
The Scalable Distributed Two-layer Content Based
Image Retrieval Data Store

Stanisław Deniziak
Kielce University of Technology

al. Tysiaclecia Panstwa Polskiego 7,

25-314 Kielce, Poland

Email: s.deniziak@tu.kielce.pl

Tomasz Michno, Adam Krechowicz
Kielce University of Technology

al. Tysiaclecia Panstwa Polskiego 7,

25-314 Kielce, Poland

Email: {t.michno, a.krechowicz}@tu.kielce.pl

Abstract—The multimedia databases are becoming more and
more popular nowadays. One of their main problem is a
huge data amount storage. Another problem with multimedia
databases is querying. Traditional approaches, based on textual
keywords are not sufficient. More advanced techniques, incor-
porating image content features, should be used. In this paper
we propose new multimedia database structure with ability of
Content Based Image Retrieval which is based on our previous
work: Query by Shape method (QS). Query by Shape is a method
which is based on decomposing an object into features. Each
feature may consists of shape primitive, a color or a texture.
In this paper we only use shape primitives. In order to achieve
high scalability and workload control, we propose a modified
Scalable Distributed Two-layer Data Structure, as a storage.
The modification incorporates adding tree structure, comparing
algorithm and returning a set of results to the client.

I. INTRODUCTION

T
HE MULTIMEDIA databases are becoming more and

more popular nowadays. There are many applications

where they are needed, like social media portals (e.g. Face-

book, Instagram, Flickr and Google+) or monitoring systems.

Because modern cameras produce high resolution images,

the amount of data which has to be stored is very huge.

Another problem with multimedia databases is their query-

ing. Traditional approaches, based on textual keywords are

not sufficient. More advanced techniques incorporating image

content features should be used.

In this paper we propose the idea of a multimedia database

structure with ability of Content Based Image Retrieval which

is based on our previous work described in [1], Query by

Shape (QS). Query by Shape is a method which is based

on decomposing an object into features [1]. Each feature

may consists of shape primitive, a color or a texture. In this

paper we only use shape primitives. As a data structure for

storage we use a modified Scalable Distributed Two-layer Data

Structure which is highly scalable, distributed data store [2].

The modification incorporates adding tree structure, comparing

algorithm and returning a set of results to the client.

This paper is organized as follows. The Section II presents

the survey of image retrieval algorithms. The Section III

contains a short review of NoSQL data stores. The idea of

Scalable Distributed Two-layer Data Structures is described in

the Section IV. The Section V shows the motivation of our

research. The idea of our database structure is presented in

the Section VI. The conclusion of the research is given in the

Section VII.

II. IMAGE RETRIEVAL ALGORITHMS

In the area of multimedia databases, three types of retrieval

algorithms can be distinguished: Keyword-Based Image Re-

trieval (KBIR), Content-Based Image Retrieval (CBIR) and

Semantic-Based Image Retreival(SBIR).

The first group, KBIR, is based on the relational database

approach, where images are stored in the database and they

are described using keywords. During the query, the proper

keywords should be given. The database structure is very

simple but strongly relies on the textual annotations given by

a human. This approach is prone to mistakes because of the

subjective kind of descriptions [1]. Moreover it is very hard

to cover the whole information, present in the image, using

textual description [3], [4].

The CBIR algorithms are based on different approach than

KBIR. Image features are used to index images and perform

queries [1]. All algorithms in this group could be divided into

two categories: low-level and high-level algorithms. The low-

level algorithms process images globally, extracting features

from the whole frame, using e.g. a normalized color histogram

[5], a spatial domain [6], a difference moment and entropy [7]

or an MPEG-7 image descriptors like shape and texture [8].

The low-level features used by CBIR algorithms are easy to

compute but they are insufficient if the query is oriented on

searching for similar objects rather than whole images, which

incorporates separating the object from the background.

The high-level CBIR algorithms provide more reliable and

precise results in this situation. The major part of the algo-

rithms from this group are based on the regions extraction

and graphs matching. A region is a group of similar pixels,

most often grouped by colors. There are also methods which

uses during region extraction: a set of primitives [9] or fuzzy

pattern [10] detection, moment-based local operators [11] or

parallelograms, ellipses, corners and arcs detection [12]. After

region extraction, a graph is being constructed in order to

store the relations between them [1]. During the multimedia

database query, the graph-subgraph matching is performed

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 827–832

DOI: 10.15439/2015F272

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 827

e.g. using the classic Ullman algorithm [13] or more ad-

vanced ones. There are algorithms that are automatic or semi-

automatic with ability to present preliminary results to the user

who may choose important regions and repeat the query [14].

Another group of CBIR algorithms allows queries without full

knowledge about searched images or objects. One of the first

and most successive approaches in this area uses a human

drawn sketches which are compared with the corresponding

sketches in the database, globally for the whole image [15].

Another example is Query by Shape method [1], which is

our previous research and which is used as a base of this

paper. The idea of the algorithm is to decompose objects into

features like shape primitives or color features. The features

are not used for region extraction but for constructing an

object’s sketch or skeleton which is strictly a graph. Also the

matching algorithm is proposed which uses the similarity

coefficient. The similarity informs how similar two graphs

are. If they are the same, the similarity is equal to 1, if

they are completely different, it takes 0 value. All intermediate

values indicates that graphs are partially similar.

The SBIR algorithms are algorithms that try to overcome

the "semantic gap", which is the difference between what is

present on the image and what a human could interpret [4],

[16]. Most SBIR algorithms are based on textual description

which, in contrast to the KBIR algorithms, is a much longer

phrase. The phrase is easy to create, use and understand

by the human, the example could be "the sunrise in the

mountains". The textual descriptions are not used directly, but

they are mapped onto semantic features and then a query is

performed [17].

All groups of algorithms need efficient data storage meth-

ods. One of the most often used structure is a cell or a tree,

because it can store the relations between similar images [8].

There are also approaches that joins both data structures.

One of the example is [18] which is based on gathering

similar records in the same cells. Additionally, some biological

processes are added, like mitosis, when the similarity between

items in the same cells is below the specified level.

III. THE NOSQL DATA STORES

The multimedia databases very often stores millions of

photos or images. Because there has to be stored and processed

very huge amount of data, with high availability and workload

management, the traditional SQL-based databases may not

be sufficient. Much better results are obtained using NoSQL

databases. The NoSQL databases may be classified into the

following groups: Graph databases, Key-Value data stores,

Document data stores and Column-based data stores [19].

The Graph databases provides similar features as relational

databases but they are not well-prepared to store huge amount

of data because of the problems with scalability [19]. Key-

Value data stores use an unique single key (e.g. a number) for

storing data (value). Most often they have only two operations:

inserting and retrieving data [20]. The examples of such data

stores are Dynamo data store by Amazon which uses single

integer key [20] or Apache Hbase which identifies the data by

Fig. 1. The SD2DS structure overview.

a timestamp, column name and row name [21]. The Document

data stores use textual data interchange formats, like JSON or

xml to store data. The most popular document data store is

MongoDB [19].

The NoSQL data stores were successfully adapted to store

images. As an example the Apache Hbase may be given, which

was used to store Google Earth images [21].

IV. THE SD2DS DATA STORES

Scalable Distributed Two-layer Data Structures (SD2DS)

are one of variants of Scalable Distributed Data Structures

(SDDS) [2], which may be classified as an distributed NoSQL

data store. They stores data using a key and a value in so-called

"buckets". Each bucket has storage limit and when it is reached

a split is performed. Buckets may be distributed through many

machines, e.g. nodes on the multicomputer. The SD2DS stores

data in two separate layers. The first layer contains only data

headers which consists of the data locator and metadata. The

data locator is used to locate the stored data in the second layer.

The metadata is an additional information connected with the

actual data and may contain optional information e.g. the data

length, a checksum, insertion date or data description. The

second layer contains only the actual data, called body [2].

That structure maintains data more efficiently, because both

layers are independent of each others and may be stored on

different machines. Moreover the data store is highly scalable,

without theoretical limitations and may contain as many data

as is needed. The SD2DS allows also to use as a second layer

other solutions, even without buckets. The SD2DS structure is

presented in the Fig. 1.

828 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

The SD2DS may be easily extended e.g. by adding through-

put adjustment [22] which highly improves the data access

time.

V. MOTIVATION

The problem of multimedia database querying is very

complicated. As a continuation of the previous research [1],

we would like to propose the Content Based Image Retrieval

Database incorporating Query by Shape Method. The database

has to store a very huge amount of data. Simple records table,

a tree or a cell would be not sufficient. Because of that, more

advanced data stores, especially NoSQL-based should be used.

In order to obtain very high scalability and availability, as a

base for our system the Scalable Distributed Two-Layer Data

Structures should be used. As a result of our research we

would like to create the system which will fulfil the following

requirements:

• queries using a graph of features e.g. primitives,

• similarity control for graphs comparison, the similarity

should be set by the client,

• client feature: graphical queries easily drawn by a human

(without drawing skill), e.g. using predefined shapes,

• client feature: automatic image transformation into a

graph, used for a query,

• very fast data access,

• scalability without turning off the system,

• easy addition of the new hardware used for storage,

• good performance for the very huge data workload stored

in the database.

VI. THE SYSTEM OVERVIEW

The proposed system extends the SD2DS data store struc-

ture. The classical approach consists of two layers with the

first layer containing record’s headers, the second with their

bodies and the client which uses single key to retrieve the

single record. In order to provide features mentioned in the

previous section, some modifications have to be made. The

system overview is shown in the Figure 2.

A. The Client

The client should query the data store by a graph, instead of

a standard key. Moreover it has to be able to receive the result

of a query which may consists of many records. Therefore,

the following messages are defined:

Messages send by the client:

• record (graph and image) insertion (GI) - a message used

to insert a new record containing a graph and an image

into the database,

• query (SQ) - a query after which all result records are

sent by the database in a one message,

• distributed query (DQ) -a query after which result records

are sent gradually with one message per one record,

allowing e.g. to show progressively results for a user,

• get record (GR) - a message used to retrieve the record

using its key.

Messages received by the client:

Fig. 2. The proposed system overview.

• result of the insertion (RI) - sent by the database as a

response to GI message, returning the failure code or new

node’s record key,

• not found (NF) - sent by the data store when there are

no similar graphs/images in the data store, returned for

both SQ and DQ messages,

• results (RR) - contains list of similar records, returned

only as a response to SQ message,

• single result (SR) - contains only one similar record,

returned only as a response to DQ or GR messages.

All sent messages contain the query graph and the minimal

similarity which is used during comparisons. Moreover the

messages may define if as a result full record or only a header

should be returned.

B. The First Layer

The first layer of the data store was redesigned into two

sub-layers: the Tree Coordinator and the Tree. The Tree sub-

layer consists of the standard SD2DS record headers. Each

record header is treated as a one tree node, containing as a

metadata a graph and a list of children nodes (a list of records

keys). The Tree Coordinator is responsible for communicating

with the clients and the logic of the tree: storing the tree

root record key, adding new nodes, traversing tree and making

queries. Moreover it is able to execute queries in two ways,

STANISŁAW DENIZIAK ET AL.: THE SCALABLE DISTRIBUTED TWO-LAYER CONTENT BASED IMAGE 829

analogously to the SQ and DQ messages. In order to improve

the performance, some of the Tree Coordinator features, like

comparing graphs and tree traversing may be implemented as

a part of buckets. Also the DQ message could be directly sent

by the bucket.

1) The tree structure: The tree nodes used in the database

are stored in the first layer using standard SD2DS headers

records. The graphs are inserted into the tree hierarchically,

storing its common parts in parent nodes. Because of that,

the root node may contain a graph with only one shape or an

empty graph. The example tree structure with scooter, bicycle

and car objects is shown in the Fig. 3. Moreover, because there

are indirect nodes which stores only graphs without connection

to any images, the SD2DS modification allows records headers

in the first layer with empty bodies.

2) Record Insertion: after receiving the GI message the

Tree Coordinator compares the graph with graphs stored in

the tree, starting from the root node using the Query by Shape

comparison algorithm (QS) [1] and the minimal similarity

parameter extracted from the GI message. The algorithm is

presented in the Alg. 1. The Tree Coordinator retrieves the

record using similar procedures as the client in the standard

SD2DS. Then children nodes are extracted from the record

and used for the next records retrieval.

3) Querying: The querying algorithm is very similar to the

insertion of a node. The algorithm is shown in the Alg. 2.

During the query, the results could be sent immediately to

the client or stored in the Tree Coordinator temporary buffer

before completion and then sent.

C. The Second Layer

The second layer has not been modified. Because of the

tree structure, there may be less bodies than records in the

first layer. The images are retrieved during querying, but the

client in the SQ or DQ could force the database to only send

headers from the first layer or even only the keys.

VII. EXPERIMENTAL RESULTS

The presented tree-based structure has been evaluated using

experimental implementation written in C++. The results were

compared with the linear SD2DS QS system and are shown

in the Tables I and II. The linear SD2DS QS system uses also

first SD2DS layer to store graphs, but without tree structure.

During the query, all elements has to be compared with the

query graph. In order to evaluate algorithms performance, the

precision and recall coefficients were used [1]:

precision =

number of relevant results images

total number of results images
(1)

recall =
number of relevant results images

total number of relevant images in the database
(2)

As a number of relevant results images we assume the number

of images which are from the same class as the query image.

For the tests, about 117 real life images of different objects

classes were used.

Algorithm 1 Inserting new node to the tree

Require: graph and image extracted from the GI message

if tree is empty then

2: add record as a root node, store its key as a Root Key;

send RI message with the key to the client;

4: else

add Root Key to the FIFO queue;

6: while FIFO queue is not empty do

key ← pop first element from FIFO;

8: treeNode← get record with key == key;

compare graph with treeNode using QS;

10: if treeNode is not a root node then

if graphs similarity ≤ similarity of graph and

treeNode’s parent then

12: add graph as a child of treeNode’s parent;

send RI message with the graphs’s key to the

client;

14: end if

else

16: add graph as a new root node;

add treeNode to the graph’s children list

18:

end if

20: if graphs similarity ≥ highSimilarity then

add record as a child to treeNode;

22: send RI message with the record’s key to the

client;

else

24: if treeNode does not have any children then

add graph to the tree;

26: add the common part of graph and treeNode

as their parents;

if treeNode is a root node then

28: the Root Key ← common part’s key

end if

30: send RI message with the graph’s key to the

client;

else

32: add each treeNode children to the FIFO queue;

end if

34: end if

end while

36: end if

The test results shows that for most queries the tree structure

increased the precision comparing to the previous, linear

structure. This is due to the additional steps during the query

algorithm (Alg. 2) which omits the whole sub-tree with too low

precision and check if the precision is increasing in children

nodes. Moreover, the lower precision in the automated queries

was caused by some failures of shape detection algorithms.

The recall measurements shows that for the manual queries

more relevant results were returned by the tree algorithm

version. The automatic query was problematic for same cases

for tree version because of occurrence of many unconnected

830 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 3. The example of the tree with bicycle (node 4), scooter (node 5) and 3 cars graphs (nodes 6-8). The shape sizes were omitted during tree construction
in order to show the main idea and simplify the structure.

TABLE I
THE PRECISION RESULTS FOR THE EXAMPLE BICYCLE AND CAR QUERIES

Manual queries Automated queries

Tree-based Linear Tree-based Linear

bicycle no. 1 0.7708 0.6065 1 0.9
bicycle no. 2 0.8529 0.5714 1 0.8
car no. 1 1 0.7059 0.4182 0.5658
car no. 2 1 0.8 0.5902 0.5428

TABLE II
THE RECALL RESULTS FOR THE EXAMPLE BICYCLE AND CAR QUERIES

Manual queries Automated queries
Tree-based Linear Tree-based Linear

bicycle no. 1 0.9737 0.9737 0.3023 0.2093
bicycle no. 2 0.7636 0.8421 0.2558 0.0930
car no. 1 0.5814 0.5581 0.5 0.86
car no. 2 0.7209 0.4651 0.72 0.76

nodes in skeletons. This caused problems with inserting them

in the proper sub-tree.

The performance of the structure is dependent on the

number of elements. During our experiments using SD2DS, to

up to 1000 elements there were very small difference between

tree and linear version. For higher number of elements, the

tree structure was becoming more and more faster. We also

implemented version which uses as a storage vector array.

During experiments the tree version occurred to be up to 2x

faster than linear version.

VIII. CONCLUSION

In this paper a new Content Based Image Retrieval database

structure was presented. The main idea of our research is to

apply our previous research results, Query by Shape method

[1], into Scalable Distributed Two-layer Data Structure. The

modification of data store included redesigning it to store

records in a tree. Also a Tree Coordinator was added to the

first layer in order to communicate with the client and perform

tree queries.

The future research includes implementing the version of

the algorithm with comparison algorithm moved to buckets.

We expect that it should improve the querying time as well

as allows to use buckets and nodes more efficiently. Moreover

the throughput adjustment may be added in order to improve

the image data access time.

Another direction of research will concern the Query by

Shape method in order to improve the results precision.

This may include e.g. adding other primitive types and color

features. Moreover more advanced graph matching algorithms

should be applied, as well as some optimization methods

should be evaluated, e.g. [23].

ACKNOWLEDGMENT

The research used equipment funded by the European Union

in the Innovative Economy Programme, MOLAB - Kielce

University of Technology.

REFERENCES

[1] S. Deniziak and T. Michno, “Query by shape for image retrieval
from multimedia databases,” in Beyond Databases, Architectures

and Structures, ser. Communications in Computer and Information
Science, S. Kozielski, D. Mrozek, P. Kasprowski, B. Malysiak-Mrozek,
and D. Kostrzewa, Eds. Springer International Publishing, 2015,
vol. 521, pp. 377–386. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-18422-7_33

STANISŁAW DENIZIAK ET AL.: THE SCALABLE DISTRIBUTED TWO-LAYER CONTENT BASED IMAGE 831

Algorithm 2 Querying the database with a graph

Require: graph extracted from the SQ or DQ query message

if tree is empty then

2: send NF message to the client;

else

4: add Root Key to the FIFO queue;

while FIFO queue is not empty do

6: key ← pop first element from FIFO;

treeNode← get record with key == key;

8: compare graph with treeNode using QS;

if graphs similarity ≥ highSimilarity then

10: if the client sent DQ message then

send RI message with the record’s key to the

client;

12: send RI message with all keys of the sub-tree

consisting of record’s children to the client;

else

14: add record to the results;

add all keys of the sub-tree consisting of record’s

children to the results;

16: end if

end if

18: if treeNode’s parent similarity −minSimilarity >

graphs similarity then

continue;

20: end if

if treeNode has children then

22: add each treeNode children to the FIFO queue;

end if

24: end while

end if

[2] K. Sapiecha and G. Lukawski, “Scalable distributed two-layer data
structures (sd2ds),” IJDST, vol. 4, no. 2, pp. 15–30, 2013. [Online].
Available: http://dx.doi.org/10.4018/jdst.2013040102

[3] C.-Y. Li and C.-T. Hsu, “Image retrieval with relevance feedback based
on graph-theoretic region correspondence estimation,” IEEE Transac-

tions on Multimedia, vol. 10, no. 3, pp. 447–456, April 2008.
[4] H. H. Wang, D. Mohamad, and N. A. Ismail, “Approaches, challenges

and future direction of image retrieval,” CoRR, vol. abs/1006.4568, 2010.
[5] M. Mocofan, I. Ermalai, M. Bucos, M. Onita, and B. Dragulescu,

“Supervised tree content based search algorithm for multimedia image
databases,” in 6th IEEE International Symposium on Applied Computa-

tional Intelligence and Informatics, May 2011, pp. 469–472.
[6] T. K. Shih, “Distributed multimedia databases,” T. K. Shih, Ed.

Hershey, PA, USA: IGI Global, 2002, ch. Distributed Multimedia
Databases, pp. 2–12. [Online]. Available: http://dl.acm.org/citation.cfm?
id=510695.510697

[7] H.-P. Kriegel, P. Kroger, P. Kunath, and A. Pryakhin, “Effective sim-
ilarity search in multimedia databases using multiple representations,”

in 12th International Multi-Media Modelling Conference Proceedings,
2006, pp. 4 pp.–.

[8] C. Lalos, A. Doulamis, K. Konstanteli, P. Dellias, and T. Varvarigou,
“An innovative content-based indexing technique with linear response
suitable for pervasive environments,” in International Workshop on

Content-Based Multimedia Indexing, June 2008, pp. 462–469.
[9] R. Jakubowski, “Extraction of shape features for syntactic recognition

of mechanical parts,” IEEE Trans. on Systems, Man and Cybernetics,
vol. SMC-15, no. 5, pp. 642–651, Sept 1985.

[10] M. Bielecka and M. Skomorowski, “Fuzzy-aided parsing for pattern
recognition,” in Computer Recognition Systems 2, ser. Advances in Soft
Computing, M. Kurzynski, E. Puchala, M. Wozniak, and A. Zolnierek,
Eds. Springer Berlin Heidelberg, 2007, vol. 45, pp. 313–318.

[11] A. Sluzek, “On moment-based local operators for detecting image
patterns,” Image and Vision Computing, vol. 23, no. 3, pp. 287 –
298, 2005. [Online]. Available: http://dx.doi.org/10.1016/j.imavis.2004.
03.003

[12] H.-C. Lee and K.-S. Fu, “Generating object descriptions for model
retrieval,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. PAMI-5, no. 5, pp. 462–471, Sept 1983.

[13] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.

ACM, vol. 23, no. 1, pp. 31–42, Jan. 1976. [Online]. Available:
http://doi.acm.org/10.1145/321921.321925

[14] G. Aggarwal, T. Ashwin, and S. Ghosal, “An image retrieval system
with automatic query modification,” IEEE Transactions on Multimedia,
vol. 4, no. 2, pp. 201–214, Jun 2002.

[15] T. Kato, T. Kurita, N. Otsu, and K. Hirata, “A sketch retrieval method
for full color image database-query by visual example,” in 11th IAPR

International Conference on Pattern Recognition, Vol.I. Conference A:

Computer Vision and Applications, Aug 1992, pp. 530–533.
[16] A. Singh, S. Shekhar, and A. Jalal, “Semantic based image retrieval

using multi-agent model by searching and filtering replicated web
images,” in Information and Communication Technologies (WICT), 2012

World Congress on, Oct 2012, pp. 817–821.
[17] C.-Y. Li and C.-T. Hsu, “Image retrieval with relevance feedback based

on graph-theoretic region correspondence estimation,” Multimedia, IEEE

Transactions on, vol. 10, no. 3, pp. 447–456, April 2008.
[18] S. Kiranyaz and M. Gabbouj, “Hierarchical cellular tree: An efficient

indexing scheme for content-based retrieval on multimedia databases,”
Multimedia, IEEE Transactions on, vol. 9, no. 1, pp. 102–119, Jan 2007.

[19] P. J. Sadalage and M. Fowler, NoSQL distilled : a brief guide to

the emerging world of polyglot persistence. Upper Saddle River, NJ:
Addison-Wesley, 2013. [Online]. Available: http://opac.inria.fr/record=
b1135051

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst.

Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1323293.1294281

[21] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.

Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1365815.1365816

[22] K. Sapiecha, G. Lukawski, and A. Krechowicz, “Enhancing throughput
of scalable distributed two – layer data structures,” in Parallel and Dis-

tributed Computing (ISPDC), 2014 IEEE 13th International Symposium

on, June 2014, pp. 103–110.
[23] P. Sitek and J. Wikarek, “A hybrid framework for the modelling and

optimisation of decision problems in sustainable supply chain manage-
ment,” International Journal of Production Research, 2015.

832 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

