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Abstract—In the article the control and optimization of multi-
stage technological processes were discussed. In the presented
research, it was assumed, that in the complex technological
processes, the multistage differential-algebraic constraints with
unknown consistent initial conditions were considered. To rewrite
the infinite-dimensional optimal control problem into the finite-
dimensional optimization task, the direct shooting method was
applied. Simulated annealing algorithm was proposed as the
method for solving nonlinear optimization problem with con-
straints. Stretching function was used to allow us to locate the
globally optimal solution. The complex process constraints were
treated using constraints aggregation methods. The presented
methodology was tested with optimal control problem of the
two-reactors system. The numerical simulations were executed
in MATLAB environment using Wroclaw Center for Networking
and Supercomputing.

Index Terms—optimal control, DAE systems, simulated anneal-
ing, constraints aggregation, stretching function.

I. INTRODUCTION

OWADAYS, technological processes have been modeled

using more general and complex systems of equations.
To model technological processes in such branch of indus-
try, like chemical engineering, biotechnology and aerospace
engineering, both dynamics and physical conservation laws
have been under consideration [2], [3], [8], [16]. Then, a
validated model of the process can be applied to control and
optimize the technological systems. In the other words, to
ensure an efficient and trouble free technological processes,
an optimization problem subject to nonlinear differential-
algebraic constraints need to be solved [4], [13].

In the last years, deterministic, as well as stochastic opti-
mization algorithms, are adjusted to solve new advanced tech-
nological problems. New methods in modeling, algorithmic
procedures and globalization of the obtained solutions can
be observed in all areas of optimization [9], [10], [26]. In
the presented work we would like to indicate the simulated
annealing algorithm, which has been seen as one of the
main global optimization procedures . In this work the new
aspects of the simulated annealing algorithm were given and
discussed.

Direct shooting method enables us to transform the opti-
mal control problem into medium- or large-scale nonlinear
optimization problem. Then, using aggregation and disaggre-
gation procedures, the considered model can be represented
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by other system, which reflects the most important features of
the original process, but is better adjusted for computational
optimization methods [14]. Then, the obtained results can be
applied to control the original system.

The presentation of new methodology was performed in
the following way. In the next section optimal control with
differential-algebraic constraints was introduced. Then, in sec-
tion III, optimization with aggregated constraints was dis-
cussed. ”Stretching” function technique in optimization pro-
cedures was presented in section IV. Then, a new simulated
annealing algorithm with constraints was given and tested
in sections IV and V. The considerations were concluded in
section VI

II. OPTIMAL CONTROL WITH DIFFERENTIAL-ALGEBRAIC
CONSTRAINTS

The optimal control algorithms are highly connected with
the available modeling methods. The main objective of the
control is always the same - we need to find the control
function, which optimizes one of the known forms of the
process performance index. But the assumptions, conditions
and complexity of the considered processes are increasingly
challenging and difficult to solve.

In the last years, new particular types of systems have
become popular due to many practical applications. There
are the multistage dynamical systems and processes with
differential-algebraic equations, which are more general, than
the pure dynamical processes.

The most important common features of the systems men-
tioned above, is the presence of the dynamics in the model.
The difference, which has a far-reaching consequences in the
calculation methods comes from the non-dynamical part of the
model.

In the multistage processes, the state variables have to be
continuous across the stages. It means, that in the known
points, at the interface between the processes, algebraic con-
tinuity constraints are introduced. Therefore, the additional
algebraic constraints have a pointwise character.

In processes with differential-algebraic constraints, the alge-
braic relations are justified by physical laws, which take place
in the process and are reflected in the model. In this way,
both the differential and algebraic equations have a continuous
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character and can be treated as a one differential-algebraic
system [6].

The presented work concerns the case, when the process is
multistage and each stage was described using its own system
of differential-algebraic equations. In this way, new theoretical
assumptions have to be made and new computational concepts
should be designed and implemented.

The features presented above lead us to the optimal control
problems in the known form. At first, the process performance
index, which can be treated as the measure of the control
quality, has to be defined as follows

2(tr),tr)

min @ = /
u(t)

ey
with single system of differential-algebraic constraints in semi-
explicit form

B(t)y(t)
0 =

t), z(t), u(t),p, t)dt + E(y(tr),

f(y(t)w(t),u(t),p, t) )
9(y(t), (1), u(t),p, ),

where y(t) € R™ is a differential state, z(¢) € R"= is an
algebraic state and u(t) € R™* denotes the unknown control
function. The independent variable (e.g. time or length of the
chemical reactor) is denoted as ¢t € R. As p € R™ was
denoted the vector of global parameters constant in time. The
variables in the process are defined by vector-valued functions:

f:iR™ xR™ xR"™ x R"™ x R — R"™ 3)

and
g:R™ xXR™ xR"™ x R"™ x R — R"=. 4)

To ensure, that the system (2) consists of differential-
algebraic equations in semi-explicit form, it is assumed, that
the matrix B(t) is invertible for all values of ¢.

As it was mentioned, the quality of the process is measured
by the value of ) € R. It is an important assumption, that
quality of the whole complex process can be specified by only
one real number.

When the multistage processes are considered, then each
stage can be described using its own system of differential-
algebraic equations

Bi(t)y'(t)
0

iy (1), 2 (t), u
= g'(y'(0),2"(t),u
i=1,---,NS,

‘(1) p,1)
(1), 1), &)

where NS denotes number of the stages in the considered
process.

One of the most important progresses in the optimal control
methods has been connected with parametrization of the
control problem. Because in this way the optimal control
problem can be treated as a nonlinear optimization problem,
efficient numerical optimization algorithms can be applied.

The parametrization of the control function has been pro-
posed in the article [24] in 1994. Today, the piecewise continu-
ous control parametrization using constant, linear or quadratic
functions has been a commonly used approach.
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In this way, instead to search for optimal solution using ad-
vanced analytical methods, the efficient algorithm of numerical
optimization can be applied to obtain the best solution in the
assumed class of piecewise continuous functions [7].

The parametrization of the control function in optimal
control problems has been often used together with the mul-
tiple shooting technique. The multiple shooting method is
appropriate to decompose the complex technological processes
as well as to stabilize the solutions of both the unstable and
highly nonlinear systems.

The multiple shooting method together with the control
function parametrization lead us to the direct shooting ap-
proach. In this methodology, at the first step, the independent
variable domain is divided into the assumed number of inter-

vals
NS—1

U iy t)Ultns—1 tysl, (6)

where ¢ is the time instant, when the process starts and ¢y g
is the final time.

Therefore, the control function as well as the differential-
algebraic system can be parametrized in each interval. In prac-
tical applications, when the control function is parametrized
as piecewise constant, then

ut(t) = uj,

The differential-algebraic model of the technological pro-
cess is parametrized in the sense of the unknown initial condi-
tions. This approach enables us to solve the DAE system using
the efficient numerical procedures [17]. The initial conditions

of differential-algebraic system can be parametrized in the
following way

i=1,---,NS. )

y'(tic1) = s
2t 1) qu: (8)

fori=1,---,NS.
Therefore, the differential-algebraic constraints have been
obtain the new form

BOIO) = FEOS 0
0 = g'(y'(t),2"(t), w',p,t"),
with t* € [t;_; t;] and i =1,---, NS. Because the consis-

tent initial conditions are needed to solve the DAE systems,
the algebraic part can be extended by damping factor «

0=yg'(y'(t), 2" (t),u’,p,t") + &' (t)g' sy, 5%, u', p, ') (10)

fOI’tiE[ti,1 tz] andi=1,---,NS.
The process performance index has been rewritten as fol-
lows

NS .,
mi‘nAQ:Z/ L(s}, st u’,p, t)dt + E(s) NS NS ).
i=17ti-1

s;,s’;,uz
(11)
It is worth to note, that the trajectories of the differential
states are continuous. It means, that the additional relations
have to be incorporated to the model

yi(t) =yt (t) = s L NS—-1, (12)

1=1



PAWEL DRAG, KRYSTYN STYCZEN: SIMULATED ANNEALING WITH CONSTRAINTS AGGREGATION FOR CONTROL

which results as additional pointwise algebraic constraints of
the following form

y'(t:) — syt =0, i=1,---,NS—1. (13)

In the most practical situations, the unknown parame-
ters have their physical interpretation. Among them can be
distinguished an unknown volume of the chemical reactor,
concentration of the substrates or value of the temperature.
The interpretation of the decision variables and technological
restrictions defines the feasible region and can be rewritten
as the inequality constraints in the form of lower and upper
bounds.

Direct shooting approach enables us to transform the opti-
mal control problem into the nonlinear programming problem
with the vector of decision variables designed as

z=[sy si u p, (14)

the process performance index in the form of the objective
function

min Q(x) (15)
differential-algebraic constraints
B = [EO.F00n ) o
0 = gz(yl<t)7zl<t)7ulvp7tz)v

consistency constraints
0=g'(y'(t), 2" (1), u',p,t") + @' (t)g" (s, 5% u', s ') (17)

continuity constraints

y'(t:) — s, =0, (18)
and the constraints of upper and lower bounds type
zp <z <uwy (19)

fort' € [t;_qy t;]andi=1,---,NS.

This causes, that the various numerical optimization algo-
rithms can be treated as an important part of the control algo-
rithms [18]. This transformation is a main effect of the direct
shooting method applied in the optimal control problems.

III. OPTIMIZATION WITH AGGREGATED CONSTRAINTS

The complexity of the considered models and large number
of decision variables makes, that the analytical solutions and
some intuitive numerical approaches can be inappropriate in
the control of the real-life technological processes.

One of the most important question in modern optimization
and control theory is, how to solve the problems with thou-
sands or millions variables and comparable number of equality
and inequality constraints. The second important question is,
how to compare two unfeasible solutions and to make a
decision, which one proposed solution is better than the others.

To analyze the complex process, both the aggregation
and disaggregation techniques were used. There is a general
methodology, how to obtain useful information about the pro-
cess by a possibly little model modifications and computations
amount [5].

In the previous section, the optimal control problem was
reformulated as a middle- or large-scale nonlinear optimization
problem. To do this, the direct shooting method was applied.
At this point, the consecutive question cannot more wait for
the answer - how to treat optimization problems with so many
variables and subject to huge number of constraints? The
question, which has been just imposed, is considered in this
section.

The general way to obtain the useful information about the
complex process can be constructed as follows [23]

Original model

Aggregation — |

analysis |
1 A priori
Reduced model < error
| analysis
|
Solve — |
reduced |
model |
+ A posteriori
Solution vectors < error
for the reduced model analysis
|
Disaggragation — |
analysis |
1
Solution vectors
for the original model
|
Solve for — |
original |
objective |
function |
1
Estimate of
objective function value
for original model
(20)

In a general sense, in model aggregation, large-scale op-
timization models are reformulated as less complex systems.
The obtained in this way models reflect the most important
features of the original systems, but should be much more
suitable to perform numerical simulations.

In the other words, the aggregation technique is a method
to specified parts of the model, which can be described using
only one single element. At this step, the new single element
should be explicitly defined. Therefore, aggregation analysis
consists of two levels:

- process of determining, which data are in some sense
similar and can be considered as elements in the same group;
this step is known as cluster analysis,

- the method of combining the clustered data to define the
reduced model.
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In contrast to the aggregation analysis, the disaggregation is
a method, which can derive the information about the complex
model using results obtained by reduced system analysis.
The disaggregation analysis, often known as the reversal
aggregation analysis, enables us to estimate the solution of
the original system using only results obtained from solving
the reduced model.

The last stage, which is connected with aggregation and
disaggregation methodology, is an error analysis. The error
analysis determines the resulting error, which can be intro-
duced by algorithms with aggregate models and disaggregate
solutions. From practical point of view, the error analysis
can be useful for selection of appropriate aggregation and
disaggregation procedures. In the literature two main types
of error are defined

a) a priori error bounds, which are the bounds placed upon
the optimal value of an original optimization model after
aggregation stage, but before the aggregate model is solved,

b) a posteriori error bounds are the bounds placed upon
the optimal value of an original optimization model after the
aggregated model has been formed and solved.

In practical applications, the iterative optimization algo-
rithms with successive aggregation-disaggregation schemes are
used. Such procedures are known as an Iterative Aggregation-
Disaggregation (IAD) technique.

As it was mentioned, the direct shooting method allows
us to transform the optimal control problem into a nonlin-
ear optimization problem. Therefore, solution of the original
infinite-dimensionally task can be obtained by solving finite-
dimensional optimization problem. But the question posed in
this section does not refer to the optimal control problems.
It concerns the much more fundamental task - how to solve
medium- and large-scale optimization problems?

It is expected, that the efficient numerical optimization
methods enable us to solve optimal control problems.

Therefore, we would like to propose aggregation methods,
which can be useful to define new reduced process perfor-
mance index, as well as reduced constraints.

At this place, we would like to focus on the constraints
function aggregation. It was mentioned, that two main types of
the constraints need to be considered in the process - there are
continuous and pointwise constraints. In particular, it means,
that some group of functions are connected with process
description by continuous differential-algebraic constraints.
There is the second group of constraints, which denotes the
additional constraints at the prescribed time instances in the
process.

Let us consider the system of the continuous differential-
algebraic equations. This particular system can be solved by
implementation of efficient numerical algorithms. After that,
the process performance index, as well as fulfillment of the
constraint can be determined. There is an important question,
which refers to consistent initial conditions, which enables us
to solve the differential-algebraic system. Although the initial
conditions are defined at the specific point, they strictly refer
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to the continuous process constraints and should be perceived
with continuous differential-algebraic constraints. In this
work, we refer to this type of constraints as the consistency
constraints and denote as

Ccons({séa Siv ui,p, t’b—l}fvzsl) =

gl(sévsivu17p7 to)

92(Sy7 8§,U27p,t1)

— : =0. 21

NS(S?]!VS, iVS,UNS

S 7p7tNS—1)

g

The other group of constraints represents the pointwise
constraints, which are connected with the fact, that the
multistage system is considered. In the other words it means,
that the differential state trajectories are continuous across the
process stages. The vector of pointwise algebraic constraints
denoted as ¢,y 1S defined as follows

cwnt({s?y‘*‘l,siﬂ,ui,p, t; fisl'*l) =

yl(tl) _ 82
v (t2) 5}
= . =0. (22)

yNS_l(tNS—l) _ sJyVS

In some numerical optimization algorithms, e.g. Sequential
Quadratic Programming, it is suggested to treat each constraint
function in the same way. Therefore, in each iteration, a large-
scale and possibly structured matrix of constraint functions
derivatives can be obtained. In general case, when the structure
of the process constraints is unknown, the matrix of partial
derivatives of the constraints might be time and memory
consuming.

If, in general, c(z) denotes

(23)

ens(x)
then the vector of the constraint functions can be replaced
using one of the following real-valued aggregated functions

é(x) = [le(@)l, (24)
&(x) = [le(x)ll2 (25)
() = (@) co- (26)

One cannot determine, which one measure of the constraints
infeasibility has the best features. The constraints aggregation
function can be chosen depending on the considered process,
optimization methods and, first of all, available computing
resources.

The other question is, how to treat the process performance
index. Parametrization of the control function, as well as
differential and algebraic states, enables us to rewrite the
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process performance index as the objective function in non-
linear optimization problem. In some applications the penalty
function approach and many variations of it can be observed.
Advanced optimization methods focus on methods without
penalty function [12], [22]. For these reasons, in presented
methodology, the objective function Q(z), which represents
control quality index, was remained unchanged.

IV. STRETCHING FUNCTION

In the previous section it has been indicated, how to apply
the direct shooting method to transform the optimal control
problem into the nonlinear optimization task. In general, the
presented methodology enables us to consider the optimization
problem over the feasible region

min f(z), Ve e A, 27)

where f(z) is a real-valued objective function

fiASR (28)

where A C RP is the D-dimensional compact set.

The important question is, how to treat the nonlinear opti-
mization problem with the large number of equality, as well
as inequality constraints.

To solve the optimization problem on the compact set, the
“stretching” technique for the objective function can be applied
[19].

Let us consider the objective function f(z) defined on
the compact set. Let the objective function f get the local
minimum in a point x*. Therefore, the point z* is a local
minimizer of the function f. As a consequence, it means, that
in the neighborhood N/B of the point x*, the inequality

fl@") < f(x)

is satisfied for all z € NB.

In real-life optimization and control problems, it is highly
undesirable, that one of the low quality local minima can
be treated as the global solution. The ”stretching” function
method was designed as a remedy for described situation. This
method enables us to alleviate the local minimum using the
following two-step transformation.

Let 2* be the local minimum of the function f, then in the
step 1, the function f(x) elevates and all the local minima,
which are above the point f(x*), disappear

G(2) = f(@) + G llz = o[ (sign(f (@) = F*)) + 1) GO)

(29)

In the step 2, the neighborhood of the point z* is stretched
upwards, in this way, that it assigns higher values of those
points

5(f@)) = £5(2) = Hx) =

Y2 (szgn(f(x) — f(z*) + 1)

~ (n(G() - 6(=)

€3]

The parameters <3, 72 and p are the positive constants
with arbitrary chosen value. The authors, who proposed the
”stretching” function technique as the global optimization
method, suggested the values of the mentioned parameters as
v = 10000, v2 = 1, u = 10719, It was suggested, that the
choice of the considered parameters seems not to be critical
for the success of the optimization, but they can influence the
convergence rate. For these reasons, the parameter tuning was
suggested [20].

It is an important question, how the “stretching” function
technique can be applied for optimization problems, when a
feasible region is no more a compact set? The mentioned
situation can be meet in all cases, when optimization problems
with equality constraint are considered [21].

To find the answer for the question posed above, the
constraints aggregation methodology is very helpful.

V. SIMULATED ANNEALING WITH CONSTRAINTS

The main ideas connected with simulated annealing algo-
rithm have their origin in thermodynamics. The physical laws,
which governs cooling of molten metal in annealing process,
have been used to design new optimization methods. After
slow cooling in annealing process, the metal tends to reach a
state with a low energy. In general, the state with the minimum
energy is desired. In analogy to annealing process, the energy
represents the possible solution of the optimization problem.
Therefore, the state with the minimal energy represents the
solution in the optimization algorithm [15], [25].

The simulated annealing algorithm is constructed as follows.

The simulated annealing algorithm

Initialization (zo, 7o)

Calculation of f(xq)

Until convergence
Generation of new state

if f(él?l) < f(l’o)
o = X1
else

if exp (M) > Rand(0,1)
Accept new solution g =
else
Reject new solution

Decrease the temperature
end (Until)

At this moment we would like to introduce new simu-
lated annealing method for optimal control of the multistage
differential-algebraic systems. We start the presentation with
some remarks.

Remark 1. The optimal control problem with index-1
differential-algebraic constraints using the direct shooting
approach has been transformed into nonlinear optimization
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problem with equality constraints of the following form

min, Q(z)
Ceons (l‘) =0
Ccont (l') = 0.

(32)

Remark 2. The quality Q of any proposed solution x can
be specified using a triple

a1 () Q(I)
Q(%) = QQ(‘T) = Ccons (l‘) (33)
q3 (.%') Ceont (IL')

Remark 3. The stretching” function technique applied
for some proposed solution transforms the vector, which
parametrized the quality of the proposed solution

g7 () Q5(z)
s(Q@) =@ = | @) | =| Sula) |- G4
q§ ('7‘) Cfont ($)

The decisions of the new solution acceptance can be made
by quality comparison of the considered solutions
Definition 4. Any two values Q, and Qy, are in the relation
@ if
q1(a) ® q1(b)
q2(a) ® g2(b)
q3(a) ® q3(b)

Theorem 5. Let xy and x1 be any two solutions. The
solution xq is unconditionally better than solution x1 if and

only if

(35)

Q(Io) < Q(l’l)

Let us transform the triple, which defines the quality of the
solution, using the “stretching” function technique.
Theorem 6. Let xy and x1 be any two solutions. If

g3 (wo) < qf (1)

(36)

g5 (z0) < ¢5 (21) (37)
g5 (z0) < g3 (z1)
then

The question is, how to compare two solutions, which are
not in the relation presented in Theorem 6.

One of the most important features of simulated annealing
algorithm is a possibility of accepting a step, which does
not improve the current solution. Therefore, to compare any
two solution, which are not in clear relation, a conditional
acceptance mode can be applied. In simulated annealing
methodology, it is known as an acceptance with probability.
In the presented work, because of three-dimensional quality
solution index Q(z) under considerations, a new extended
method of acceptance with probability was proposed.

Proposition 7. Let xo be the current solution and x, be
any other solution generated by simulated annealing algorithm
from the neighborhood of the point xq, and T denote the value
of the temperature in the current iteration. If the point x,
cannot be unconditionally accepted as a new solution, then
it can be accepted with the probability p € N(0,1). The
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acceptance probability is dependent on the index quality in
the following way

eXP(—w)M)
or

exp(—M) >p
or

exp ,M) > p.

There are two important remarks connected with the pre-
sented acceptance condition

Remark 8. The multiple conditions increase the general
acceptance probability of the worse solution.

Remark 9. Application of the stretching” function tech-
nique transforms the bad solution in the worse one. Moreover,
"stretching” function technique supports searching for better
solutions and alleviate the local minima.

The presented simulated annealing stretching” function
algorithm with new conditional solution acceptance approach
was applied to solve the optimal control problem of the
multistage rectors system.

VI. NUMERICAL EXAMPLES

The presented methodology was tested on the optimization
problem of the three-stage technological process. The pre-
sented system consists of two chemical reactors with mixing
[24]. The sketch of the process was presented in the Fig. 1.

At the beginning, the first reactor was loaded with the
substrate A with the volume 0.1 m® and concentration 2000
mol/m®. Due to reactions taking place in the system, the
products B and C' are obtained according to the following
scheme

2A —- B — C. 39)

Additionally, the first reactor was equipped with a heating
exchanger, which can be used to control the process tempera-
ture and in this way - to influence the trajectories of the process
variables. The concentrations of the substrate and products
were changing in the following way

Ca = —2k (T)C% (40)
Cp =2k (T)CF — k2(T)Cp (41)
Co = ka(T)Cp 42)
with the kinetics constraints
k1(T) = 0.0444 exp(—2500/T) (43)
and
ko(T) = 6889.0 exp(—5000/T). (44)

Then, in the mixing stage at the time ¢;, the component
B of concentration C% = 600mol/m?® and some volume
S was added. Therefore, the volume and consecrations of
the substrates were changing, so the following relations were
satisfied

VaCa(ty) = ViCa(ty)

VaCp(t3) = ViCp(t) + SCY

(45)
(46)
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VaCo(ty) = ViCo(th) 47)

where V; is the volume of substrates loaded at the beginning
of the first reactor. Therefore, the volume V5 in the second
reactor was given by

Vo=Vi+5 (48)
The volume S is a decision parameter with
0<8<0.1(m? (49)

After the mixing stage, the substrates were loaded into the
last reactor, where three reactions were taking a place

B—D (50)
B E (51)
9B - F (52)

In the 2nd reactor, the reactions take place under isothermal
conditions. The state variables are changing in the following
way

Ca=0 (53)

Cp=—0.02Cp —0.05Cp —2 x 4.0 x 107°C%  (54)
Ce=0 (55)

Cp =0.02Cp (56)

Cg = 0.05Cp (57)
Cp=40x%x10"°C% (58)

The combined processing time for both reactors is equal to
180 min

t1 + to = 180, (59

t1>0,  ty>0. (60)

The decision variables are the profile of the temperature
T(t), the duration time of the reactions in each stage, and the
amount S of component B, which is added at the mixing step.

The process is aimed to maximize the amount of the product
D at the output of the 2nd reactor

max VQCD (tg) (61)
t1,t2,5,T(t)
subject to the constraints on the temperature profile
298 < T'(t) < 398(K), tel0 t]. (62)

The direct shooting method enables us to transform the mul-
tistage optimal control problem as an nonlinear optimization
problem with both continuous and pointwise constraints. In
classical approaches, the nonlinear optimization problem with
constraints can be solved using penalty function approach or
NLP algorithms, like Sequential Quadratic Programming or
Barrier methods. In this way, the process in first reactor was
divided into 10 equidistance intervals. Additionally, the initial
conditions for the second reactor should be consistent with
the results of the mixing stage. Therefore, the considered NLP

B
Heat —
exchanger D

Mixing

Reactor 1

Reactor 2

Fig. 1. System of the two-reactors with mixing.

problem consisted of 27 continuity constraints, 3 consistency
constraints and 42 decision variables.
The aggregated model was defined using 3 scalar functions

Q(z) = Q(z) (63)
27
Ccont(x) == Z ||Ccont,1($>||1 (64)
=1
3
Ceons(T) = Z llccons,1 ()1 (65)
=1

In the next step, all three function were transformed using
’stretching” function technique

5(Q@) = @) (66)
S(ccom(x)) =c5 . (x) (67)
S(ccons(x)) =c5 () (68)

and optimized using presented simulated annealing algorithm
with new acceptance method.

The parameters of the methods were adjusted automatically.
Therefore, the simulations were performed with the following
parameters

- number iterations in the outer loop MaxIter = 500,

- inner iterations in cooling loop MaxIterCool = 10,

- diameter of the considered neighborhood a@ = 0.4

- initial temperature Ty = 100,

- temperature update factor 7,4, = T; is 8 = 0.6.

The obtained results, which were obtained for the ag-
gregated model, were applied to the original model of the
considered process. After 702 model evaluations, the final
value of the original process performance index was equal to
22.7233 mol. The obtained state trajectories were presented in
the Fig. 2.
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Trajectories of the state variables.

VII. CONCLUSION

In the article a problem of solving complex multistage
technological processes was considered. The new methodol-
ogy, which was presented, applies aggregation-disaggregation
approach. The optimal control problem was transformed into
the nonlinear optimization problem using the direct shooting
approach. Then, the NLP problem has been defined using only
three functions, which reflects the characteristics features of
the process. The first one denotes the value of the process
performance index. Then, the second one is connected with
the continuity of the differential state trajectories, and the last
one denotes the consistent initial conditions of the process.
The quality of the proposed solution was defined using only
values of these three functions. To compare any two proposed
solutions, the new decision approach was proposed. The
presented methodology was applied to the two-stage reactor
system.

The future research will be devoted to error analysis of
the aggregation-disaggregation procedures for control and
optimization of the multistage technological processes with
nonlinear differential-algebraic constraints.
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