to establish communication between different

application processes executed on nodes probably located far

away. One well known inter-process communication

approach is the Remote Procedure Call (RPC), e.g., exten-

sively used in the distributed operating system Amoeba [21],

or on the top of existing operating system, e.g., offered by

the distributed Common Object Request Broker Architecture

(CORBA) framework. The capability-based RPC communi-

cation from the Amoeba OS was already successfully

implemented in VM environments executed on top of exist-

ing operating systems (VAMNET, [5]).

The RPC communication interface is used in this work

for the inter-platform communication, e.g., for transferring

agent program code to another platform or to access

distributed file and naming services. The RPC ontology

consists of servers and clients communicating by using a set

of operations. A server performs a GETREQ operation to

publish a listening on a public server port, and a client

performs a transaction TRANS operation to access a server

identified by the public server port. Each server handles a set

of objects, identified by capabilities that are tuples 〈port, obj,

rights, rand〉, consisting of the server port, an object number,

a rights field, and a private protection field authorizing the

rights field. A transaction operation transfers object

capabilities to the server that handles the request and finally

replies by using the PUTREP operation. Therefore, a client

transaction is synchronous and blocks the client process until

the reply arrives or an error occurred (time-out). The

localization of the server and the routing of the messages is

hidden by the RPC layer, or more precisely by the

underlying protocol layer, shown in Def. 1. The localization

is basically performed by broad- or multicasting LOCATE

messages to nodes in the current domain and finally to a

limited number of boundary domains. Each node monitors

the locally registered servers, and replies with a IAMHERE

message. Nodes are identified with ports, too.

The RPC communication is encapsulated in HTTP mes-

sages with XML content and transferred using the generic

HTTP protocol, discussed in section IV-C. The RPC header

and data is stored inside XML tags with compacted hexadeci-

mal coded text, on one hand complaining with the XML

standard, on the other hand reducing and optimizing the pay-

load. The binary byte data is coded with two hexadecimal

digits for each data byte. Each RPC server (process) can act

as a client, too, and vice versa.

IV-B. Domains as Organization Structures and the

Directory Name Service

Domains are groups of agent processing nodes that are

coupled in a network. Agents can migrate between nodes of

a group. A node can be assigned to more than one domain,

enabling the migration of agents between domains. Node

domain composition bases on

1. Geometrical localization and proximity, basically

expressing and simulating neighbourhood connectivity

2. Information and data context

3. Tasks to be performed, cooperative goals to be satisfied

4. Logical network domains

242 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 2 (Left, Centre) Broker Network with HTTP server ports and client applications (browser, node.js client-side) connecting to the public visible bro-

ker server ports. Client-to-Client communications takes place over the broker servers. (Left, Bottom) The JavaScript agent platform JAVM and the mod-

ules and services available on each host (Right) Different nodes can be bound to (overlapping) domains published in the DNS.

Domains can be expressed by paths similar to directory trees

that are handled usually by a file system. In this work a

distributed and unified Directory Name Service (DNS) us

used that provides a database to publish (capability-name)

pairs organized in trees. Each object in the distributed

system is related to a capability, which is serviced by a

specific server. For example, a file containing the agent

program code is serviced by a file server. A directory

containing domains is an object, too, handled by the DNS

server. An agent platform that processes agents programs is

another kind of object, handled by a run server that exists on

each node. Agents are objects in this sense, but they don’t

belong to a specific server, therefore they are handled as

mobile and autonomous severs. In Fig. 2, an example for a

composition of domains consisting of network nodes that are

not directly connected is shown.

IV-C. Broker Service

The integration and network connectivity of client-side

application programs like Web browsers as an active agent

processing platform requires client-to-client communication

capabilities, which is offered in this work by a broker server

that is visible in the Internet or Intranet domains. Though

there are already some approaches for interconnecting

browser applications directly (client-to-client

communication using WebSockets or WebRTC [20] and

HTML5 standards), they are not supported by all browsers

and require some external server for the connection

brokerage, too. Furthermore, WebSockets are still under

development and there are many browser incompatibilities.

To provide compatibility with and among all existing

browser applications none of these technologies were used.

Instead, an object-capability-based RPC inter-process

communication with a broker server operating as a router

was invented. Client applications communicate with the

broker by using the generic HTTP client protocol and the

GET and PUT operations. RPC messages are encapsulated

in HTTP requests. If there is a RPC server request passed to

the broker, the broker will cache the request until another

client-side host performs a matching transaction to this

server port. The transaction is passed to the original RPC

server host in the reply of a HTTP GET operation.

But the deployment of one central broker server intro-

duces a single-point-of-failure and is limiting the

communication bandwidth and the scaling capability signifi-

cantly. To overcome these limitations, a hierarchical broker

server network is used. Each broker in this broker graph can

be the root of a sub-graph and can be a service end-point

STEFAN BOSSE: A UNIFIED DISTRIBUTED COMPUTING FRAMEWORK 243

(i.e., providing directory and name services), a router

between clients and other broker servers, and an interface

bridge to a non-IP based network, e.g., a sensor network. A

broker is just an application program capable of running on

any computer visible globally in the Internet or more locally

in some Intranet domains.

An agent processing node (e.g., a host application) that

cannot publish IP server ports must connect to one of the

broker servers visible in the network. Usually this should be

a server located nearby. Each node is associated with a host

port that is communicated to the broker server now handling

and forwarding service requests for this specific host, shown

on the lower left side of Fig. 2. Each client-side host collects

periodically pending and queued service request messages

(or replies of services requests) from the broker server and

passes services replies back to the broker server that

forwards the reply to the appropriate host performing

originally a transaction. If the two hosts involved in a RPC

transaction are not handled by the same broker server, the

source broker server must forward request and reply

messages to the appropriate destination broker server, shown

in Fig. 2 by the green dotted path line. Furthermore, a broker

server must handle local RPC transactions and local RPC

servers and, too.

IV-D. The Node Service Platform

In addition to the services provides by the agent process-

ing platform (i.e., the agent manager and the tuple-space

database), each network broker node and optionally each

browser or client-side application provide a file system serv-

ice (Atomic File System Service AFS), the aforementioned

Directory and Naming Service (DNS), and a run server con-

nected to the agent processing platform (required on each

host). The run server provides the public port for agent exe-

cution, migration, and signal message propagation between

agents.

IV-E. The JavaScript Implementation

There are basically two different execution environments

for the execution of JavaScript (JS) programs: The server-

side standalone node.js interpreter and the client-side JS

interpreter embedded in browser applications. The node.js

interpreter can execute a JS program directly (with source-

to-machine code compilation on demand), whereas the

browser executes JS embedded in HTML content only. There

are node.js modules enabling the setup of HTTP servers,

modules for accessing files on the local file system, and

many more OS related programming interfaces not available

in the client-side browser JS.

The implementation of the entire network node services,

the RPC communication, and the agent processing platform

with JavaScript is a challenge, but offers significant advan-

tages with respect to portability, compatibility, and the

design unification for server-side and client-side-only

platforms (e.g., browsers). The basic modules implemented

on each host (and browser application) are shown on the left

bottom side of Fig. 2, consisting at least of the RPC module,

the HTML wrapper, and the agent processing platform

AFVM.

JavaScript is executed strictly single threaded, though

functions can be executed in parallel and concurrently, there

is no concept of process blocking or any other synchroniza-

tion. In JavaScript programs input-output operations are

mainly performed with asynchronous callback functions. But

all RPC services, the agent processing platform, and servers

operate inherently multi-threaded and synchronously.

To overcome this execution limitation, a Task Scheduler

(TSCH) was invented that simulates parallel multiprocess

execution and enables virtual process blocking for the syn-

chronization of processes. Each process consists of a set of

activities (functions) that are enabled by a conditional transi-

tion expression (that can be a constant true value). The

scheduler executes all activity functions sequentially that

have a satisfied transition condition. Blocking of a process

sets a process specific blocking variable (the guard GD) that

is part of the transition condition from the blocking activity

to the next one to be executed after the process was woken

up again. Furthermore, there are block, conditional, and loop

scheduling constructors easing the programming of proc-

esses. All RPC operations are prepared for the scheduler

management. Though callback functions are still used, a sin-

gle program flow of processes can be constructed on

programming level.

The client-side Browser JS implementation is created by

compacting and relocating server-side dependencies (using

browserify, envify, and uglifyjs for minimizing), and requires

typically about 500kB text size.

V. USE-CASE: CLOUD BASED ADAPTIVE MANUFACTURING

AND ROBOTS AS PRODUCTS

This section outlines a big application use-case for the

introduced agent processing platform with an architecture

for additive and adaptive manufacturing based on a closed-

loop sensor processing approach, extended with data mining

concepts combined with Internet-of-thing architectures.

Additive and adaptive cloud-based design and

manufacturing are attractive in the field of robotics, not only

limited to industrial production robotics, mainly targeting

service robots and semi-autonomous carrier robots. In cloud-

based manufacturing, the consumer of the products is

integrated in the cloud-based manufacturing process [6],

directly involved in the manufacturing process using

distributed cloud computing and distributed storage

solutions.

Robots can be considered as active, mobile, and autono-

mous data processing units that are commonly already

connected to computer networks and infrastructures. Robots

use inherent sensing capabilities for their control and task

satisfaction, commonly using integrated sensing networks

with sensor preprocessing, deriving some inner state of the

robot, e.g., mechanical loads applied to structures of the

robot or operational parameters like motor power and

temperature. The availability of the inner perception

information of robots enable the estimation of working and

health conditions initially not fully considered at design

time. The next layer in cloud-based adaptive manufacturing

process can be the inclusion of the products themselves

244 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

delivering operational feedback to the current design and

manufacturing process, leading to a closed-loop evolving

design and manufacturing process with an evolutionary

touch, shown in Fig. 3. This evolutionary process adapts the

product design, e.g. the mechanical construction, for future

product manufacturing processes based on a back

propagation of the perception information (i.e., recorded

load histories, working and health conditions of the product)

collected by living systems at run-time. The currently

deployed and running series of the product enhances future

series, but not in the traditional coarse-grained discrete series

iteration. This process can be considered as a continuously

evolving improvement of the robot by refining and adapting

design parameters and constraints that are immediately

migrated to the manufacturing process. A robot consists of a

broad range of parts, most of them are critical for system

failures. The most prominent failures are related to

mechanical and electro-mechanical components, which are

caused by overload conditions at run-time under real

conditions not to be considered or unknown at initial design

time.

The integration of robots as product and their condition

monitoring in a closed-loop design and manufacturing proc-

ess is a challenge and introduces distributed computing and

data distribution in strong heterogeneous processing and net-

work environments. One major question to be answered is

the sensing of meaningful condensed product condition

information and the delivery to the designer and factory. The

proposed mobile agent model offers a self-contained and

autonomous virtual processing unit that is well suited for

such large-scale applications. The mobile agents represent

mobile computational processes that can migrate in the

Internet domain and as well in sensor networks.

Agents are already deployed successfully for scheduling

tasks in production and manufacturing processes [7], and

newer trends poses the suitability of distributed agent-based

systems for the control of manufacturing processes [8], fac-

ing not only manufacturing, but maintenance, evolvable

assembly systems, quality control, and energy management

aspects, finally introducing the paradigm of industrial agents

meeting the requirements of modern industrial applications.

The MAS paradigm offers a unified data processing and

communication model suitable to be employed in the design,

the manufacturing, logistics, and the products themselves.

The scalability of complex industrial applications using

such large-scale cloud-based and wide area distributed net-

works deals with systems deploying thousands up to million

agents. But the majority of current laboratory prototypes of

MAS deal with less than 1000 agents [8]. Currently, many

traditional processing platforms cannot yet handle big num-

bers with the robustness and efficiency required by industry

[9][10]. In the past decade the capabilities and the scalability

of agent-based systems have increased substantially, espe-

cially addressing efficient processing of mobile agents.

There programmable agent processing platform intro-

duced in this work can be deployed in strong heterogeneous

network environments, ranging form single microchip up to

WEB JavaScript implementations, all being fully compatible

on operational and interface level, and hence agents can

migrate between these different platforms. Multi-agent sys-

tems can be successfully deployed in sensing applications,

e.g., structural load and health monitoring, with a partition in

off- and online computations [2]. Distributed data mining

and Map-Reduce algorithms are well suited for self-

organizing MAS. Cloud-based computing, as a base for

cloud-based manufacturing, means the virtualization of

resources, i.e., storage, processing platforms, sensing data or

generic information.

Fig. 3 Additive and adaptive Manufacturing with back propagation of

sensing data using mobile AAPL agents and the JAVM/PAVM platform.

Traditional closed-loop processes request data from

sources (products, robots) by using continuos request-reply

message streams. This approach leads to a significant large

amount of data and communication activity in large-scale

networks. Event-based sensor data and information distribu-

tion from the sources of sensing events, triggered by the data

sources (the robots) themselves, can improve and reduce the

allocation of computational, storage, and communication

resources significantly.

A cloud in terms of data processing and computation is

characterized by and composed of: 1. A parallel and distrib-

uted system architecture; 2. A collection of interconnected

virtualized computing entities that are dynamically provi-

sioned; 3. A unified computing environment and unified

computing resources based on a service-level architecture; 4.

A dynamic reconfiguration capability of the virtualized

resources (computing, storage, connectivity and networks).

Cloud-based design and manufacturing is composed of

knowledge management, collaborative design, and distrib-

uted manufacturing. Adaptive design and manufacturing

enhanced with perception delivered by the products incorpo-

STEFAN BOSSE: A UNIFIED DISTRIBUTED COMPUTING FRAMEWORK 245

rates finally the products in the cloud-based design and

manufacturing process.

Agent Classes. Different agent classes are defined that sat-

isfy different sub-goals: event-based sensor acquisition

including sensor fusion (Sensing), aggregation and distribu-

tion of data, preprocessing of data and information mapping,

search of information sources and sinks, information

delivery to databases, delivery of sensing, design, and

manufacturing information, propagation of new design data

to and notification of manufacturing processes, notification

of designer, end users, update of models and design

parameters. Most of the agents can be transferred in

messages with a size lower than 4kB.

VI. CONCLUSION AND OUTLOOK

In this work, a novel Agent Processing Platform archi-

tecture for code-based mobile agents in large-scale and

wide-area heterogeneous networks including low-resource

microchip nodes embedded in sensor networks was

introduced. The standalone agent processing platform, a

multi-core stack processor, can be implemented entirely on

microchip level, and requires no operating system and no

boot code. Alternatively, the processing platform can be

implemented efficiently in software with code and

operational compatibility, enabling the deployment in

heterogeneous network environments, inter-connecting

hardware and software platforms executed on generic

microprocessors. The JavaScript implementation of the

processing platform together with a minimal distributed

operating layer consisting of a broker, RPC, run, file, and

naming services enables the integration of body area,

ambient, and sensor networks in the Internet domain, a

prerequisite for the future of Internet-of-Things and Sensor

Clouds in daily use computing environments. Agents can

migrate between different hardware and software platforms

(they are compatible on the execution level) by migrating the

program code of the agent, embedding the state and the data

of an agent, too. A broker service enables the integration of

hosts (generic computers, mobile devices, ...) that are not

visible in the Inter- or Intranet domains and that cannot

publish server communication ports.

Using this broker service, which is composed of a graph-

based network of single broker server applications, each

computing device capable of executing JavaScript code can

act as an agent processing platform. This agent processing

platform is capable of receiving mobile agents form other

platforms and hosts. The broker service creates virtual

connectivity based on domains.

REFERENCES

[1] S. Bosse, Design and Simulation of Material-integrated Distributed

Sensor Processing with a Code-based Agent Platform and mobile

Multi-Agent Systems, MDPI Sensors, 2015 (2), pp. 4513-4549, 2015,

http://dx.doi.org/10.3390/s150204513

[2] S. Bosse and A. Lechleiter, Structural Health and Load Monitoring

with Material-embedded Sensor Networks and Self-organizing Multi-

agent Systems, Procedia Technology, Proceeding of the 2nd SysInt

Conference, Bremen, Germany, 2014,

http://dx.doi.org/10.1016/j.protcy.2014.09.039

[3] S. Bosse, Distributed Agent-based Computing in Material-Embedded

Sensor Network Systems with the Agent-on-Chip Architecture, IEEE

Sensors Journal, http://dx.doi.org/10.1109/JSEN.2014.2301938

[4] S. Bosse, Design of Material-integrated Distributed Data Processing

Platforms with Mobile Multi-Agent Systems in Heterogeneous

Networks, ICAART 2014,

http://dx.doi.org/10.5220/0004817500690080

[5] S. Bosse, VAMNET: the Functional Approach to Distributed Pro-

gramming, SIGOPS Oper. Syst. Rev., 40, pp. 108-114, 2006,

http://dx.doi.org/10.1145/1151374.1151378.

[6] D. Wu, J. L. Thames, D. W. Rosen, and Dirk Schaefer, Towards A

Cloud-based Design and Manufacturing Paradigm: Looking Back-

ward, Looking Forward, in Proceedings of the ASME 2012 Interna-

tional Design Engineering Technical Conference & Computers and

Information in Engineering Conference, IDETC/CIE 2012 August

12-15, 2012, Chicago, Illinois, USA, 2012

[7] M. Caridi and A. Sianesi, Multi-agent systems in production plan-

ning and control: An application to the scheduling of mixed-model

assembly lines, Int. J. Production Economics, vol. 68, pp. 29–42,

2000.

[8] P. Leitão and S. Karnouskos (ed.), in Industrial Agents Emerging

Applications of Software Agents in Industry. Elsevier, 2015.

[9] V. Marík, and D.C. McFarlane, 2005. Industrial adoption of agent-

based technologies. IEEE Intell. Syst. 20 (1), 27–35.

[10]M. Pechoucek, and V., Marík, 2008. Industrial deployment of multi-

agent technologies: review and selected case studies. Auton. Agent.

Multi-Agent Syst. 17 (3), 397–431.

[11] M. Guijarro, R. Fuentes-fernández, and G. Pajares, A Multi-Agent

System Architecture for Sensor Networks, Multi-Agent Systems -

Modeling, Control, Prog., Simulations and Applications, 2008.

[12]A. Rogers, D. D. Corkill, and N. R. Jennings, Agent Technologies for

Sensor Networks, IEEE Intelligent Systems, vol. 24, no. 2, 2009.

[13]X. Zhao, S. Yuan, Z. Yu, W. Ye, and J. Cao, Designing strategy for

multi-agent system based large structural health monitoring, Expert

Systems with Applications, 2008, 34(2), 1154–1168.

doi:10.1016/j.eswa.2006.12.022

[14]J. Liu, Autonomous Agents and Multi-Agent Systems, World Scien-

tific Publishing, 2001 (ISBN 981-02-4282-4)

[15]R. Milner, The space and motion of communicating agents. Cam-

bridge University Press, 2009.

[16]R. Milner, Communicating and mobile systems: the π-calculus,

Cambridge University Press, Cambridge (1999)

[17]L. Cardelli and A: Gordon, Mobile Ambients. Theoretical Computer

Science, Special Issue on Coordination 240(1), 177–213 (2000)

[18]L. Chunlina, L. Zhengdinga, L. Layuanb, and Z. Shuzhia, A mobile

agent platform based on tuple space coordination, Advances in En-

gineering Software, vol. 33, no. 4, pp. 215–225, 2002

[19]Z. Qin, J. Xing, and J. Zhang, A Replication-Based Distribution Ap-

proach for Tuple Space-Based Collaboration of Heterogeneous

Agents, Research Journal of Information Technology, vol. 2, no. 4.

pp. 201–214, 2010

[20]S. Loreto and S. Pietro Romano, Real-time communications in the

web: Issues, achievements, and ongoing standardization efforts,

IEEE Internet Computing, vol. 16, no. 5, pp. 68–73, 2012.

[21]S. J. Mullender and G. van Rossum, Amoeba: A Distributed Operat-

ing System for the 1990s, IEEE Computer, vol. 23, no. 5, pp. 44–53,

1990.

246 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

