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Abstract—Evolution strategies are powerful evolutionary algo-
rithms for continuous optimization. The main search operator
is mutation. Its extend is controlled by the covariance matrix
and must be adapted during a run. Modern Evolution Strategies
accomplish this with covariance matrix adaptation techniques.
However, the quality of the common estimate of the covariance is
known to be questionable for high search space dimensions. This
paper introduces a new approach by changing the coordinate
system and introducing sparse covariance matrix techniques. The
results are evaluated in experiments.

I. INTRODUCTION

EVOLUTIONARY COMPUTATION has a long research

tradition. The field comprises today the main classes

genetic algorithms, genetic programming, evolution strategies,

evolutionary programming, and differential evolution. Evolu-

tion strategies (ESs), on which the research presented in this

paper focuses, are primarily used for optimizing continuous

functions. The function is not required to be analytical.
Evolution strategies rely on mutation, i.e., on the random

perturbation of candidate solutions to navigate the search

space. The process must be controlled in order to achieve

good performance. For this, modern ESs apply covariance

matrix adaptation in several variants [1]. Nearly all approaches

take the sample covariance matrix into account. This estimator

is known to be problematic in the case of small sample

sizes compared to the search space dimensionality. Since the

population size in evolution strategies is typically considerably

smaller, this paper argues that the adaptation process may

profit from the introduction of different estimators.
So far, evolutionary algorithms or related approaches have

only seldom considered statistical estimation methods targeted

at high-dimensional spaces. The reason may be twofold: The

improved quality of the estimators induces increased compu-

tational costs which may lower the convergence velocity of

the algorithm. In addition, the estimators are developed and

analyzed for samples of independently, identically distributed

random variables. Since evolutionary algorithms deploy se-

lection based on rank or fitness, the assumption of the same

distribution is not valid. This may be the reason as to why the

literature research has resulted in only one previous approach

[2]. There, the authors considered Gaussian based estima-

tion of distribution algorithms. The problem they were faced

with concerned a non-positive definiteness of the estimated

covariance matrix. Therefore, Dong and Yao augmented the

algorithm with a shrinkage procedure to guarantee positive

definiteness. Shrinkage is one of the common methods to

improve the quality of the sample covariance, see e.g. [3].

While the approach in [2] resembles the Ledoit-Wolf estimator

[3], it adapted the shrinkage intensity during the run.

This paper extends the work presented in [4], [5], where

Ledoit-Wolf shrinkage estimators were analyzed, combined

with a maximum entropy approach, and integrated into evolu-

tion strategies. While the results were promising, the question

remained how to adapt the parameter of the estimator. There-

fore, in this paper, another computational simple estimation

method is investigated: thresholding.

The paper is structured as follows. First, modern evo-

lution strategies with covariance adaptation are introduced.

Afterwards, a short motivation as to why we think that the

covariance computation in ESs may profit from estimation

theory for high-dimensional spaces is provided. The next

section describes the new approach developed and is followed

by the experimental section which compares the new approach

against the original ES. Conclusions and a discussion of

potential future research constitute the last part of the paper.

A. Modern Evolution Strategies

This section provides a short introduction into evolutionary

algorithms focussing on evolution strategies and covariance

matrix adaptation. Evolutionary algorithms (EAs) [6] in gen-

eral are population-based stochastic search and optimization

algorithms used when only direct function measurements are

possible.

Their iterative search process requires the definition of

termination criteria and stops if these are fulfilled. In each

generation, a series of operations is performed: selection for

reproduction, followed by offspring creation, i.e. recombina-

tion and mutation processes, and finally survivor selection.

The initial population of candidate solutions is either drawn

randomly from the permissable search space or is initialized

based on information already obtained. First of all, the off-

spring population has to be created. For this, a subset of the

parents is determined during parent selection. The creation
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of the offspring is based on recombination and mutation.

Recombination combines traits from two or more parents

resulting in one or more intermediate offspring. In contrast,

mutation is an unary operator changing the components of an

individual randomly. After the offspring have been created,

survivor selection is performed to determine the next parent

population. The different variants of evolutionary algorithms

adhere to the same principles in general, but they may differ

in the representation of the solutions and how the selection,

recombination, and mutation processes are realized.

a) Evolution Strategies: Evolution strategies (ESs) [7],

[8] are used for continuous optimization f ∶ RN → R. Several

variants have been introduced see e.g. [9], [1]. In many cases,

a population of µ parents is used to create a set of λ offspring,

with µ ≤ λ. For recombination, ρ parents are chosen uniformly

at random without replacement and are then recombined.

Recombination usually consists of determining the (weighted)

mean or centroid of the parents [9]. The result is then mutated

by adding a normally distributed random variable with zero

mean and covariance matrix σ2
C. While there are ESs that

operate without recombination, the mutation process is seen as

the essential process. It is often interpreted as the main search

operator. After the offspring have been created, the individuals

are evaluated using the function to be optimized or a derived

function which allows an easy ranking of the population. Only

the rank of an individual is important for the selection. In the

case of continuous optimization, the old parent population is

typically discarded with the selection considering only the λ

offspring of which the µ best are chosen.

The covariance matrix which is central to the mutation

must be adapted during the run: Evolution strategies with ill-

adapted parameters converge only slowly or may even fail in

the optimization. Therefore, research on methods for adapting

the scale factor σ or the full covariance matrix has a long

research tradition in ESs dating back to their origins [7]. The

next section describes one of the current approaches.

b) Updating the Covariance Matrix: To our knowledge,

covariance matrix adaptation comprises two main classes: one

applied in the covariance matrix adaptation evolution strategy

(CMA-ES) [10] and an alternative used in the covariance ma-

trix self-adaptation evolution strategy (CMSA-ES) [11]. Both

consider information from the present population combining

it with information from the search process so far. The CMA-

ES is one of the most powerful evolution strategies and often

referred to as the standard in ESs. However, as pointed out

in [11], its scaling behavior with the population size may not

be good. Beyer and Sendhoff [11] showed that the CMSA-ES

performs comparably to the CMA-ES for smaller populations

but that is less computational expensive for larger population

sizes.

Therefore, the present paper focuses on the CMSA-ES

leaving the CMA-ES for future research. The CMSA-ES

uses weighted intermediate recombination, in other words,

the weighted centroid m
(g) of the µ best individuals of

the population is computed. To create the offspring, random

vectors are drawn from the multivariate normal distribution

N⃗ (m(g), (σ(g))2C(g)). The notation of covariance matrix as

(σ(g))2C(g) illustrates that the actual covariance matrix is

interpreted as the combination of a general scaling factor (or

step-size or mutation strength) with a rotation matrix. Follow-

ing the usual practice in literature on evolution strategies the

latter matrix C
(g) is referred to as covariance matrix in the

remainder of the paper.

The covariance matrix update is based upon the common

estimate of the covariance using the newly created population.

Instead of considering all offspring for deriving the estimates,

though, it introduces a bias towards good search regions by

taking only the µ best individuals into account. Furthermore, it

does not estimate the mean anew but uses the weighted mean

m
(g). Following [10],

z
(g+1)
m∶λ ∶= 1

σ(g)
(x(g+1)

m∶λ −m(g)) (1)

are determined with xm∶λ denoting the mth best of the λ

particle according to the fitness ranking. The rank-µ update

then obtains the covariance matrix as

C
(g+1)
µ ∶= µ∑

m=1

wmz
(g+1)
m∶λ (z

(g+1)
m∶λ )T (2)

which is usually a positive semi-definite matrix since µ≪ N .

The weights wm should fulfill w1 ≥ w2 ≥ . . . ≥ wµ with

∑µ
m=1wi = 1. To derive reliable estimates larger population

sizes are required which would lower the algorithm’s speed.

Therefore, past covariance matrices are taken into account via

the convex combination of (2) with the sample covariance

being shrunk towards the old covariance

C
(g+1) ∶= (1 − 1

cτ
)C(g) + 1

cτ
C
(g+1)
µ (3)

with the weights usually set to wm = 1/µ and

cτ = 1 + N(N + 1)
2µ

, (4)

see [11]. As long as C
(g) is positive semi-definite, (3) will

result in a positive definite matrix.

c) Step-Size Adaptation: The CMSA implements the

step-size using self-adaptation first introduced in [7] and

developed further in [8]. Here, evolution is used for fitting

the strategy parameters of the mutation process. In other

words, the scaling parameter or in its full form, the complete

covariance matrix, undergoes recombination, mutation, and

indirect selection processes. The working principle is based

on an indirect stochastic linkage between good individuals and

appropriate parameters: Well adapted parameters should result

more often in better offspring than too large or too small values

or misleading directions. Although self-adaptation has been

developed to adapt the whole covariance matrix, it is applied

today mainly to adapt the step-size or a diagonal covariance

matrix. In the case of the mutation strength, usually a log-

normal distribution

σ
(g)
l

= σbaseexp(τN(0,1)) (5)
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is used for mutation. The parameter τ is called the learning

rate and is usually chosen to scale with 1/√2N . The baseline

σbase is either the mutation strength of the parent or if

recombination is used the recombination result. For the step-

size, it is possible to apply the same type of recombination

as for the positions although different forms – for instance a

multiplicative combination – could be used instead. The self-

adaptation of the step-size is referred to as σ-self-adaptation

(σSA) in the remainder of this paper.

The newly created mutation strength is then directly used

in the mutation of the offspring. If the resulting offspring

is sufficiently good, the scale factor is passed to the next

generation.

Self-adaptation with recombination has been shown to be

“robust” against noise [12] and is used in the CMSA-ES as

the update rule for the scaling factor.

B. Concerning the Covariance Matrix Adaptation ...

In the case of λ > 1, the sample covariance (2) appears in

nearly any adaptation process. Disregarding the distortion due

to selection, the sample covariance as the maximum likelihood

estimator of the true covariance matrix is known as a good

and reliable estimate if µ≫ N . Evolution strategies typically

operate with µ < N , however. For example, following [13] the

sizes of the parent and offspring populations in the standard

CMA-ES should be chosen as λ = ⌊log(3N)⌋ + 4 and µ =⌊λ/2⌋.
Unfortunately, µ < N leads to problems with respect to

the covariance estimation. This is a well-known problem in

statistics [14], [15], giving raise to a broad range on literature

on alternative estimators e.g. [15], [16], [17], [18], [19],

[20], [21], [22], [23]. The quality of a maximum likelihood

estimate may be insufficient – especially for high-dimensional

spaces, see e.g. [16]. For example, Marčenko and Pastur

showed that if N/µ /→ 0 but N/µ ∈ (0,1), instead, the

eigenvalues of the covariance matrix are distributed in the

interval ((1 − √N/µ)2, (1 + √N/µ)2) in the case of the

standard normal distribution [17].

Equation (3) actually attempts to counteract the singularity

of the population covariance matrix by using the well-known

concept of shrinking. However, some distinctive differences

are present. First of all, the target is a full covariance matrix

whereas shrinkage typically considers simpler regulation forms

as e.g. a diagonal matrix. Secondly, the parameter is usually

determined via optimizing a performance measure.

Seeing that evolution strategies already apply some kind

of shrinkage, some questions arise: Can we improve the

estimator further by not only “shrinking” the population or

sample covariance matrix but by applying further concepts

stemming from the estimation of high-dimensional covariance

matrices? And considering that (3) is one regulation technique

among several, is it possible to find another well-performing

substitute? Or did research in evolution strategies already

happen upon the best technique possible?

II. A SPARSE COVARIANCE MATRIX ADAPTATION

This section introduces the new covariance adaptation tech-

nique which uses thresholding to transform the population

covariance matrix. The decision for thresholding is based upon

the comparatively computational efficiency of the approach.

A. Space Transformation

The ideal covariance matrix for the search depends on the

function landscape which is unknown in practical applications.

Considering the smooth test functions of typical black-box op-

timization suites, shows that the Hessians of several functions,

as e.g. the separable functions, can be classified as sparse

or approximately sparse matrices following the definitions

introduced later.

Therefore, sparse structures of the covariance matrix suffice

which is exemplified by the separable CMA-ES [24] which

restricts the covariance to a diagonal matrix in case of sepa-

rability to allow fast progress to the optimal solution. For the

general case, a spare structure may not be suitable, however.

For this reason, the paper does not require sparseness of the

original covariance matrix, although it would be interesting

to see how such a variant would perform on the test suites.

Instead, it considers a transformation. As argued in [25], an

change of the coordinate system may improve the performance

of an evolution strategy. Therefore, an adaptive encoding was

introduced. In each iteration, the covariance matrix is adapted

following the rules of the CMA-ES. Its spectral decomposition

is used to change the basis. The creation of new search points

is carried out in the eigenspace of the current covariance matrix

and the main search parameters of the CMA-ES are updated

there. After selection, the covariance matrix is adapted and

utilized for a renewed decoding and encoding.

This paper also addresses a change of the coordination

system. However, we address the covariance matrix adaptation

and estimation itself which in [25] occurs in the original space.

Here, we argue that a switch to the eigenspace of the old

covariance matrix C
(g) may be beneficial for the estimation

of the covariance matrix itself.

Let the covariance matrix C
(g) be a symmetric, positive

definite N × N matrix. The condition holds for the original

adaptation since (3) combines a positive definite with a pos-

itive semi-definite matrix. As we will see below, in the case

of thresholding the condition may not always be fulfilled.

Assuming a positive definite matrix allows carrying out a

spectral decomposition: Let v1, . . . ,vN denote the N eigen-

vectors with the eigenvalues λ1, . . . , λN , λj > 0. Note, the

eigenvectors form a orthonormal basis of RN , i.e., vT
i vi = 1

and v
T
i vj = 0, if i ≠ j. We define V ∶= (v1, . . . ,vN) as

the modal matrix. It then holds that V
−1 = V

T. Switching

to the eigenspace of C
(g) results in the representation of the

covariance matrix

Λ(g) =VC
(g)

V
T (6)

as a diagonal matrix with the eigenvalues as the diagonal

entries. Diagonal matrices are sparse matrices, thus for the es-

timation of the covariance matrix the more efficient procedures
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for sparse structures could be used. However, it is not the goal

to re-estimate C
(g) but to estimate the true covariance matrix

of the distribution indicated by the sample z1;λ, . . . ,zµ;λ.

Before continuing, it should be noted that several definitions

of sparseness exist. Usually, it is demanded that the number

of non-zero elements in a row may not exceed a predefined

limit s0(N) > 0, i.e.,

max
i

N∑
j=1

δ(∣aij ∣ > 0) ≤ s0(N), (7)

which should grow only slowly with N . The indicator function

δ fulfills δ(⋅) = 1 if the condition is met and is zero otherwise.

This definition can, however, be relaxed to a more general

definition of sparseness, also referred to as approximate sparse-

ness. Cai and Liu [22] consider the following uniformity class

of sparse matrices

Definition 1. Let s0(N) > 0 and let ⋅ ≻ 0 denote positive
definiteness. Then a class of sparse covariance matrices is
defined as

U∗q ∶=U
∗

q (s0(N))

=
⎧⎪⎪
⎨
⎪⎪⎩
Σ ∶ Σ ≻ 0,max

i

p

∑
j=1

(σiiσjj)
(1−q)

2 ∣σij ∣
q ≤ s0(N)

⎫⎪⎪
⎬
⎪⎪⎭

(8)

for some 0 ≤ q < 1.

Definition 1 requires the entries of the covariance matrix to

lie within a weighted lq ball. The weight is given by the vari-

ances. Cai and Liu [22] introduce a thresholding estimator that

requires the assumption above. Its convergence rate towards

the true covariance depends on s0(N)(log(N)/µ)(1−q)/2.

Therefore, the number s0(N) > 0 should again grow only

“slowly” for N →∞.

Definition 1 leads to the main assumption of the paper.

Consider an evolution strategy in the search space. The new

sample that is the offspring population has been created

with the help of the old covariance matrix. The covariance

matrix of the selected sample differs from the previous. The

deviations of from its structure stem from finite sampling

characteristics and rank-based selection. Assuming that the

form of the covariance matrix will not change considerably

in one iteration, the new underlying covariance matrix should

be sparse in the eigenspace of the old covariance, however.

Assumption 1. Let Σ(g+1) denote the true covariance matrix

of the selected offspring. Consider the old covariance C
(g)

with its modal matrix V. Then Λ̂ = VΣ(g+1)VT is approxi-

mately sparse, i. e. Λ̂ ∈ U∗q for some 0 ≤ q < 1.

Assuming the validity of the assumption, we change the

coordinate system in order to perform the covariance matrix

estimate. Reconsider the normalized (apart from the covari-

ance matrix) mutation vectors z1;λ, . . . ,zµ;λ that were asso-

ciated with the µ best offspring. Their representation in the

eigenspace reads

ẑm;λ = V
T
zm;λ form = 1, . . . , µ. (9)

The transformed population covariance is then estimated as

Ĉµ = µ∑
m=1

wmẑm;λẑ
T
m;λ. (10)

The estimate (10) will be used to compute the final estimator.

In the next section, we discuss potential estimators for sparse

covariance matrices.

B. Sparse Covariance Matrix Estimation

In recent years, covariance matrix estimation in high-

dimensional spaces has received a lot of attention. In the

case of sparse covariance matrices, banding, tapering, and

thresholding can be applied, see e.g. [26] All three make

use of the fact that many entries of the matrix that shall be

estimated are actually zero or at least very small. Banding and

tapering differ from thresholding in that they assume a specific

matrix structure in other words they assume an ordering of the

variables which is for instance often the case in time-series

analysis. Banding and tapering approaches typically lead to

consistent estimators if log(N)/µ→ 0.
Thresholding does not assume a natural order of the vari-

ables. Instead, it discards entries which are smaller than a given

threshold ǫ > 0. For a matrix A, the thresholding operator

Tǫ(A) is defined as

Tǫ(A) ∶= (aijδ(∣aij ∣ ≥ ǫ))N×N . (11)

The choice of the threshold is critical for the quality of the

resulting estimate.
Equation (11) represents a example of universal threshold-

ing with a hard thresholding function. Equation (11) can be

extended in several ways. On the one hand, the threshold may

depend on the entry itself, and on the other hand, instead of

the hard threshold applied, a generalized shrinkage function

sλ(⋅) can be used. Following [22] , the function sλ(⋅) should

have the following properties

i) ∃c > 0: sλ(x) ≤ c∣y∣ ∀x, y which satisfy ∣x − y∣ ≤ λ,

ii) sλ(x) = 0 ∀x ≤ λ,

iii) ∣sλ(x) − x∣ ≤ λ ∀x ∈ R.

Several functions have been introduced that fulfill i)-iii), as

e.g. the soft-thresholding

sλ(x) = sign(x)(∣x∣ − λ)+ (12)

or the Lasso

sλ(x) = ∣x∣(1 − ∣λ
x
∣η)+ (13)

with (x)+ ∶= max(0, x). In this paper, the threshold λij is

defined component-wise and not universal. Since its correct

choice is difficult to decide a priori, adaptive thresholding is

applied as in [22], setting

λij ∶= λij(δ) = δ
¿ÁÁÀ θ̂ij logN

µ
(14)

with δ > 0 can be either chosen as a constant or adapted data

driven. The variable θ̂ij that appears in (14) is obtained as

θ̂ij = 1

µ

µ∑
m=1

[(ẑmi −Zi)((ẑmj −Zj) − ĉµij]
2 (15)
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Require: λ, µ, C(0), m(0), σ(0), τ , cτ
1: g = 0
2: while termination criteria not met do

3: for l = 1 to λ do

4: σl = σ(g) exp(τN(0,1))
5: xl =m(g) + σlN⃗ (0,C(g))
6: fl = f(xl)
7: end for

8: Select (x1∶λ, σ1∶λ), . . . , (xµ∶λ, σµ∶λ)
9: m

(g+1) = ∑µ
m=1wmxm∶λ

10: σ(g+1) = ∑µ
m=1wmσm∶λ

11: zm;λ = xm;λ−m
(g)

σ(g)
form = 1, . . . , µ

12: V,D← spectral(C(g))
13: ẑm;λ =VT

zm;λ form = 1, . . . , µ
14: Ĉµ = ∑µ

m=1wmẑm;λẑ
T
m;λ

15: Ĉthres = TSλij
(Ĉµ)

16: Cµ =VT
ĈthresV

17: C
(g+1) = (1 − 1

cτ
)C(g) + 1

cτ
Cµ

18: g = g + 1
19: end while

Fig. 1. The CMSA-ES with thresholding. The generation counter g is some-
times left out in order to simplify the notation. The symbol spectral stands
for the spectral decomposition of the matrix into the modal matrix V and
the diagonal matrix containing the eigenvalues D. Rank-based deterministic
selection of the µ best offspring is performed in line 8 based on the fitness
f .

with ĉ
µ
ij denoting the (i,j)-entry of Ĉ

(g+1)
µ , ẑmi the ith com-

ponent of ẑm∶λ, and Zi ∶= (1/µ)∑µ
m=1 ẑmi. Other thresholds

have been introduced, see e.g. [27] and will be considered in

future work.

While thresholding respects symmetry and non-negativeness

properties, it results only in asymptotically positive definite

matrices. Thus, for finite sample sizes, it does neither preserve

nor induce positive definiteness in general. This holds for hard

thresholding as well as for most cases of potential thresholding

functions. As shown in [28], a positive semi-definiteness can

only be guaranteed for a small class of functions for general

matrices. In the case that the condition number of the matrix is

sufficiently small, the group of functions that preserve positive

definiteness can be widened to include also polynomials. In

[27], procedures are discussed that result in positive definite

matrices. As this paper aims for a proof of concept, it does

not consider repair mechanisms.

C. Evolution Strategies with Sparse Covariance Adaptation

Component-wise adaptive thresholding can be integrated

readily into evolution strategies. Figure 1 illustrates the main

points of the algorithm. There are several ways to design

the operator TSλij
. The first choice concerns the threshold-

ing function sλij
(⋅). The second question concerns whether

thresholding should be applied to all entries of the covariance

matrix (11) or only to the off-diagonal elements. This question

is difficult to decide beforehand in the application context

considered. Therefore, two variants are investigated

1) CMSA-Thres-ES (abbreviated to Thres): An evolution

strategy with CMSA which applies thresholding in the

eigenspace of the covariance, using the operator

TSλij
(A)ij = sλij

(aij) (16)

and

2) CMSA-Diag-ES (abbreviated to Diag): An ES with co-

variance matrix adaptation which uses thresholding in the

eigenspace of the covariance and excepts the diagonal

elements with

TSλij
(A)ij = { aij if i = j

sλij
(aij) if i ≠ j . (17)

In statistics, thresholding is often applied only to the off-

diagonal entries. Keeping the diagonal unchanged may how-

ever result in a too strong reliance on the structure of the old

covariance matrix in our case. This may make a change of the

search directions difficult. Therefore, both variants are taken

into account.

III. EXPERIMENTS

The experiments are performed for the search space dimen-

sions N = 10 and 20. Since we aim for a general approach, the

performance of the new techniques should also be analyzed

for lower dimensional spaces. The maximal number of fitness

evaluations is set to FEmax = 2 × 105N . The start position

of the algorithms is randomly chosen from [−4,4]N . The

population size were chosen as λ = ⌊log(3N) + 8⌋ and

µ = ⌈λ/2⌉. The weights wm were set to wm = 1/µ.

A run terminates before reaching the maximal number of

evaluations, if the difference between the best value obtained

so far and the optimal fitness value ∣fbest − fopt∣ is below

a predefined target precision set to 10−8. For each fitness

function and dimension, 15 runs are used in accordance to the

practice of the black box optimization workshops, see below.

If the search stagnates, indicated by changes of the best values

being below 10−8 for 10 + ⌈30N/λ)⌉ generations, the ES is

restarted. The Lasso thresholding function (13) with η = 4

was chosen as the thresholding function and by performing a

preliminary series of experiments the scaling factor δ in (15)

was set to δ = 2max(Ĉµ). Both choices can be probably

improved. Since the paper strives for a first proof of concept,

a detailed investigation of good parameter settings will be

performed in future research.

A. Test Suite

For the experiments, the algorithms were implemented in

MATLAB. The paper uses black box optimization bench-

marking (BBOB) software framework and the test suite in-

troduced for the black box optimization workshops, see [29].

The goal of the workshop is to benchmark and to compare

metaheuristics and other direct search methods for continuous

optimization. The framework1 allows the plug-in of algorithms

adhering to a common interface and provides a comfortable

way of generating the results in form of tables and figures.

1Latest version under http://coco.gforge.inria.fr
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Sphere f(x) = ∥z∥2

Rosenbrock f(x) = ∑N−1
i=1 200(z2i − zi+1)

2 + (zi − 1)2

Ellipsoidal f(x) = ∑N
i=1 10

6 i−1
N−1 z2i

Discus f(x) = 106z21 +∑
N
i=2 z

2
i

Rastrigin f(x) = 10(N −∑N
i=1 cos(2πzi)) + ∥z∥

2

TABLE I
SOME OF THE TEST FUNCTIONS USED FOR THE COMPARISON OF THE

ALGORITHMS.

The test suite contains noisy and noise-less functions with

the position of the optimum changing randomly from run to

run. This paper focuses on the noise-less test suite which

contains 24 functions [30]. They can be divided into four

classes: separable functions (function ids 1-5), functions with

low/moderate conditioning (ids 6-9), functions with high con-

ditioning (ids 10-14), and two groups of multimodal functions

(ids 15-24). Among the unimodal functions with only one

optimal point, there are separable functions given by the

general formula

f(x) = N∑
i=1

fi(xi) (18)

which can be solved by optimizing each component separately.

The simplest member of this class is the (quadratic) sphere

with f(x) = ∥x∥2. Other functions include ill-conditioned

functions, like for instance the elliposoidal function, and

multimodal functions (Rastrigin) which represent particular

challenges for the optimization (Table I). The variable z

denotes a transformation of x in order to keep the algorithm

from exploiting certain particularities of the function, see [30].

B. Performance Measure

The following performance measure is used in accordance

to [29]. The expected running time (ERT) gives the expected

value of the function evaluations (f -evaluations) the algorithm

needs to reach the target value with the required precision for

the first time, see [29]. In this paper, we use

ERT = #(FEs(fbest ≥ ftarget))
#succ

(19)

as an estimate by summing up the fitness evaluations

FEs(fbest ≥ ftarget) of each run until the fitness of the

best individual is smaller than the target value, divided by

all successfull runs.

C. Results and Discussion

The findings are interesting – indicating advantages for

thresholding in many but not in all cases. The result of the

comparison depends on the function class. In the case of

the separable functions with ids 1-5, the strategies behave on

the whole very similar in the case of both dimensionalities

10D and 20D. This can be seen in the empirical cumulative

distribution functions plots in Fig. 2 and Fig. 3 for example.

Concerning the particular functions, differences are revealed

as Tab. II and Tab. III show for the expected running time

(ERT) which is provided for several precision targets. The

expected running time is provided relative to the best results

achieved during the black-box optimization workshop in 2009.

The first line of the outcomes for each function reports the

ERT of the best algorithm of 2009. However, not only the

ERT values but also the number of successes is important.

The ERT can only be measured if the algorithm achieved the

respective target in the run. If the number of trials where is

the full optimization objective has been reached is low then

the remaining targets should be discussed with care. If only a

few runs contribute to the result, the findings may be strongly

influenced by initialization effects. To summarize, only a few

cases end with differences that are statistically significant. To

achieve this, the algorithm has to perform significantly better

than both competing methods – the other thresholding variant

and the original CMSA-ES.

In the case of the sphere (function with id 1), slight

advantages for the thresholding variants are revealed. A similar

observation can be made for the second function, the separable

ellipsoid. Here, both thresholded ESs are faster, with the

one that only shrinks the off-diagonal elements significantly

(Tab. III). This is probably due to the enforced more regular

structure.

No strategy is able to reach the required target precision in

the case of the separable Rastrigin (id 3) and the separable

Rastrigin-Bueche (id 4). Since all strategies only achieve the

lowest target precision of 101, a comparison is not performed.

The linear slope is solved fast by all, with the original CMSA-

ES the best strategy.

In the case of the function class containing test functions

with low to moderate conditioning, different findings can be

made for the two search space dimensionalities. This is also

shown by the empirical cumulative distribution functions plots

in Fig. 2 and Fig. 3, especially for N = 10. Also in the

case of N = 10, Table II shows that the strategies with

thresholding achieve a better performance in a majority of

cases. In addition, thresholding that is not applied to the

diagonal appears to lead to a well-performing strategy with

the exception of f9, the rotated Rosenbrock function, where it

lead to the largest expected running times.

The results for f6, the so-called attractive sector, in 10D

are astonishing. While the original CMSA-ES could only

reach the required target precision in six of the 15 runs, the

thresholding variants were able to succeed 14 times (CMSA-

Thres-ES) and 13 times (CMSA-Diag-ES). The latter achieved

lower expected running times, though. This does not transfer

to 20D. Here, only a minority of runs were successfull for

all strategies. Experiments with a larger number of fitness

evaluations must be conducted in order to investigate the

findings more closely.

The same holds for the step ellipsoid (id 7) which cannot

be solved with the target precision required by any strategy.

Concerning the lower precision targets, sometimes the CMSA-

ES and sometimes the CMSA-Diag-ES appears superior. How-

ever, more research is required, since the number of runs

entering the data for some of the target precisions is low and
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separable fcts moderate fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Thres

CMSA

Diag

best 2009f1-5,10-D best 2009

Diag

CMSA

Thres

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Thres

CMSA

Diag

best 2009f6-9,10-D best 2009

Diag

CMSA

Thres

ill-conditioned fcts multi-modal fcts

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Diag

Thres

CMSA

best 2009f10-14,10-D best 2009

CMSA

Thres

Diag

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 fu

nc
tio

n+
ta

rg
et

 p
ai

rs

CMSA

Diag

Thres

best 2009f15-19,10-D best 2009

Thres

Diag

CMSA

weakly structured multi-modal fcts all functions

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

CMSA

Thres

Diag

best 2009f20-24,10-D best 2009

Diag

Thres

CMSA

0 1 2 3 4 5 6 7 8
log10 of (# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 fu
nc

tio
n+

ta
rg

et
 p

ai
rs

Thres

CMSA

Diag

best 2009f1-24,10-D best 2009

Diag

CMSA

Thres

Fig. 2. Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for 50 targets in
10
[−8..2] for all functions and subgroups in 10-D. The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.
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Fig. 3. Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimension (FEvals/DIM) for 50 targets in
10
[−8..2] for all functions and subgroups in 20-D. The “best 2009” line corresponds to the best ERT observed during BBOB 2009 for each single target.

initial positions may be influential.

On the original Rosenbrock function (id 8), the CMSA-ES

and the CMSA with thresholding show a similar behavior with

the CMSA-ES performing better. In contrast, the thresholding

variant that leaves the diagonal unchanged exhibits larger ex-

pected running times. The roles of the original CMSA-ES and

the CMSA-Thres-ES reverse for the rotated Rosenbrock (id

9). Here, the best results can be observed for the thresholding

variant. Again, the CMSA-Diag-ES performs worst.

In the case of ill-conditioned functions, the findings are

mixed. In general, thresholding without including the diagonal

does not appear to improve the performance. The strategy

performs worst of all – an indicator that keeping the diagonal

unchanged may be sometimes inappropriate due to the space

transformation. However, since there are interactions with the

choice of the thresholding parameters which may have resulted

in comparatively too large diagonal elements, we need to

address this issue further before coming to a conclusion. First

of all for N = 10, all strategies are successfull in all cases for

the ellipsoid (id 10), the discus (id 11), the bent cigar (id 12),

and the sum of different powers (id 14). Only the CMSA-ES

reaches the optimization target in the case of the sharp ridge

(id 13). This, however, only twice. The reasons for this require

further analysis. Either the findings may be due to a violation

of the sparseness assumption or considering that this is only

a weak assumption the choice of the thresholding parameters

and the function should be reconsidered.

All strategies exhibit problems in the case of the group of

multi-modal functions, Rastrigin (id 15), Weierstrass (id 16),

Schaffer F7 with condition number 10 (id 17), Schaffer F7

with condition 1000 (id 18), and Griewank-Rosenbrock F8F2

(id 19). Partly, this may be due to the maximal number of

fitness evaluations permitted. Even the best performing meth-

ods of the 2009 BBOB workshop required more evaluations

than we allowed in total. Thus, experiments with larger values

for the maximal function evaluations should be conducted in

future research. Concerning the preliminary targets with lower

precision, the CMSA-ES achieves the best results in a majority
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of cases. However, the same argumentation as for the step

ellipsoid applies.

In the case of N = 20, the number of function evaluations

that were necessary in the case of the best algorithms of 2009

to reach even the lower precision target of 10−1 exceeds the

budget chosen here. Therefore, the function group is excluded

from the analysis for N = 20 and not shown in Figure 3 and

Table III.

The remaining group consists of multi-modal functions with

weak global structures. Here, especially the functions with

numbers 20 (Schwefel x sin(x)), 23 (Kaatsuuras), and 24

(Lunacek bi-Rastrigin) represent challenges for the algorithms.

In the case of N = 10, they can only reach the first targets

of 101 and 100. Again, the maximal number of function

evaluations should be increased to allow a more detailed

analysis on these functions. For the case of the remaining

functions, function 21, Gallagher 101 peaks, and function 22,

Gallagher 21 peaks, the results indicate a better performance

for the CMSA-ES versions with thresholding compared with

the original algorithm. Again due to similar reasons as for

the first group of multi-modal functions, the results are only

shown for N = 10.

IV. CONCLUSIONS AND OUTLOOK

This paper adressed covariance matrix adaptation techniques

for evolution strategies. The original versions are based on the

sample covariance – an estimator known to be problematic.

Especially in high-dimensional search spaces, where the popu-

lation size does not exceed the search space dimensionality, the

agreement of the estimator and the true covariance may be low.

Therefore, thresholding, a comparably computationally simple

estimation technique, has been integrated into the covariance

adaptation process. Thresholding stems from estimation theory

for high-dimensional spaces and assumes an approximately

sparse structure of the covariance matrix. The matrix entries

are therefore thresholded, meaning a thresholding function is

applied. The paper considered adaptive entry-wise threshold-

ing. Since the covariance matrix cannot be assumed to be

sparse in general, a basis transformation was carried out and

the thresholding process was performed in the transformed

space. The performance of the resulting new covariance matrix

adapting evolution strategies was compared to the original

variant on the black-box optimization benchmarking test suite.

Two main variants were considered: A CMSA-ES which sub-

jected the complete covariance to thresholding and a variant

which left the diagonal elements unchanged. While the latter

is more common in statistics, it is not easy to justify its

preferation in optimization. The first findings were interesting

with the new variants performing better for several function

classes. While this is promising, more experiments and anal-

yses are required and will be performed in future research.

This concerns e.g. which variant to use since it depended on

the function which of the two performed best. Open questions

concern among others the choice of the thresholding function

and the scaling parameter for the threshold. In this paper, it

was selected by a small series of experiments. Making the

parameter completely data driven and thus depending on the

current sample is the goal of ongoing research.

If the assumption that the representation of true covariance

Σ(g+1) of the offspring population in the eigenspace of the

previous covariance C(g) is approximately sparse should be

violated in some cases, then it may be worthwhile to take

a closer look at the convex combination of the new and the

old covariance matrix. Further work will thus also consider

applying thresholding to the traditionally obtained covariance.
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TABLE II
EXPECTED RUNNING TIME (ERT IN NUMBER OF FUNCTION EVALUATIONS) DIVIDED BY THE RESPECTIVE BEST ERT MEASURED DURING BBOB-2009
IN DIMENSION 10. THE ERT AND IN BRACES, AS DISPERSION MEASURE, THE HALF DIFFERENCE BETWEEN 90 AND 10%-TILE OF BOOTSTRAPPED RUN

LENGTHS APPEAR FOR EACH ALGORITHM AND TARGET, THE CORRESPONDING BEST ERT IN THE FIRST ROW. THE DIFFERENT TARGET ∆f -VALUES ARE

SHOWN IN THE TOP ROW. #SUCC IS THE NUMBER OF TRIALS THAT REACHED THE (FINAL) TARGET fopt + 10−8 . THE MEDIAN NUMBER OF CONDUCTED

FUNCTION EVALUATIONS IS ADDITIONALLY GIVEN IN italics, IF THE TARGET IN THE LAST COLUMN WAS NEVER REACHED. ENTRIES, SUCCEEDED BY A

STAR, ARE STATISTICALLY SIGNIFICANTLY BETTER (ACCORDING TO THE RANK-SUM TEST) WHEN COMPARED TO ALL OTHER ALGORITHMS OF THE

TABLE, WITH p = 0.05 OR p = 10−k WHEN THE NUMBER k FOLLOWING THE STAR IS LARGER THAN 1, WITH BONFERRONI CORRECTION BY THE NUMBER

OF INSTANCES.

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 22 23 23 23 23 23 23 15/15

CMSA4.0(3) 8.6(3) 14(4) 19(4) 26(6) 38(8) 50(5) 15/15
Thres 4.2(2) 9.2(3) 14(4) 18(3) 24(3) 35(5) 46(7) 15/15
Diag 3.2(1) 7.5(2) 12(3) 18(2) 23(4) 34(3) 44(4) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2 187 190 191 191 193 194 195 15/15
CMSA65(34) 85(21) 96(29) 105(16) 109(25) 113(21) 129(57) 15/15
Thres 71(35) 88(23) 100(27) 109(22) 113(13) 120(18) 125(14) 15/15
Diag 55(44) 73(54) 88(57) 97(70) 101(57) 107(67) 111(72) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f3 1739 3600 3609 3636 3642 3646 3651 15/15
CMSA20(49) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 33(36) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 11(6) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f4 2234 3626 3660 3695 3707 3744 28767 12/15
CMSA 60(59) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 119(128) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 38(40) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f5 20 20 20 20 20 20 20 15/15
CMSA12(5) 17(4) 17(12) 17(10) 17(10) 17(8) 17(5) 15/15
Thres 14(8) 19(9) 21(8) 21(7) 21(7) 21(8) 21(8) 15/15
Diag 13(7) 17(9) 18(9) 18(5) 18(9) 18(11) 18(7) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f6 412 623 826 1039 1292 1841 2370 15/15
CMSA1.4(0.2) 3.3(3) 11(29) 14(32) 19(25) 25(17) 163(268) 6/15
Thres 1.8(1) 5.4(1) 7.0(15) 6.9(14) 10(19) 20(56) 30(52) 14/15
Diag 1.6(0.7) 2.8(1) 4.3(5) 4.4(3) 4.7(4) 13(84) 21(45) 13/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f7 172 1611 4195 5099 5141 5141 5389 15/15
CMSA4.0(3) 26(50) 85(72) ∞ ∞ ∞ ∞ 2e5 0/15
Thres 5.7(5) 103(70) 230(313) ∞ ∞ ∞ ∞ 2e5 0/15
Diag 2.4(4) 32(35) 212(409) 552(402) 548(622) 548(467) ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f8 326 921 1114 1217 1267 1315 1343 15/15
CMSA3.3(0.7) 17(8) 18(7) 18(3) 18(7) 19(11) 19(5) 15/15
Thres 8.5(5) 18(12) 18(9) 18(7) 18(7) 18(7) 18(9) 15/15
Diag 6.6(22) 17(2) 18(5) 17(5) 17(5) 18(4) 18(4) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f9 200 648 857 993 1065 1138 1185 15/15
CMSA2.3(2) 25(13) 24(10) 22(12) 22(10) 21(10) 21(10) 15/15
Thres 4.4(0.8) 18(8) 19(11) 18(7) 17(6) 17(14) 17(7) 15/15
Diag 4.9(2) 35(17) 31(29) 29(20) 27(15) 27(14) 26(17) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f10 1835 2172 2455 2728 2802 4543 4739 15/15
CMSA 6.5(3) 7.6(3) 7.7(3) 7.5(2) 7.6(3) 4.9(2) 4.9(2) 15/15
Thres 6.6(2) 8.3(2) 8.2(0.9) 7.8(1) 8.0(1) 5.2(1) 5.3(1) 15/15
Diag 14(4) 14(3) 14(3) 13(2) 13(2) 8.4(2) 8.3(2) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f11 266 1041 2602 2954 3338 4092 4843 15/15
CMSA14(3) 6.2(2) 3.2(1.0) 3.4(0.9) 3.5(1) 3.3(0.6) 3.0(1) 15/15
Thres 17(4) 6.1(2) 3.0(0.7) 3.0(1) 3.0(1) 2.9(0.8) 2.7(0.7) 15/15
Diag 84(47) 30(10) 13(3) 12(3) 11(4) 10(2) 9.0(2) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f12 515 896 1240 1390 1569 3660 5154 15/15
CMSA 4.2(10) 10(11) 13(10) 15(15) 16(10) 8.8(4) 7.8(4) 15/15
Thres 13(14) 24(14) 24(11) 24(11) 24(10) 12(5) 12(4) 15/15
Diag 14(39) 29(26) 33(19) 35(6) 34(7) 17(3) 15(6) 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 387 596 797 1014 4587 6208 7779 15/15

CMSA15(24) 19(10) 31(31) 58(48) 28(32) 89(17) 185(103) 2/15
Thres 6.3(5) 35(86) 56(25) 107(156) 72(89) 461(427) ∞ 2e5 0/15
Diag 12(7) 52(113) 71(54) 164(232) 117(330) ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f14 37 98 133 205 392 687 4305 15/15
CMSA1.1(0.5) 2.2(0.5) 2.8(0.5) 3.5(0.9) 4.3(1) 8.7(2) 4.8(3) 15/15
Thres 0.90(0.7) 2.2(1) 2.6(0.7) 3.2(1) 4.3(1) 8.7(2) 4.4(3) 15/15
Diag 0.64(0.6) 1.8(0.8) 2.7(0.8) 3.6(0.6) 9.1(2) 23(8) 9.1(3) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f15 4774 39246 73643 74669 75790 77814 79834 12/15
CMSA 7.0(10) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 11(14) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 5.8(6) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f16 425 7029 15779 45669 51151 65798 71570 15/15
CMSA1.0(1) 1.8(4) 13(14) 31(57) ∞ ∞ ∞ 2e5 0/15
Thres 1.1(0.7) 1.8(2) 87(89) 64(58) ∞ ∞ ∞ 2e5 0/15
Diag 2.6(3) 2.6(3) 27(37) ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f17 26 429 2203 6329 9851 20190 26503 15/15
CMSA 0.71(0.5) 18(51) 23(38) 30(16) 140(142) ∞ ∞ 2e5 0/15
Thres 39(140) 34(176) 37(63) 67(123) ∞ ∞ ∞ 2e5 0/15
Diag 1.1(1) 34(62) 23(44) 58(90) 146(141) ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f18 238 836 7012 15928 27536 37234 42708 15/15
CMSA68(234) 129(263) 124(173) ∞ ∞ ∞ ∞ 2e5 0/15
Thres 88(33) 313(539) 130(104) 184(455) ∞ ∞ ∞ 2e5 0/15
Diag 5.1(16) 189(315) 192(225) ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f19 1 1 10609 9.8e5 1.4e6 1.4e6 1.4e6 15/15
CMSA18(3) 1.5e5(8e4)∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 19(11) 1.1e5(1e5)∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 15(2) 8.7e4(1e5)∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f20 32 15426 5.5e5 5.7e5 5.7e5 5.8e5 5.9e5 15/15
CMSA1.9(0.9) 25(11) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 1.7(0.8) 21(13) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 2.1(1) 20(23) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f21 130 2236 4392 4487 4618 5074 11329 8/15
CMSA 9.5(18) 23(41) 20(55) 20(14) 19(22) 17(23) 7.8(12) 12/15
Thres 5.9(7) 17(15) 15(19) 15(10) 14(28) 13(20) 5.9(6) 13/15
Diag 21(0.6) 19(13) 20(35) 20(27) 19(69) 18(17) 8.0(13) 12/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f22 98 2839 6353 6620 6798 8296 10351 6/15
CMSA25(61) 6.3(8) 13(16) 12(23) 12(25) 10(11) 8.1(12) 13/15
Thres 30(40) 8.8(6) 13(13) 12(11) 12(35) 10(13) 8.2(8) 13/15
Diag 60(377) 8.9(8) 8.8(16) 8.8(12) 8.8(20) 7.8(10) 6.5(11) 14/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f23 2.8 915 16425 1.8e5 2.0e5 2.1e5 2.1e5 15/15
CMSA1.5(1) 391(326) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 2.0(3) 313(575) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 1.5(2) 165(103) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f24 98761 1.0e6 7.5e7 7.5e7 7.5e7 7.5e7 7.5e7 1/15
CMSA4.8(5) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Thres 6.3(12) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
Diag 6.4(7) ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
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TABLE III
EXPECTED RUNNING TIME (ERT IN NUMBER OF FUNCTION EVALUATIONS) DIVIDED BY THE RESPECTIVE BEST ERT MEASURED DURING BBOB-2009
IN DIMENSION 20. THE ERT AND IN BRACES, AS DISPERSION MEASURE, THE HALF DIFFERENCE BETWEEN 90 AND 10%-TILE OF BOOTSTRAPPED RUN

LENGTHS APPEAR FOR EACH ALGORITHM AND TARGET, THE CORRESPONDING BEST ERT IN THE FIRST ROW. THE DIFFERENT TARGET ∆f -VALUES ARE

SHOWN IN THE TOP ROW. #SUCC IS THE NUMBER OF TRIALS THAT REACHED THE (FINAL) TARGET fopt + 10−8 . THE MEDIAN NUMBER OF CONDUCTED

FUNCTION EVALUATIONS IS ADDITIONALLY GIVEN IN italics, IF THE TARGET IN THE LAST COLUMN WAS NEVER REACHED. ENTRIES, SUCCEEDED BY A

STAR, ARE STATISTICALLY SIGNIFICANTLY BETTER (ACCORDING TO THE RANK-SUM TEST) WHEN COMPARED TO ALL OTHER ALGORITHMS OF THE

TABLE, WITH p = 0.05 OR p = 10−k WHEN THE NUMBER k FOLLOWING THE STAR IS LARGER THAN 1, WITH BONFERRONI CORRECTION BY THE NUMBER

OF INSTANCES.

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

CMSA4.9(2) 10(2) 15(2) 19(2) 25(2) 34(2) 45(2) 15/15
Thres 4.9(1) 9.5(1) 14(2) 18(2) 23(3) 33(3) 42(3) 15/15
Diag 4.9(1) 9.2(2) 13(1) 18(2) 23(3) 33(2) 42(4) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f2 385 386 387 388 390 391 393 15/15
CMSA173(32) 240(38) 265(33) 273(38) 277(34) 285(31) 293(27) 15/15
Thres 154(41) 212(41) 245(25) 259(29) 265(23) 273(26) 282(29) 15/15

Diag 96(21)
⋆4 113(14)

⋆4 122(10)
⋆4 126(9)

⋆4 128(7)
⋆4 130(6)

⋆4 130(8)
⋆4 15/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f3 5066 7626 7635 7637 7643 7646 7651 15/15

CMSA∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Thres ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Diag ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15
CMSA∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Thres ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Diag ∞ ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f5 41 41 41 41 41 41 41 15/15
CMSA12(3) 15(3) 15(6) 15(6) 15(6) 15(6) 15(7) 15/15
Thres 13(5) 17(13) 18(12) 18(11) 18(6) 18(11) 18(4) 15/15
Diag 14(8) 17(8) 18(8) 18(8) 18(9) 18(7) 18(10) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f6 1296 2343 3413 4255 5220 6728 8409 15/15
CMSA 1.5(1) 2.5(2) 4.6(4) 12(22) 34(77) 80(138) 331(279) 2/15
Thres 3.2(3) 4.4(4) 5.0(3) 7.9(19) 21(65) 83(117) 324(190) 2/15
Diag 17(33) 26(32) 32(37) 51(28) 64(69) 135(279) 204(252) 3/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f7 1351 4274 9503 16523 16524 16524 16969 15/15
CMSA 622(740) ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Thres 2059(1547) ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
Diag 339(291) ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15

∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f8 2039 3871 4040 4148 4219 4371 4484 15/15

CMSA11(4) 30(32) 31(7) 31(52) 31(50) 31(28) 31(47) 13/15
Thres 15(12) 33(55) 34(77) 34(50) 34(25) 34(25) 34(44) 13/15
Diag 28(13) 82(36) 84(104) 85(125) 86(121) 86(47) 85(48) 10/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f9 1716 3102 3277 3379 3455 3594 3727 15/15
CMSA17(12) 40(68) 41(96) 41(31) 41(5) 40(31) 40(4) 13/15
Thres 15(8) 20(6) 22(8) 23(4) 23(8) 23(2) 23(5) 15/15
Diag 36(7) 52(4) 54(36) 56(5) 57(5) 57(4) 57(31) 14/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f10 7413 8661 10735 13641 14920 17073 17476 15/15
CMSA10(5) 11(2) 9.2(2) 7.8(2) 7.3(1) 6.7(1) 6.8(0.6) 15/15
Thres 8.4(3) 10(3) 9.1(1) 7.8(1) 7.4(0.9) 6.8(0.7) 6.8(0.6) 15/15
Diag 33(3) 31(2) 26(2) 20(2) 19(1) 17(2) 17(1) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f11 1002 2228 6278 8586 9762 12285 14831 15/15

CMSA 12(2)
⋆2 7.5(1) 3.1(0.4) 2.6(0.3) 2.6(0.3) 2.5(0.5) 2.5(0.3) 15/15

Thres 15(1) 8.1(0.6) 3.2(0.4) 2.6(0.2) 2.6(0.4) 2.3(0.4) 2.2(0.5) 15/15
Diag 223(44) 115(28) 43(10) 33(8) 30(5) 24(3) 20(3) 15/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f12 1042 1938 2740 3156 4140 12407 13827 15/15
CMSA 2.5(0.2) 10(9) 13(8) 15(8)

⋆ 14(6)
⋆ 5.9(2) 6.2(3) 15/15

Thres 14(25) 21(20) 23(9) 25(13) 22(5) 8.6(3) 8.5(3) 15/15
Diag 18(0.2) 96(84) 103(70) 123(125) 113(73) 59(80) 86(109) 5/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f13 652 2021 2751 3507 18749 24455 30201 15/15
CMSA156(614) 545(891) 2037(1600) ∞ ∞ ∞ ∞ 4e5 0/15
Thres 156(0.6) 227(693) 2037(3199) 1598(2167) 299(635) ∞ ∞ 4e5 0/15
Diag 46(0.7) 298(346) 946(1745) 1598(1768) ∞ ∞ ∞ 4e5 0/15
∆fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ

f14 75 239 304 451 932 1648 15661 15/15

CMSA1.8(1.0) 1.9(0.4) 2.5(0.6) 3.2(0.3) 5.2(0.8)
⋆3 11(1)

⋆2 4.2(1) 15/15
Thres 1.9(1) 1.8(0.4) 2.3(0.3) 3.0(0.4) 6.8(0.4) 14(1) 3.7(0.8) 15/15
Diag 1.8(1) 1.9(1) 2.4(0.2) 3.2(0.4) 15(5) 107(42) 17(8) 14/15
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