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Abstract—In this paper novel project scheduling difficulty
estimations are proposed for Multi-Skill Resource-Constrained
Project Scheduling Problem (MS–RCPSP). The main goal of
introducing the complexity estimations is an attempt of estimation
the project complexity before launching the optimization process.
What is more, the dataset instance generator is also presented
as a tool to create new instances for extending the research
area. Furthermore, the dataset proposed in previous works is
extended by new instances, described thoroughly and released as
a benchmark dataset. The dataset instances are also scheduled
using simple heuristic and greedy algorithm in duration- and
cost- oriented optimization modes. Finally, a brief summary of
investigated methods and potential further research directions is
presented.

Index Terms—scheduling, RCPSP, dataset, benchmark, heuris-
tics, indicator

I. INTRODUCTION

REsource-Constrained Project Scheduling Problem stands

as one of the most important and the most investigated

[9], [10] kind of known types of scheduling problems. It is

because of its practical nature and the need to find good

ways for resolving it not only for scientific, but also industry

purposes. Its goal is to find the best schedule for the project,

by assigning scarce resource to defined tasks. The quality of

the schedule is mostly defined as its duration, cost or some

combinations of those indicators.

As MS–RCPSP is the extension of classical RCPSP, it

makes the problem NP–hard [2]. Hence, there is no way to

find a method that would be able to find the optimal solution

in polynomial, reasonable time. Therefore, one of the main

approach to solve RCPSP and its potential extensions is to

use soft computing methods, especially metaheuristics [19].

To make the problem definition more practical in industrial

point of view, we introduced the skill domain. Tasks require

some specified skill to be performed by resources owning

some subset of skills defined in the project. Therefore, not

every resource is able to perform every task in the project. It

makes the problem more constrained but on the other hand

– more realistic. RCPSP extended by skills domain is called

Multi–Skill RCPSP (MS–RCPSP).

The goal of the paper is to present several indicators for the

difficulty of the project to be scheduled. The difficulty could

be understood as a measure how much the solution space is

constrained – how hard is to build feasible and good enough

schedule. The secondary objective is to share the dataset and

propose it as a benchmark for other researchers, to build a

common platform for evaluating methods solving MS–RCPSP.

The rest of the paper is organised as follows. Section II

presents some approaches in solving MS–RCPSP using some

of the mentioned metaheuristics. Then section III describes

the problem statement. Then Section IV presents complexity

estimations we proposed for MS–RCPSP. Section V describes

the way how new instances are generated. Furthermore in

the Section VI the dataset has been presented and then its

instances have been used in experiments in Sec. VII while

the last Section VIII describes approaches we have recently

investigated and proposes ways for further research.

II. RELATED WORK

NP–hard [2], combinatorial nature of MS–RCPSP is one of

the reasons of common use of metaheuristic–based approaches

in solving the problem. Nevertheless, some constraint pro-

gramming methods or simpler heuristics are also used to solve

this kind of problems [20].

However, there is still lack of papers regarding multi–

objective Multi–Skill extension of RCPSP. Some approaches

solving MS–RCPSP in project duration domain [1], [16] or

project cost domain [12] could be found. On the other hand,

there are methods solving classical RCPSP extended by cost

domain, but without skills considerations. Such research has

been presented in [15], [6], [4], [13] and [24]. Hence, we

have decided to combine those two elements: multi–objective

optimization and multi–skill domain for project scheduling

problem.

Although classical RCPSP is deeply investigated and nu-

merous approaches could be easily compared using PSPLIB

instances, it is very hard to find multi–objective MS–RCPSP

methods working on datasets that could be regarded as a

benchmark. Some papers describe instances artificially gen-

erated ([5], [16]), while some others propose methods of

PSPLIB dataset adaptation ([1], [3], [7], [12]). We analysed

some published benchmark datasets, but they were usually

unsuitable for our approach as they do not cover multi-

objective nature of the problem, even multi–skill domain has

been developed ([23]). The other unsuitable example is a

benchmark for Multi–Mode RCPSP (MM-RCPSP) published

in [21], but it does not involve skills constraints and make the

main focus on multi–mode characteristics. Hence, the need of

definition new dataset has arisen.
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Some difficulty estimations for any project scheduling prob-

lems could be found in [11] or [13]. However those proposed

difficulty estimations based mostly on tasks, precedence rela-

tions between them and resource properties. There is a lack of

difficulty estimations that would be dedicated for MS–RCPSP,

involving skills domain.

Among many papers regarding the resource – constrained

project scheduling problems and its extensions, we found that

we had something in common with the approach presented

in [13]. Despite some similarities, there are some crucial

elements that make our approach, defined in detail in [14],

different. We regard both of them as worth of investigating.

Tab. I presents the comparison – similarities and differences

in four main areas we decided to point out.

Based on the information in the Tab. I, some common

elements between our approach and the one presented in [13]

in all of the mentioned areas can be found. Firstly, investigated

problems are similar in a way that both of them regard multi–

objective optimization in Multi–Skill Resource–Constrained

Project Scheduling Problem (MS–RCPSP). Both problems are

additionally defined by some resource, precedence and skills

constraints. However those constraints differ in details (i.e.

distinguishing skill types).

There are also some similarities regarding the dataset pub-

lished. First of all, both of the datasets are published in the

Internet, so anyone has an access to dataset instances and

can use them to investigate own optimization methods in

MS–RCPSP. What is more, the number of dataset instances

is the same. However, the strategy of building the dataset

was different. We used information about number of different

skill types and number of precedence relations. Not only the

most common indicators, like number of tasks or number

of resources, what can be found in [13]. Based on those

additional indicators we tried to build as most balanced dataset

as possible. Therefore, we tried to adjust the number of

resources, skills and precedence relations in a way to make

our complexity indicators similar for 100 and 200-tasks project

instances as well.

III. PROBLEM STATEMENT

The goal of the MS–RCPSP is to order given set of tasks

and assign resources to them in a way to provide feasible and

as good solution as possible. The quality of the solution could

be measured in its duration, cost or any other measure defined

according to business requirements.

In MS–RCPSP the set of tasks (J) is given, while every task

has to be performed during the project execution. Each task is

described by its start (Sj) and finish dates (Fj), duration (dj)

and skill required by it to be performed. What is more, tasks

can be related between themselves by precedence relations.

It means some tasks (successors) cannot start before some

other would be finished (predecessors). It makes the solution

space for given instance more constrained, as there are fewer

possibilities to put the tasks in given period. Predecessors

of given task j are defined as Pj while overall number of

predecessors in a project is p.

Furthermore, the set of resources (K) is also given. Every

resource k is described by its salary (sk) and skills covered

(Qk). Therefore, a subset of tasks than can be performed by

k resource could be obtained and is denoted as Jk.

Skill required by task to be performed determines which

resource can be assigned to it. Every skill type could appear

in a project in various familiarity levels, denoted as an integer

value from 0 to 4. Resources with skill type required by given

task but on the lower than required level cannot be assigned

to such task. The number of all skills (including different

familiarity levels) is denoted as q, while the number of skill

types in the project is denoted as q̄

What is more, any resource cannot be assigned to more than

one task in the overlapping period. If such a situation occurs,

conflict is detected and has to be resolved, to get valid, feasible

solution. It is made by shifting some of conflicting tasks in

time–line in a way to make it start just after another conflicted

task would be finished. The decision which of conflicted tasks

should be taken to be shifted is made by checking which has

been previously added to the project definition, because we

do not distinguish various levels of task priority. Each task is

equally important to be scheduled in the project.

Any project schedule (PS) has to be conflicts–free and

has to satisfy the precedence constraints between tasks. If it

satisfied those both kind of constraints, we would call it as

a feasible schedule. Only feasible ones can be regarded as

finite solutions. What is more, every infeasible solution could

be made feasible. However, making schedule feasible could

make its duration longer.

A. Calendar restrictions

Due to use Microsoft Project as a base for our dataset, we

needed to obtain some calendar restrictions that are strictly

related to used software.

First of all, standard calendar in Microsoft Project is de-

signed to handle projects in real–life, where classical five–

days week of work is used. It was also a requirement asked

by the VolvoIT enterprise that we cooperate in the research

field of project scheduling. However, weekends are taken into

account. If resource is assigned to task that cannot be finished

before weekend, it will be finished after the weekend. The task

duration is bigger but number of man–hours (or man–days)

required for given task does not change. Therefore various

project duration measures can be obtained. One can be made

based on the overall duration of project – between its start and

finish dates, including weekends where tasks are not performed

but influence on other tasks’ start dates and the project finish.

Other approach could be to ignore any festivals and weekends

and regard seven days week of work. Until now we prefer the

first approach as it is more practical.

Furthermore, the localization issue has to be taken into

account when considering calendar restrictions. Depending on

the localization settings, some changes in the calendar could

appear, regarding some national or cultural–related festivals.

In example, there would be other free days in China than in

Poland, where different festivals are taken place.
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TABLE I
SIMILARITIES AND DIFFERENCES BETWEEN IMOPSE [14] APPROACH AND THE APPROACH PRESENTED IN [13]

Area Similarities Differences

Problem definition

Multi-skill Resource load - ’dedication’ measure
Multi-objective No skill levels
Resource-constrained Task can be assigned to more than one resource
Precedence relations No conflict, different rule of repair operator
Skills

Approach more academic than practicalMinimal one resource required by given task to be
performed
Repair operator → enlarging project duration

Dataset
Same number of instances: 36 Instances distinguished only by number of tasks and num-

ber of resources
Published in the Internet Constant vs. varied number of skill types in a dataset

instance

Generator
Published in the Internet as a benchmark No graphical user interface
Developed in the JAVA programming language Output format not connected with MS Project

Methodology
Time vs. cost tradeoff

Complexity estimators vs. hypervolume, attainment
Focus on multiobjective, Pareto–based optimization

Linking above constraints with potential dynamic date of

project start – the date, when the first task is assigned to

resource in the timeline – there is a risk that the same project

with the same task–to–resource assignments (schedule) can be

finished in various dates, depending on the day of start. Project

instances start at various dates, except the ones with D* suffix

that have been prepared strictly for given enterprise and were

required to be start all at the same day. It has been set to 12th

April of 2012.

To avoid those calendar restrictions .def format has been

introduced. It is described in detail in Subsec. VI-A.

B. Evaluation function

The goal of MS–RCPSP is to find the best (as quick or

/ and as cheap as possible) final project schedule. Hence,

we could present it as bi–objective optimization problem.

Because of totally different domains of duration and cost, we

cannot simply aggregate those two objectives. Therefore, the

normalization process is performed, to get the value scope

between 0 and 1. It allows us to aggregate those two objectives

and combine them into one evaluation function.

We have also preserved the possibility to choose which

objective is more important in given optimization process. It

is made by setting weights both for the duration (ωτ ) and

cost aspect. The sum of both weights sum to 1 and the scope

of values is from 0 to 1. It means that setting the weight of

duration aspect to one automatically sets the weight of cost to 0

and vice versa. Naturally that weight can be set by float value.

Specifically, both weights could be set to 0.5. In that case,

both objectives would be equally important in the optimization

process. We proposed three baseline weight configurations:

duration optimization (DO, ωτ = 1), balanced optimization

(BO, ωτ = 0.5) and cost optimization (CO, ωτ = 0) [14].

An important remark is that those objectives are in opposi-

tion to each other. It means that setting weights to make the

optimization process more cost–oriented could cause getting

cheaper project schedule, but with the risk that final schedule

would be longer. Analogously, shorter project schedule could

be obtained with spending more money on it.
Evaluation function is formulated as follows:

min f(PS) = ωτfτ (PS) + (1− ωτ )fc(PS) (1)

where: wτ – weight of duration component, fτ (PS) – duration

evaluation component, fc(PS) – cost evaluation component.

Both components are non–negative values, while wτ ∈ [0; 1].
The time component fτ (PS) is calculated as follows:

fτ (PS) =
τ

τmax

(2)

Where: τmax – maximal (pessimistic) possible duration of the

schedule PS, computed as the sum of all tasks’ duration [14].

It occurs when all tasks are performed serially in project: one–

by–one. No matter, how many and how flexible resources are.
The cost component fc(PS) is defined as follows:

fc(PS) =

∑J

i=1
cj − cmin

cmax − cmin

(3)

where: cmin – minimal schedule cost – a total cost of all

tasks assigned to the cheapest resource, cmax – maximal

schedule cost – a total cost of all tasks assigned to the most

expensive resource [14]. Note: cmax and cmin do not involve

skill constraints. It means that cmin value could be reached

also for non–feasible solution. Analogously to cmax.

C. Solution space size

Given number of tasks and number of resources, we can

estimate the solution space size (SS), as:

SS(n,m) = n! ∗mn (4)

Where n is a number of tasks and m is a number of resources

[14]. However, that estimation also takes into account non–

feasible solutions, because skill–constraints are not satisfied.

To give an example, let’s assume n = 10 and m = 5 – without

any precedence relations we get SS(10, 5) = 3.54 ∗ 1013

combinations. It is worth mentioning that each task can be

3
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placed only once in the schedule, but resources could be

assigned more often. An extreme situation occurs if the same

one resource would be assigned to perform each task.

Large solution space size makes impossible checking each

of the combinations manually. However, space includes also

non–feasible solutions that do not satisfy defined conditions.

Moreover, above example is a simplification and in real world

problems we meet a higher number tasks (about n = 100) and

resources (m = 20) – it gives SS(100, 20) = 1.19 ∗ 10288 of

all solutions.

IV. COMPLEXITY ESTIMATIONS

As a result of cooperation with VolvoIT Department in

Wroclaw [18], [20], [19], we defined following elements [14]:

• requirements and constraints dedicated to the industry,

• project scheduling difficulty indicators.

Project difficulty indicators have been verified and approved

by experienced project manager in the enterprise.

The main goal of investigating such estimations was to

compare how the project elements (tasks, resources, prece-

dence relations, skills) characteristics could influence on the

optimization process based on the quality of obtained result

(project schedule duration or performance cost) or optimiza-

tion processing time.

Proposed difficulty estimations are described below. All

estimations are normalised before being taken to compute the

overall complexity measure.

A. affiliation (λ)

States, how much tasks are related between them. The

bigger value means the tasks are more related. The project

complexity is bigger, because the scheduling flexibility is

restricted (more tasks are related to others, so they cannot

be scheduled flexibly). It is computed as follows:

λ =
p

n
(5)

Where p – number of precedence relations, n – number of

tasks.

B. load (ν)

Reflects, how much resources are loaded by tasks. The

bigger value means, the more tasks are assigned to one

resource (the project complexity is bigger, because the solution

space is bigger). It is computed as follows:

ν =
n

m
(6)

Where m – number of resources.

C. time difference (ΦT )

Describes how tasks are varied by their duration. The bigger

value means tasks are more varied. That makes scheduling

more difficult, because tasks’ order influences on overall

duration time. It is computed as follows:

ΦT =
σd

dmax − dmin

(7)

Where: σd – standard deviation of tasks’ duration in schedule,

dmax – maximal task duration in schedule, dmin – minimal

task duration in schedule.

D. cost difference (ΦC)

Indicates how tasks are varied by their performance cost.

The interpretation is similar to the time difference (ΦT ). It is

computed as follows:

ΦC =
σC

cmax − cmin

(8)

Where: σC – standard deviation of tasks’ cost in schedule,

cmax – maximal task cost in schedule, cmin – minimal task

cost in schedule.

E. variety (µ)

Reflects how resources are varied by their skills. The bigger

value means the project is more difficult to be scheduled

because tasks are more dedicated to resources (no other can

be assigned to the specified task). It is computed as follows:

µ =
q

m
(9)

Where: q – number of different skills existing in the project.

Important: each level of the same skill name is regarded as a

new skill.

F. universality (β)

States the average number of resource skills. The bigger

value means it is easier to schedule a project because resources

are more universal. It is computed as follows:

β =

m∑

i=1

Qi

m
(10)

Where: Qi – number of skills owned by i resource.

G. adjustment (π)

Shows how many resources available to be assigned in the

project are capable of performing tasks that are needed to be

performed. Ergo – how many resources can deal with each

task. The bigger value means it is more difficult to schedule

a project because resources are strictly adjusted to the tasks

by their skills covered, and skills needed. It is computed as

follows:

π =

Q∑

i=0

∆(qi) ∗ σ(∆(q))

max(∆(q1),∆(q2), ...,∆(qq)) ∗ q
(11)

Where:

∆(qi) =
|Qi − TQ(i)|

min(RQ(i), TQ(i))
(12)

Where: RQ(i) – number of resources covering skill i (nor-

malized by number of all resources (m) in the project).

TQ(i) – number of tasks, that require skill i to be performed

(normalized by number of all tasks (n) in the project).

4
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H. Flexibility (θ)

The flexibility θ of the instance PS has been estimated as

the sum of a number of potential assignments of tasks to a

given resource divided by number of resources (n). It can be

stated as follows:

θ =

∑n

k=1
J̄k

m
(13)

Where J̄k is the number of tasks that can be performed by

resource k, while m is the number of resources in a project.

Having discussed the usage of those estimations’ legitimacy,

each measure has been subjectively weighted and confirmed

by an experienced project manager (to determine their priority

in overall project’s difficulty measure). Having those weights

set up, the project’s (PF) difficulty measure function could be

defined as follows:

diff(PF ) = 8λ(PF ) + 9ν(PF ) + 3Φτ (PF )+

+3ΦC(PF ) + 6µ(PF )− 4β(PF ) + 7π(PF ) + 5θ(PF )
(14)

The bigger the value diff(PF ) is, the more difficult to

schedule the project is. Universality measure has been taken

with a negative value. It is because the bigger the universality

value is, the project is easier to schedule as resources are

more skill–flexible and can be assigned to more different tasks,

relaxing more skill constraints.

Depending on project manager preferences, weights as-

signed to given estimations could be changed, what would

influence on the overall diff(PF ) measure.

V. INSTANCES GENERATOR

The main goal of implementing the dataset instance genera-

tor is to provide other researchers the possibility to investigate

their methods not only on proposed dataset instances, but also

on some other that would be created individually by given

researcher. Dataset instance generator has been prepared for

MS–RCPSP but it can be easily adjusted to handle classical

RCPSP instances like PSPLIB [8]. It has been implemented

in JAVA programming language, using MPXJ1 library for

processing project files from MS Project. It can create project

definition not only in .mpp (XML) format, but also the simpler

(.def) one. The more detailed description of .def format

is available in Subsec. VI-A. Instances have been created

based on the real–life project instances got from international

entreprise (Volvo IT).

Instances generator is an element of resources developed in

our Intelligent Multi–Objective Project Scheduling Envi-

ronment2 platform. Besides instances generator, the platform

contains solution validator (see Subsec. VI-B), instances we

generated and used to verify our approaches and the best

found solutions for those instances in three above–mentioned

optimization modes: DO, BO, CO. Every solution is saved in

1http://mpxj.sourceforge.net
2http://imopse.ii.pwr.edu.pl

ready–to–use in MS Project .xml format, containing all tasks,

resources, skills, precedence relations and obtained schedule.
The general process of generation new instances could be

split into main steps:

1) Read and validate parameter values provided by the end

user

2) Define resources,

3) Define skills and assign them to resources,

4) Define tasks and precedence relations,

5) Assign resources if necessary,

6) Save project.

In the further parts of this section, following steps would

be described in detail. The pseudocode of the generator has

been presented in Alg. 1

Algorithm 1 Generator pseudocode

1: pool← ∅
2: #generate resources

3: for r ∈ K do

4: #generate resource

5: set standard salary(minSt,maxSt)
6: #set skills(ri)

7: q ← setNumSkills(min,max)
8: for j = 0; j < q do

9: set skill type from range(minST,maxST, qj)
10: set skill level from range(minSL,maxSL, qj)
11: if skill not exists(qj , pool) then

12: pool← pool.add(qj)
13: r ← addSkill(qj)
14: #generate tasks

15: for t ∈ J do

16: t← set duration(minDuration,maxDuration)
17: t← set skill(pool)
18: #generate relations

19: for i ∈ P do

20: relSource← rand(T )
21: relDest← rand(relSource, T,min,max)
22: relSource← addPredecessor(relSource)
23: if make assignments then

24: #assign resources [initial schedule builder]

25: for n ∈ J do

26: R← capable resources(n)
27: r′ ← rand(R)
28: assign(n, r′)
29: save result

A. Resources

The number of resources that would be generated is pro-

vided as a parameter for the proposed tool. For every generated

resource its standard rate salary is set as a random between

the minimal and maximal value (see Alg. 1, line: 5) set by the

end–user in the configuration of the generator.

B. Skills

Analogously to resource definition, the number of different

skill types is set by the end–user during the configuration. We

5
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declared 4 levels of the skill familiarity for given resource.

However, the end–user is also obliged to define how many

types of skills could be covered with given resource. It is

desired that number of skill types owned by resource would be

no greater than the number of skill types existing in the project.

Number of skill types is set randomly from the minimal

and maximal value (set by end–user). However, during recent

dataset instances generation, we decided to make the number

of skill types for every resource as a constant – minimal (min)

and maximal (max) number of skill types have been set as

the same value – line 7.
During skill generation process for given resource, a skill

type is selected from given range of types (line: 9) while skill

level is also selected from given scope (line: 10). We decided

to make four levels of skills as it covered the requirements

presented by project manager from the enterprise. If selected

skill is not available in skills pool, it is both assigned to the

resource and added to the skills pool (line 13). It provides that

skills required by any tasks to be performed would be selected

from the pool of skills that are owned by at least one resource

(line 17).

C. Tasks

Having resources, and skills covered by them defined, tasks

could be obtained. The number of tasks is set by the end–

user. What it more user also sets the duration scope of the

task (line: 16). Those are the bounds within the task duration

would be randomly set (line: 16). For the sake of generation

project instances for our research, we made an assumption that

task duration would be the number between 8 and 40 hours.

It reflects to the range between 1 and 5 days of any task’s

duration. The skill required by any task is selected from the

pool of available skills in given project instance (line: 17).

D. Precedence relations

One of the last steps during generation process is to define

the precedence relations. End–user defines the number of those

relations. S/he is also responsible for defining the general

scope of relations. It means, the bigger relations scope set,

the bigger distance between tasks is allowed in building the

precedence relations diagram (line: 21). In other words, setting

small relation scope could cause that resulted schedule would

contain precedence relations between tasks that have been

defined one by one or with slight distance (like task first

and third). However, if the relation scope would be set to

a bigger value, there could be relations in the final schedule

between some tasks defined in the beginning and the end of

the generation process (e.g. precedence relation between the

first and the last task defined).
The bigger the distance between source and destination task

is, the more complex the project instance critical path is. As

a consequence, duration–based optimization would potentially

be more difficult for such project instance.

E. Assign resource

Finally, the initial schedule could be built by assigning

resources to given tasks, preserving precedence and skill

constraints (lines: 26–28). Produced schedule would always

be feasible. The way how resources are assigned to tasks is

set randomly. Hence, if there is more than one resource that

can be assigned to given task, then generator could assign this

task in different ways in different executions of generation

process. Schedule is generated using the Serial Generation

Scheme [9], what provides that generated schedule would be

always feasible.

F. Save project to file

The last step in the process of generation an instance is

to save (line: 29) the resulted project. If user sets the output

file type to xml (mpp), then generator produces the result in

the format that could be easily loaded in Microsoft Project

tool. If user selects def output format or does not select any,

then the result would be saved in more compact format that

could be read by any text editor. If assign resources option has

been ticked, then tasks can have resources assigned. However

it regards only generating output only in xml (mpp) format.

The name of produced file relates to the name proposed by

the end–user in given text field in the configuration screen.

VI. DATASET SUMMARY

Due to evaluate not only the project schedule duration,

but also the cost of the schedule including skills domain, we

cannot use the standard PSPLIB benchmark dataset [8] in our

research; that does not contain any information about the task

performance cost. What is more, PSPLIB dataset instances do

not reflect the MS–RCPSP. Hence, we prepared the dataset,

containing 36 project instances, which have been artificially

created, in a base of real–world instances, got from the Volvo

IT Department in Wroclaw.
The dataset summary has been presented in the Table II.

There are two groups of created project instances: one contains

100 tasks and the second – 200 tasks as typical ones performed

in given international enterprise. Within each group, project

instances are varied by number of available resources and the

precedence relationship complexity. Number of resources for

instances from both groups were chosen in a way to preserve

constant average resource load and average task relations ratio

for given instances. The skill variety has been set up to 9

or 15 different skill types for each project instance while

any resource can dispose of exactly six different skill types.

Because of the different resources and relations number, the

scheduling complexity for each project is varied.
This dataset stands as an extension of dataset presented in

[18], [19], [20], and that is the reason some instances are

named with suffix Dx. This suffix refers to dataset instances

that have been previously created and presented in those

papers. Because of the extension the dataset, the need of

introducing more clear namesystem has arisen. Suffix has been

added to refer previously created files, keeping the naming

convention applied after dataset extension.

A. Project definition format (.def)

Because of changing the research’s approach to be more

generic, we decided to focus more on the dataset instances
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TABLE II
COMPLEXITY INDICATORS AND DIFFICULTY MEASURE FOR IMOPSE DATASET INSTANCES. PROJECT INSTANCES REGARDED AS THE MOST DIFFICULT TO

BE SCHEDULED ARE WRITTEN BOLD, WHILE THOSE ONES, WHO ARE INDICATED AS THE EASIEST TO SCHEDULE ARE WRITTEN ITALIC.

Dataset instance
Features Indicators

Difficulty
m n p q̄ λ ν Φd Φc µ β π θ

100 10 26 15 100 10 26 15 0.100 0.053 0.316 0.123 1.000 0.117 0.200 0.278 0.243
100 10 27 9 D2 100 10 27 9 0.100 0.062 0.316 0.412 1.000 0.087 0.102 0.417 0.267
100 10 47 9 100 10 47 9 0.100 0.095 0.314 0.182 1.000 0.087 0.094 0.437 0.259
100 10 48 15 100 10 48 15 0.100 0.097 0.313 0.125 1.000 0.113 0.263 0.292 0.263
100 10 64 9 100 10 64 9 0.100 0.129 0.321 0.129 1.000 0.083 0.176 0.453 0.277
100 10 65 15 100 10 65 15 0.100 0.131 0.321 0.137 1.000 0.120 0.179 0.281 0.256
100 20 22 15 100 20 22 15 0.050 0.044 0.317 0.119 1.000 0.075 0.116 0.263 0.221
100 20 23 9 D1 100 20 23 9 0.050 0.052 0.317 0.356 1.000 0.045 0.135 0.451 0.265
100 20 46 15 100 20 46 15 0.050 0.093 0.321 0.125 1.000 0.072 0.102 0.264 0.229
100 20 47 9 100 20 47 9 0.050 0.095 0.314 0.122 1.000 0.043 0.081 0.397 0.243
100 20 65 15 100 20 65 15 0.050 0.131 0.314 0.117 1.000 0.073 0.091 0.248 0.232
100 20 65 9 100 20 65 9 0.050 0.131 0.318 0.114 1.000 0.045 0.068 0.426 0.251
100 5 20 9 D3 100 5 20 9 0.200 0.043 0.315 0.503 1.000 0.133 0.147 0.480 0.296
100 5 22 15 100 5 22 15 0.200 0.044 0.317 0.207 1.000 0.140 0.250 0.325 0.275
100 5 46 15 100 5 46 15 0.200 0.093 0.320 0.243 1.000 0.153 0.345 0.281 0.296
100 5 48 9 100 5 48 9 0.200 0.097 0.315 0.294 1.000 0.140 0.213 0.376 0.291
100 5 64 15 100 5 64 15 0.200 0.129 0.322 0.197 1.000 0.147 0.176 0.294 0.276
100 5 64 9 100 5 64 9 0.200 0.129 0.315 0.149 1.000 0.133 0.176 0.391 0.285
200 10 128 15 200 10 128 15 0.100 0.064 0.314 0.115 1.000 0.117 0.136 0.130 0.218
200 10 135 9 D6 200 10 135 9 0.100 0.084 0.318 0.428 1.000 0.087 0.139 0.200 0.254
200 10 50 15 200 10 50 15 0.100 0.025 0.317 0.111 1.000 0.110 0.130 0.147 0.212
200 10 50 9 200 10 50 9 0.100 0.025 0.318 0.130 1.000 0.087 0.127 0.212 0.222
200 10 84 9 200 10 84 9 0.100 0.042 0.313 0.124 1.000 0.083 0.200 0.231 0.238
200 10 85 15 200 10 85 15 0.100 0.043 0.315 0.121 1.000 0.107 0.176 0.143 0.223
200 20 145 15 200 20 145 15 0.050 0.073 0.313 0.124 1.000 0.072 0.096 0.133 0.209
200 20 150 9 D5 200 20 150 9 0.050 0.093 0.315 0.386 1.000 0.043 0.055 0.228 0.238
200 20 54 15 200 20 54 15 0.050 0.027 0.314 0.119 1.000 0.070 0.102 0.124 0.200
200 20 55 9 200 20 55 9 0.050 0.028 0.315 0.115 1.000 0.045 0.226 0.230 0.233
200 20 97 15 200 20 97 15 0.050 0.049 0.315 0.118 1.000 0.073 0.116 0.123 0.206
200 20 97 9 200 20 97 9 0.050 0.049 0.314 0.116 1.000 0.045 0.078 0.206 0.212
200 40 130 9 D4 200 40 130 9 0.025 0.088 0.316 0.342 1.000 0.023 0.165 0.183 0.243
200 40 133 15 200 40 133 15 0.025 0.067 0.314 0.131 1.000 0.038 0.067 0.118 0.201
200 40 45 15 200 40 45 15 0.025 0.023 0.314 0.115 1.000 0.038 0.046 0.135 0.190
200 40 45 9 200 40 45 9 0.025 0.023 0.316 0.113 1.000 0.023 0.122 0.216 0.212
200 40 90 9 200 40 90 9 0.025 0.045 0.314 0.117 1.000 0.023 0.116 0.221 0.216
200 40 91 15 200 40 91 15 0.025 0.046 0.317 0.112 1.000 0.037 0.075 0.131 0.198

stored in .def format that is easier to maintain and use

by researchers. Hence we adopted instances created for MS

Project to more generic form.

It led to remove the summary tasks that are specific for MS

Project .mpp format. Summary tasks are used to group atomic

tasks into more complex (i.e. task called ’development’ could

be split to some atomic tasks: database structures creation,

development of business logic and development of user inter-

face). However, MS Project allows to use summary tasks as

predecessors for others. Therefore we multiplied precedence

relations by copying them from predecessor’s summary task

to all of tasks included by this summary one. As a result

new Dx instances have been created. Furthermore, some tasks,

represented as summary ones, have been removed from the

project. To be consistent with previous works, we keep names

of those files the same. Those files are provided with additional

description explaining the difference in number of tasks and

precedence relations between file name and file content.

Adjusted dataset instances with Dx suffix have smaller num-

ber of tasks. Number of precedence relations is significantly

bigger in all Dx instances. Roughly describing, it is more

than twice precedence relations as in former instances, while

number of tasks has been decreased in all instances in about

20% (about 20 tasks for instances with 100 tasks and 40 for

instances with 200 tasks).

We have also presented in Tab. II the values of pro-

posed complexity estimations. Finally, the overall complexity

measure, as an aggregation value of complexity estimations

components has been presented. Based on the overall com-

plexity value, the most complex projects in scheduling point

of view has been highlighted by bold. The overall complexity

measure has been computed according to the Eq. 14. Changing

weights of complexity estimations components would affect

the final complexity value for each dataset instance. Hence,

the complexity of each project could be different depending

on priorities set by project manager.

In our approach all universality estimations values are equal

to 1. It is because we made an assumption that every resource
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TABLE III
COMPARISON OF RESULTS OBTAINED FOR GREEDY ALGORITHM, SIMPLE HEURISTICS, ACO [14] AND HANTCO [14] FOR VARIOUS OPTIMIZATION

MODES FOR CALENDAR–CONSTRAINED DATASET INSTANCES (.mpp).

Dataset instance
DO CO

Heuristic Greedy ACO HAntCO Heuristic ACO HAntCO
Days Cost Days Cost Days Cost Days Cost Days Cost Days Cost Days Cost

100 10 26 15 37 126361 38 119336 32 124687 31 126216 85 70326 85 70326 85 70326

100 10 27 9 D2 38 44309 38 43438 34 44999 33 42199 129 26323 129 26323 129 26323

100 10 47 9 41 142759 40 135161 36 143100 34 140865 145 90992 145 90992 145 90992

100 10 48 15 36 135534 44 120664 33 133062 33 133495 85 87187 85 87187 85 87187

100 10 64 9 39 113124 43 117993 35 110643 33 113774 121 62102 121 62102 121 62102

100 10 65 15 40 152955 43 140782 35 150294 32 149185 98 106296 98 106296 98 106296

100 20 22 15 25 117493 24 112135 20 120949 19 123642 86 55240 87 55240 87 55240
100 20 23 9 D1 32 53154 32 50279 32 52119 23 53358 119 30104 121 30107 117 30104

100 20 46 15 28 138270 29 133739 25 138565 24 138568 75 68899 75 68899 75 68899

100 20 47 9 21 129160 28 140626 21 124817 18 134312 131 55197 131 55197 131 55197

100 20 65 15 32 110503 34 118569 27 109831 27 108991 69 57085 69 57085 69 57085

100 20 65 9 25 127149 24 124291 23 130934 21 126659 114 59736 114 59736 114 59736

100 5 20 9 D3 57 40539 55 40958 50 41029 53 40811 167 30164 167 30164 167 30164

100 5 22 15 63 119266 77 128354 60 119434 60 119158 86 109111 86 109111 86 109111

100 5 46 15 75 202238 80 202607 67 204110 67 204730 125 184409 125 184409 125 184409

100 5 48 9 72 193383 78 196893 62 191712 62 191888 130 175225 130 175225 130 175225

100 5 64 15 71 141407 66 141882 62 144972 61 143956 141 109091 141 109091 141 109091

100 5 64 9 71 102439 67 107014 61 102777 61 101297 173 72848 173 72848 173 72848

200 10 128 15 71 180812 78 198378 62 178264 60 178375 159 134425 143 136551 143 136551
200 10 135 9 D6 216 105593 216 93426 216 99375 186 103561 256 71986 274 72036 270 71986
200 10 50 15 66 189660 75 183673 63 191856 62 190956 167 84308 167 84308 167 84308

200 10 50 9 66 251158 70 250732 65 250075 64 250850 318 105198 318 105232 318 105198

200 10 84 9 70 224121 66 222976 69 226666 66 222655 338 117543 316 117754 318 117543

200 10 85 15 65 304277 68 301357 61 306949 62 302064 215 195820 215 195820 215 195820

200 20 145 15 36 275983 46 277097 36 278199 35 272504 158 143497 152 143688 158 143497

200 20 150 9 D5 183 92821 183 95667 186 91461 177 92567 337 51496 296 51678 345 51496
200 20 54 15 37 295786 41 290656 39 299993 34 298822 125 161412 131 161614 125 161412

200 20 55 9 37 230150 37 232766 38 231094 36 223879 332 70057 250 72176 332 70057

200 20 97 15 49 290399 69 346527 42 280951 42 277860 171 156951 169 157202 171 156951

200 20 97 9 35 273378 43 282379 37 275819 35 278797 169 98480 150 99901 169 98480

200 40 130 9 D4 112 101879 112 90907 112 94488 108 104965 214 46133 205 48419 216 46275
200 40 133 15 24 276456 23 279170 27 281933 24 279073 155 97345 131 99329 144 97345

200 40 45 15 31 260738 32 269623 25 248717 23 256687 213 87955 161 91010 213 87955

200 40 45 9 22 270758 23 276416 26 273632 25 270428 334 77236 179 94142 315 82192
200 40 90 9 24 290028 20 294909 26 287694 24 298340 285 80732 142 96312 247 84038
200 40 91 15 19 249909 35 250843 25 257927 23 241492 184 86476 132 88616 184 86476

has the same number of different skills and this is also the

maximal number of potential skills covered by resource, used

in normalization. If we decided to make the number of skills

covered by resource various, depending to given resource, then

the universality estimation values would not be always equal

to 1.0.

B. iMOPSE Solution Validator

We released also an additional tool to validate generated

solutions in case of preserving all constraints defined in MS–

RCPSP. Such validator is available on the iMOPSE project

website3. Validator checks whether all tasks have any resource

assigned (assignments validation), final schedule is conflict–

free (conflicts validation), any task having predecessors is set

to be started after all its predecessors would be finished (prece-

dence relations validation) and whether any task has resource

assigned that is capable of performing it (skill validation).

Validator shows not only the validation results but also the

quality the validated solution – its duration measured in hours

and cost measured in some currency units. If some validation

rules are broken, they are shown to end–user.

Validator is compatible with .def project definition format.

For further information how to use the validator, please refer

3http://imopse.ii.pwr.edu.pl

to documents related with the tool – User’s Manual or Case

study – available on iMOPSE Platform.

VII. EXPERIMENTS AND RESULTS

The main goal of conducted experiments was to link and

compare both (.mpp [14] and .def based) approaches, consid-

ering the impact of calendar restrictions.

We decided to use simple duration– and cost– oriented

heuristic [20], greedy algorithm and compare them with ACO

and HAntCO approaches described in [14]. Furthermore,

greedy algorithm and simple heuristics have been used to

schedule .def dataset instances.

However, proposed heuristic and greedy approaches for

cost optimization turned out to become the same method.

Therefore, presented results are divided into main two parts

regarding optimization modes: duration optimization (ωτ = 1)

and cost optimization (ωτ = 0). Each of those main part is also

divided for three parts in cost optimization (heuristic, ACO,

HAntCO) and four parts in duration optimization (heuristic,

greedy, ACO, HAntCO).

Table III presents the obtained results for both optimization

modes using both proposed methods (simple heuristic and

greedy algorithm). It also contains results obtained by ACO

and HAntCO approaches described in detail in [14]. This
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table presents optimization results for dataset instances with

calendar restrictions (.mpp).

Greedy algorithm is a method that works iteratively. In every

step of greedy scheduling, one task is added to the schedule.

The decision, which task to which resource should be assigned

in given algorithm step is made based on the current partial

schedule. In other words: in a given step, currently best task–

to–resource assignment option is chosen and the next step is

performed until all tasks would be scheduled. Classical greedy

algorithm assumes possibility to analyse not only current state

of the partial schedule, but also to investigate several further

steps. In that approach combinations of several tasks are

analysed and the best one, containing given number of tasks–

to–resource assignments is selected and added to the partial

schedule. However, in our approach we discuss only current

schedule state, omitting the analysis of several assignments.

Therefore, number of steps of proposed greedy algorithms

would be always equal to the number of tasks in a project.

For duration oriented optimization mode, greedy algorithm

analyses which task should be added to make the partial

schedule the shortest. For cost-oriented optimization mode, the

criteria of selecting tasks bases on the cost of the assignment

given task to given resource. For every task, various resources

are analysed to be assigned, and the cheaper one is chosen.

In cost-oriented optimization mode, both greedy algorithm

and simple heuristic (Resource Salary based [20]) works

according to the same schema, described above. However, for

the duration–oriented optimization, heuristic and the greedy

algorithm differs in details. In the greedy algorithm task is

assigned to given resource and then added to the partial sched-

ule then conflicts are fixed and finally the project duration

is computed. In simple heuristic (Successors List Size based

[20]) firstly the resource that would be the earliest free (not

assigned to any task) is selected. Then task is assigned to this

found task while its start time is set just after then end of the

last of tasks previously assigned to given resource. It allows to

build feasible schedule without the necessity of fixing conflicts

as the method is the resource conflict–free.

Taking into account results gathered in the Tab. III we can

conclude that for duration optimization method, the HAntCO

outclassed other methods, provided the best results in 28 of 36

cases (78%). ACO turned out to be the best method for 6 cases

(16%), while greedy gave best results in 3 of 36 cases (8%)

and heuristic was the most suitable in 2 of 36 cases (6%).

For cost optimization method, simple heuristic gives the

best result for almost all of dataset instances (34/36, 94%).

However, for remaining two instances heuristic also provided

solution with the smallest cost, but the schedule duration was

bigger than for other method (HAntCO). For most of the

instances (32/36, 89%) HAnt-CO provided the same, best re-

sult than obtained from heuristic. ACO–approach provided the

same, best results in 18/36 (50%) cases. The most interesting

fact for cost optimization is that ACO provided best results

mostly for dataset instances containing 100 tasks - 17/18 cases

(94%) and only once for dataset instances containing 200 tasks

(6%).

In the Tab. IV we compiled the summary of obtained

best results for classical optimization methods - heuristics

and greedy algorithm for instances not regarding calendar

restrictions (.def ). It can be also found in the iMOPSE website.

As we are oriented to use .def format in further research,

obtained project schedules are measured by hours rather than

days as it has been so far, in .mpp format. Obtained results

stand as a benchmark for further research when using .def

format. On the other hand, Tab. III is still regarded as a

benchmark for methods working on .mpp format.

TABLE IV
SUMMARY OF BEST OBTAINED RESULTS FOR DATASET INSTANCES NOT

REGARDING CALENDAR CONSTRAINTS (.def ).

Dataset instance
Heuristic CO Heuristic DO Greedy CO

Hours Cost Hours Cost Hours Cost

100 10 26 15 728 71616 316 125073 370 130315
100 10 27 9 D2 1184 26771 334 44319 646 42984
100 10 47 9 1224 92771 310 144840 549 162642
100 10 48 15 766 88794 325 138845 344 139761
100 10 64 9 1028 63279 324 117759 533 124897
100 10 65 15 831 108239 285 152669 426 173754
100 20 22 15 756 56151 162 121561 353 98621
100 20 23 9 D1 1219 30643 247 52436 617 63210
100 20 46 15 639 70061 231 142962 394 140994
100 20 47 9 1114 56190 179 130612 390 119462
100 20 65 15 582 58134 298 111130 310 125081
100 20 65 9 964 60954 174 127260 408 147952
100 5 20 9 D3 1408 30728 523 40976 625 38725
100 5 22 15 723 111189 537 120039 630 121369
100 5 46 15 1054 187623 658 207810 693 212261
100 5 48 9 1092 178346 580 196221 779 191888
100 5 64 15 1195 111388 574 146661 640 149635
100 5 64 9 1506 74199 567 109518 597 101062
200 10 128 15 1217 139149 537 179335 780 213091
200 10 135 9 D6 2581 73207 1079 105604 1426 105196
200 10 50 15 1414 86008 549 190555 763 190981
200 10 50 9 2681 106986 536 251903 817 239238
200 10 84 9 2702 119500 589 231457 999 232937
200 10 85 15 1813 199585 545 314599 706 346573
200 20 145 15 1331 146303 293 280623 480 280774
200 20 150 9 D5 3024 52542 1232 94355 1930 116179
200 20 54 15 1054 164142 306 299677 488 322627
200 20 55 9 2809 71262 280 233960 999 276513
200 20 97 15 1491 159680 347 294938 680 324041
200 20 97 9 1515 100421 304 279894 816 301723
200 40 130 9 D4 2038 47050 586 104261 1710 121485
200 40 133 15 1282 99266 183 285299 512 270201
200 40 45 15 1807 89642 267 266970 616 269754
200 40 45 9 2781 79979 198 273818 821 218708
200 40 90 9 2405 82177 173 292873 963 300258
200 40 91 15 1560 88233 179 250005 519 278582

Results obtained in the Tab. IV show that SLS [20] heuristic

provides better results in DO mode in all of 36 dataset

instances. It clearly shows that SLS heuristic is definitely better

optimization method than greedy algorithm in this problem.

However the project definitions are compatible to each

other between .def and .mpp formats, there are some small

differences in cost result in CO, using the same method. It

is because of the adjustment made when transferring .mpp

to .def format. For the sake of simplicity, task’s duration in

.def has been rounded up to the integer values. It lead to the

differences, because cost of performing project is a sum of

each task’s performance cost. While task’s performance cost

is computed as a multiplication of task duration and assigned

resource’s salary. As a result of rounding up, cost of each

task has increased slightly, even though the same resource is
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assigned to it. Therefore the overall cost is slightly bigger for

solutions obtained for .def files.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper some novel difficulty indicators for instances of

Multi–Skill Resource–Constrained Project Scheduling Prob-

lem have been presented. Furthermore the extended dataset

has been presented and suggested as a benchmark for this

problem, as no other benchmark dataset can be found that

satisfies proposed constraints. Furthermore, those instances

have been scheduled using greedy algorithm, to provide an

initial platform for comparing results obtained by various

researchers.

Proposed complexity estimations stand some first step in

project scheduling data analysis. Guessing the project com-

plexity could be helpful in parameters’ tuning for various

optimization methods. As more complex / difficult to schedule

project is, the optimization process would potentially last

longer for the same parameter configuration than for other

instances. Hence, the decision maker could decide to change

the parameters, e.g. by decrease number of method iterations.

We managed to make those observations sure in our EA–based

approach, where building schedule for the project with suffix

D2 generally lasts longer than for the project with suffix D1.

The goal of presenting the dataset instance generator is

to allow and encourage other researchers to focus on the

problem and possible solutions and methods we propose. We

still believe there is a lot to investigate and research. What is

more, the dataset instance format we propose is very common

in many industries, as the MS Project is a common standard.

We are also on the point of investigating approaches concen-

trated to different multi–objectiveness handling methods. Most

of them we analyse are based on Pareto–front (like NSGA-II

[22], [17] or other methods). One of the goals is to find a

way how to provide a set of non–dominated results to the

project manager, to delegate the matter of making decision

which of those proposed solutions is the best, according to the

specificity of the company it regards. E.g. in some industries

the aim is to finish the project as soon as possible while in

some others the most important is to perform it in the cheapest

way. Still we would like to give the choice from a pool of some

solutions.
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[19] Skowroński M. E., Myszkowski P. B., Kwiatek P., Adamski M., Tabu
Search approach for Multi-Skill Resource-Constrained Project Schedul-
ing Problem, Annals of Computer Science and Information Systems
Volume 1, Proc. of the 2013 Federated Conference on Computer Science
and Information Systems, pp. 153-158, 2013.
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