
Measurement methodology of TCP performance

bottlenecks

Andrzej Bąk and Piotr Gajowniczek

Institute of Telecommunications

Warsaw University of Technology

Nowowiejska 15/19, 00-665 Warsaw, Poland

email: bak@tele.pw.edu.pl

Michał Zagożdżon

Orange Labs

Orange Polska S.A.

Obrzeżna 7, 02-679 Warsaw, Poland

email: michal.zagozdzon@orange.com

Abstract—Transmission Control Protocol (TCP) is still used by
vast majority of Internet applications. However, the huge increase
in bandwidth availability and consumption during the last decade
has stimulated the evolution of TCP and introduction of new
versions that are more suited for high speed networks. Many
factors can influence the performance of TCP protocol, starting
from scarcity of network resources, through client or server
misconfiguration, to internal limitations of applications. Proper
identification of the TCP performance bottlenecks is therefore
an important challenge for network operators. In the paper we
proposed the methodology for finding root causes of througput
degradation in TCP connections based on passive measurements.
This methodology was verified by experiments conducted in a live
network with 4G wireless Internet access.

I. INTRODUCTION

Since the foundation of the Internet the vast majority of net-

work data is transmitted using Transmission Control Protocol

(TCP). TCP underlies many ‘traditional’ Internet applications

such as web browsing, email, bulk data transfer etc., but also

the relatively new ones, such as HTTP adaptive streaming that

is quickly becoming the preferred method for Over-The-Top

video delivery. All this makes the TCP performance analysis

one of the most important research areas of the Internet

networking. Since the beginning of TCP’s public use in 1989 a

lot of research effort was devoted to improve its performance,

and the protocol itself has evolved significantly.

The early TCP version used RTO (Retransmission Time-

Out) timer to recover from packet loss which was inefficient

even on low speed links. The TCP Reno/NewReno version

[1] introduced fast retransmit & recovery mechanism that

improved the TCP performance in presence of packet loss.

For a long time the TCP Reno was a de-facto standard

widely deployed in the Internet. However, the significant

increase in network capacity observed during the last decade

has stimulated introduction of new TCP congestion control

algorithms that are more suited for high speed links, such

as Fast TCP [2], BIC [3], STCP [4], CUBIC [5] [6] [7],

HTCP [8] [9] [10], HSTCP [11] [12], Compound TCP [13],

TCP Westwood [14] etc. The new versions of Linux operating

system do even allow switching between different congestion

control algorithms without the need to recompile the kernel.

This paper presents the methodology of finding the root

causes of throuput degradation in TCP connections on the

base of passive measurements obtained from probes capturing

traffic on the network links. This methodology combines the

detection of TCP source application type (greedy vs non-

greedy) [15] with estimation of coefficients related to trans-

mission effectiveness that are based on the RFC 6349 [16].

The proposed approach is supported by results obtained from

measurements conducted in the live 4G mobile network of

Orange Poland.

II. SOURCES OF TCP PERFORMANCE BOTTLENECKS

TCP uses congestion and flow control mechanisms to con-

trol the transmission rate of the sender process by limiting the

amount of data that can be transmitted without waiting for

acknowledgement (called the window size). Changing trans-

mission rate in response to receiver’s limitation in processing

incoming data (flow control) is based on the current size of

the receiver’s window (awnd). This value is advertised to TCP

sender process in segments that are sent as acknowledgements

to the received data. Too small values of the receiver’s win-

dow can however negatively affect the performance of the

TCP protocol. Therefore, in newer implementations it can be

adapted algorithmically depending on the characteristics of the

transmission path (such as throughput and delay).

Congestion control is done by algorithms that aim to ‘sense’

the bottleneck throughput on the transmission path and adapt

the transmission rate to this limit. The sender process keeps

the state variable called the congestion window (cwnd) that

works in a similar way as advertised window, except that

its value is set by an algorithm running on the sender side.

Usually, the sender starts with a small value of cwnd and

tries to increase it each time when an acknowledgement for

the previously sent data segment is received. The initial phase

of aggressive cwnd increase is called a slow start - the cwnd

is increased by 1 segment after each acknowledgement which

leads to exponential growth in the amount of transmitted data.

After encountering data loss the cwnd shrinks; the following

increase is usually slower and TCP sender enters the phase

called congestion avoidance. There are many different con-

gestion control algorithms and their variants - for an excellent

review see [17]. However, they all share the same purpose - to

maximize the usage of capacity available on the transmission

path while also minimizing the probability of data loss.

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 1149–1156

DOI: 10.15439/2015F284
ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1149

For the TCP sender process the actual window size is the

minimum of the advertised receiver’s window (awnd) and its

own congestion window (cwnd). After sending full window of

data, TCP must stop transmission and wait for acknowledge-

ment. The acknowledgement related to the earliest outstanding

segment that was transmitted will start to arrive after the RTT

(Round Trip Time) between the sender and the receiver. Each

arriving acknowledgment will trigger transmission of the next

segment of data awaiting in the output buffer. Hence, the TCP

process can send at most min(cwnd, awnd) of data per round

trip time cycle and the instantaneous TCP throughput can be

roughly estimated as:

TCPth =
min(cwnd, awnd)

RTT
(1)

TCP window that is too small may severely limit the

performance of TCP connection. In order to obtain high

throughput, TCP must be able to fill the network pipeline

with data that will keep the network busy. Therefore, the TCP

sender’s window size must be greater than the bandwidth delay

product:

min(cwnd, awnd) ≥ C ∗RTT (2)

where C denotes the capacity available for TCP connection

on the tranmission path.

There are various ways to set the values of awnd and

cwnd. As it was noted earlier, especially for cwnd there is

a number of different congestion control algorithms that react

differently to the potential congestion detected either by the

Retransmission Time-Out (a timer on sender’s side) or by

receiving a duplicate acknowledgement (Dup-ACK) from the

receiver. Both events lead to segment retransmission and cwnd

window scaling, and appear in result of changes in the network

environment, such as increased load, change in traffic mix,

change in link parameters etc.

Another factor limiting the TCP performance is related to

sizing TCP socket buffers on both sides of the connection.

The problem of buffers being too small is especially visible

in the networks with high bandwidth delay product (the max-

imum buffer space for TCP sockets depends on the operating

system in case of typical Internet hosts). The receiver’s socket

buffer size can significantly influence the performance of TCP

connection (receiver’s buffer can limit the sending rate of the

TCP source). Therefore, proper configuration of the sockets’

buffers is very important to assure high TCP throughput [18].

Modern operating systems introduce automated algorithms for

tuning the TCP buffers [19] [20] [21] [22] [23].

Similar case is related to sizing the buffers of network

devices [25]. TCP sender can emit data in bursts (up to the

current cwnd window size). If network buffers are too small,

the inevitable data loss will prevent the congestion window

from growing and TCP connection will not be able to ramp

up the transmission rate to available capacity. It is generally

advised that network buffers should be at least twice the size

of the network bandwidth delay product to assure high TCP

throughput.

Another factor influencing the achievable TCP throughput

is related to packet reordering [26] [27] that can be introduced

for example by parallel packet processing in network de-

vices. Receiving out-of-order segments can result in duplicate

acknowledgements being sent and interpreted as data loss.

This may in turn lead to unnecessary retransmissions, cwnd

reduction and throughput degradation. On the receiver’s side

frequent segment reordering may lead to extensive buffering

and potential reduction in receiver’s window size.

Finally, the throughput limitation can lie within the applica-

tion itself. For example, in adaptive HTTP streaming the client

requests chunks of video file from the server with frequency

related to the encoding rate, even if the available capacity

would allow transmitting data faster. In this context, TCP

sources can be divided into greedy (always trying to utilize

the most of available transmission capacity) and non-greedy

(where rate is limited by internal behavior of the source).

This classification is utilized in the methodology discussed

in section III-B.

III. DETECTION OF THE ROOT CAUSES OF TCP

PERFORMANCE DEGRADATION

In this section we describe the algorithm for detecting the

root causes of the TCP performance bottlenecks using passive

TCP measurements.

A. Network measurements

Following the recommendations from RFC 6349, it is

advised to perform the MTU (Maximum Transmission Unit)

discovery procedure (see [28] for reference) before starting

measurements, to avoid unwanted packet fragmentation.

We assume that the TCP traffic is monitored near the sender

(at the client or at the server, depending on the direction of

the transmission). The monitoring point must be close enough

to the sender in order to precisely estimate the RTT parameter

which is required by the proposed bottleneck detection algo-

rithm. The monitored network traffic is saved by the probes

in .pcap format for further processing.

The throughput of the TCP connection TCP th can be

estimated directly from data captured by passive probes as

a ratio of data sent and acknowledged during a measurement

period to the length t of this period:

TCPth =
ACK(t)

t
(3)

ACK(t) denotes the highest acknowlegement sequence num-

ber observed up to time t. It can be obtained directly from the

headers of the captured TCP segments.

Due to the nature of congestion and flow control mecha-

nisms, the TCP sender needs some time before it can reach

the desired transmission speed. This time may vary from few

seconds to even hours depending on the network RTT, band-

width, TCP congestion and flow control algorithms etc. For

example, during congestion avoidance phase the TCP source

needs approximately 30 seconds to increase the transmssion

rate by 10 Mbps if the network RTT is 200 ms. Therefore,

1150 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

for proper estimation of the TCP throughput the measurement

time should be long enough. The following approach is

suggested to assure that. Assuming some interval ∆t and

threshold c, seek for time instant t that satisfies the following

condition:

∣

∣

∣

∣

TCPth(t+∆t)− TCPth(t)

∆t

∣

∣

∣

∣

< c (4)

The above formula approximates the derivative of TCP

rate estimator. The measurement time should be long enough

to assure that the TCP rate estimator does not significantly

change over time. In the experiments presented further in this

paper we assumed ∆t = 1s and c = 100 KB/s2.

In addition to the typical traffic traces captured at measure-

ment points, the proposed methodology requires running some

additional measurements to calculate certain TCP performance

indicators (described in section III-D). The first measurement

is related to estimation of reference (bottleneck) bandwidth

CREF . This can be achieved by probing the network bot-

tleneck with UDP traffic. There are many variants of this

approach - for examples see [29] or [30]. In our measurements

we have used the latter: a train of 50 UDP packets was sent to

the receiver and the available capacity was measured simply

by dividing the total length of the received UDP packets by the

total reception time (under the condition of no packet loss).

To verify if the buffers are properly dimensioned, the back

to back frames test should be also performed. This test consists

of sending the specified number of UDP packets with the

maximum possible rate and repeating it while increasing the

number of transmitted packets in each trial. The maximum

batch size that can be sent without observing packet loss is

an indirect measure of buffer size on the transmission path of

the stream.

B. Categorizaton of TCP sources

TCP throughput depends on the amount of data the TCP

source emits during a single RTT period, as this value is

controlled by the congestion and flow control mechanism.

At any time instant the amount of outstanding data (sent

but not acknowledged) is limited to min(cwnd, awnd). As

was explained in section II the TCP source can send at

most min(cwnd, awnd) bytes per RTT period. Therefore,

the amount of outstanding data in relation to the RTT is an

indicator of instantaneous TCP performance.

If the amount of outstanding data is less than what cwnd

and awnd parameters allow, it means that the sender is not

fully exploiting the available transmission capacity. The cause

may be related to internal sender faults (such as application

software or hardware issues, CPU overload etc.), but more

often is a result of the consent behavior of TCP source (that

may not require more throughput, as it is in case of typical

streaming applications where transmission speed is related

to the bitrate of the video stream). In the opposite case (if

the outstanding data is close to the cwnd or awnd), the

bottlenecks are introduced either by the network or by the

receiver.

Summing up the above discussion, the TCP source may fall

into one of the following categories:

• Internally limited

Non-greedy source i.e. a TCP connection that is not

fully exploiting the capacity available in the network; the

amount of outstanding data is significantly lower than the

cwnd and awnd windows would allow.

• Receiver limited

TCP source whose transmission rate is limited by the

receiver; the amount of outstanding data is close to the

awnd and also lower than the cwnd.

• Network limited

TCP source whose transmission rate is limited by the

network, i.e. by the available capacity, packet loss rate or

network RTT; the amount of outstanding data is close to

the cwnd.

In order to classify the TCP source into one of the above

categories we need the following parameters: outstanding data,

RTT, receiver’s window size and congestion window size. The

first three parameters can be easily obtained from the packet

traces captured by the passive probes. However, the congestion

window is not directly measurable as it is an internal parameter

of the TCP stack at the sender and cannot be directly inferred

from the TCP traces. In order to cope with this problem we

follow the approach of [15]. The TCP connection state is

emulated using the recorded TCP traces to recover the cwnd

parameter. We also recover the value of RTO to distinguish

between retransmissions induced by the fast retransmit phase

and those due to the timer expiration. This is required to

precisely track the changes in the cwnd parameter.

C. Emulation of TCP connection state

The internal state of TCP congestion control mechanism is

defined by three main parameters: size of congestion window

(cwnd), threshold for switching between slow start and con-

gestion avoidance phase (ssthr), and the retransmission timer

(RTO). These parameters are essential for emulation of the

TCP connection state.

After a 3-way handshake procedure, the TCP process enters

the established state and the TCP sender starts to transmit data.

The sender sets its cwnd parameter to some initial value and

begins transmitting in the slow start mode. While in slow start,

TCP adds one segment to the cwnd for each acknowledged

segment, doubling its cwnd with every RTT period. Therefore,

during slow start TCP throughput grows exponentially. The

aim of this phase is to quickly probe the network capacity

and to estimate the optimum window size without heavily

overloading the network.

Slow start phase ends when either the ssthr is reached

or the segment loss is detected. TCP detects segment loss

by two mechanisms: expiration of RTO timer or reception

of duplicate acknowledgements (Dup-ACKs). In the first case

the TCP sender retransmits all outstanding data and enters the

slow start mode again. In the second case, after receiving 3

consecutive Dup-ACKs the TCP sender enters the recovery

phase and employs fast retransmit & recovery mechanism to

ANDRZEJ BĄK ET AL.;: MEASUREMENT METHODOLOGY OF TCP PERFORMANCE BOTTLENECKS 1151

recover the lost segment. In contrary to the RTO mechanism,

only one segment is retransmitted. The assumption behind this

approach is that in this case only one segment is most likely

lost and there is no need to follow the go-back-N protocol and

retransmit all outstanding data.

The sender sets the ssthr to the half of the cwnd window

before the segment loss, sets the cwnd to ssthr+3 segments

and retransmits the segment pointed by Dup-ACKs. Each time

another Dup-ACK arrives, the sender adds one segment to the

cwnd (inflating the congestion window). The aim of this is to

sustain the TCP throughput (as Dup-ACK indicates that the

network is still able to deliver packets).

In the recovery phase, the TCP sender is allowed to transmit

new data as indicated by cwnd. The recovery phase ends

when all outstanding data from the beginning of this phase

is acknowledged. When leaving the recovery phase the TCP

sets the cwnd back to the ssthr and enters the congestion

avoidance mode.

In TCP Reno/NewReno versions, during congestion avoid-

ance phase one segment is added to the cwnd in each RTT

period. This means that the cwnd grows linearly over time,

increasing TCP throughput more conservatively then in slow

start phase. However, it may take long time to recover TCP

throughput in the network with high bandwidth delay prod-

uct. Therefore, new congestion control mechanisms introduce

more aggressive approaches for increasing the cwnd during

congestion avoidance phase.

In order to track the sender’s cwnd we emulate the behavior

of the TCP protocol. To obtain high accuracy of the emulation

we used the original source code of the Linux kernel version

3.18 [24]. The H-TCP congestion control algorithm code was

used as this protocol was employed in our test setup. The code

was taken from the following TCP modules:

• tcp_input.c - estimation of the RTO algorithm;

the following function was used:

– tcp_rtt_estimator

• htcp.c - estimation of the H-TCP congestion control

algorithm; the following functions were used:

– measure_achieved_throughput

– htcp_cong_avoid

– tcp_slow_start

– htcp_alpha_update

– htcp_beta_update

– htcp_recalc_ssthresh

Each time the data or acknowledgment segment is observed,

we run an appropriate piece of the Linux kernel code. When

the acknowledgement segment with higher sequence number

is observed we calculate the RTT sample (the time difference

between reception of acknowledgement segment and observa-

tion of data segment for the given sequence number at the

monitoring point) and run the tcp_rtt_estimator() function

to update the value of the RTO timer.

Next, the measure_achieved_throughput() and

htcp_cong_avoid() functions of the H-TCP algorithm

are called to update the internal state of the congestion

control algorithm. The htcp_cong_avoid() function runs

the algorithm for slow start or congestion avoidance phase

(depending on whether the cwnd is less or greater then

ssthr) and updates the cwnd value accordingly.

When 3 duplicate acknowledgements are observed we as-

sume that TCP enters the recovery phase of the fast retransmit

& recovery mechanism. We call the htcp_recalc_ssthresh()
to update the ssthr value according to the H-TCP algorithm.

Each time next DupACK segment is observed, we inflate the

cwnd by one segment (as specified by NewReno algorithm).

When all outstanding data at the beginning of the recovery

phase is acknowledged, the code for regular acknowledgments

is executed (emulating congestion avoidance phase). When

out-of-sequence data packet is observed that was not acknowl-

edged and the time since transmission of the original segment

is greater than the RTO, we assume retransmission due to the

timer expiration. The cwnd is reset to the initial value and the

slow start code is executed by the htcp_cong_avoid() func-

tion. When the cwnd exceeds ssthr, the htcp_cong_avoid()
function executes the H-TCP congestion avoidance code again

for each observed acknowledgement segment.

To validate the implemented TCP state tracking one can

compare the outstanding data calculated from measurements

with estimated values of the cwnd (as the amount of outstand-

ing data can approximate the cwnd, especially for greedy TCP

sources).

For automated detection whether the TCP connection is

network, receiver or internally limited, we have implemented

the algorithm proposed and described in detail in [15]. Unlike

in the original algorithm, we do not however divide the TCP

flow into chunks and categorize each chunk individually, but

rather do the categorization for the TCP connection as a whole.

An example based on network measurements is shown in

Fig. 1 and Fig. 2 for H-TCP-based source. Fig. 1 shows

the comparison of outstanding data with the value of cwnd

estimated by emulation of the H-TCP congestion control

algorithm using Linux kernel source code.

Fig. 1. H-TCP cwnd emulation

The estimated cwnd almost exactly matches the amount of

measured outstanding data. Similar results are obtained for the

estimation of RTO parameter for the same source (Fig. 2).

1152 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 2. H-TCP RTO estimation

The following figures present analogous results for the

TCP Reno/NewReno based source. The accuracy of cwnd

emulation is shown in Fig. 3, RTO estimation in Fig. 4.

Fig. 3. TCP Reno cwnd emulation

Fig. 4. TCP Reno RTO estimation

D. TCP performance metrics

Based on RFC 6349, the following metrics are recom-

mended to test the TCP effectiveness.

• TCP Throughput Ratio W . This metric is calculated as

a percentage ratio of achieved throughput TCPth to the

reference throughput CREF and should approach 100%

for good connections.

W =
TCPth

CREF

∗ 100 (5)

• TCP transmission effectiveness E. It is a percentage ratio

of non-retransmitted data to the total amount of data sent

during the measurement period and should also approach

100% for effective connections.

E =
D −DRET

D
∗ 100 (6)

DRET denotes the amount of data retransmitted during

the measurement period.

• Buffer Delay T . To calculate this parameter one needs

the reference delay RTTMIN calculated beforehand from

measurements taken when the network load is minimal.

The tcptrace tool can be used for this task. Alternatively,

RTTMIN may be approximated by the minimal RTT

observed during the actual measurement period. Denoting

an average RTT observed within the measurement period

as RTTAVG, the Buffer Delay can be calculated as:

T =
RTTAVG −RTTMIN

RTTMIN

∗ 100 (7)

As the name implies, this parameter is related to buffer

size in the network nodes and can be interpreted as a

measure of buffer load imposed by the measured TCP

connection (mostly related to the buffer at the bottleneck

link). If we assume that buffer size B conforms to the

following formula:

B > 2 ∗ CREF ∗RTTMIN (8)

then the Buffer Delay should be greater than 200%.

E. Root cause analysis

For the root cause analysis we use the emulation of the

TCP sender state derived from passive measurements and the

metrics of TCP connection performance calculated on the base

of measurements. The general algorithm is depicted in Fig. 5.

Fig. 5. General algorithm for root cause analysis

In the proposed approach the first task is to check if the

throughput is not limited by awnd. This can be done by

analyzing the behavior of the outstanding data using emulation

of the TCP sender state. If it is the case, then it is advised to

ANDRZEJ BĄK ET AL.;: MEASUREMENT METHODOLOGY OF TCP PERFORMANCE BOTTLENECKS 1153

check the TCP connection metrics. Low T (low buffering) and

low W (low bandwidth utilization) together with large T (lack

of retransmissions) support the hypothesis that the advertised

awnd value is indeed limiting the sender’s performance. If

however the T and W are relatively large, the true limitation

may lie in the network itself and the awnd value reached by

the sender is large enough for high connection efectiveness.

If neither awnd nor cwnd (estimated from emulation of

TCP sender state) is the limiting factor then the achieved

throughput results from the internal sender constraints (non-

greedy source). Low value of Buffer Delay may additionally

support this hypothesis.

If the cwnd imposes the limit on achieved throughput, it is

advised to check TCP connection metrics. High effectiveness

of transmission together with large Buffer Delay confirm that

TCP throughput is limited by a bottleneck link in the network.

However, if the level of observed retransmissions is high (low

E), then the reason behind low throughput may lie in excessive

packet loss in the network resulting e.g. from faults, bad

conditions on wireless access link etc. It has to be noted that

TCP retransmissions occur naturally in result of congestion

control algorithm continuous attempts to fit the transmission

rate to the bottleneck bandwidth, but the excessive level of

retransmissions is suspicious and has to be checked further.

Finally, the case when transmission effectiveness is low but

the packet loss is also low has to be treated as an anomaly

that requires further investigation.

F. Validation of the proposed approach

The proposed approach was validated by conducting mea-

surements in the real network. The measurement setup is

depicted in Fig. 6.

Fig. 6. Measurement setup

Measurements were done in commercial 4G mobile network

of Orange Poland with real user traffic served in the back-

ground. The setup consisted of the UNIX-based web server

connected to the backbone network. The TCP traffic can be

monitored at the server and/or at the mobile device (with

tcpdump). Additionally, two hardware monitoring probes were

installed in the mobile access network. The monitored TCP

traffic was saved in .pcap format for further processing.

We ran a number of tests based on downloading files from

the server to the mobile device. Two types of experiments were

carried out. In the first case the files were downloaded from the

server in a greedy mode. The server was configured to transmit

data with maximum possible rate so that the network available

capacity was the only limiting factor for TCP throughput.

In the second type of the experiment the socket buffer

size at the server was limited below the bandwidth delay

product of the network which is approximately 100 KB

(40 ms RTT ∗20 Mbps CREF). As can be seen from Fig. 7,

the tested TCP connection begins in slow start and within few

seconds the awnd and cwnd parameters reach their maximum

sizes. This is possible due to large network buffers that can

accommodate thousands of packets. After the next few seconds

there is a packet drop (signalled by 3 Dup-ACK segments),

TCP connection retransmits the lost segment and enters the

congestion avoidance phase.

Fig. 7. Network limited TCP connection

While in congestion avoidance the cwnd follows the H-

TCP congestion control algorithms. At 130 sec. time instant

we observe a retransmission due to the RTO expiration. TCP

falls back to the slow start mode and after reaching ssthr

(set to 0.5 of the cwnd before segment loss) it switches

again to congestion avoidance phase. Notice that the estimated

cwnd follows the amount of measured outstanding data very

accurately.

Network limited TCP connection
min rtt [ms] = 23.5
avg rtt [ms] = 462
avg out data [B] = 1103400
avg awnd [B] = 1275910
avg cwnd [B] = 1114465
measured throughput [Mbps] = 15.8
outstanding data/rtt [Mbps] = 19
fast retransmits = 6
RTO expirations = 5
TCP efficiency (E) [%] = 99.98
buffer delay (T) [%] = 1866

According to the proposed TCP throughput measurement

methodology, the tested TCP connection is clearly network

limited. The outstanding data follows the cwnd closely while

the TCP efficiency E is high which means no excessive packet

loss inside the network. The buffer delay T is also very high

indicating that TCP connection is transmitting a lot of data

to the network (see text in the relevant frame). The network

capacity CREF , measured with the UDP protocol immediately

before starting the test transfers (in the same conditions that

influenced maximum throughput achievable in the location

1154 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

during the experiment), is about 18 Mbps. Therefore, the

TCP connection in this case utilizes almost 90% of available

capacity (TCP throughput ratio W is also high).

In the second experiment the socket buffer of the receiver

was limited to about 60 KB. In this case the outstanding

data follows the awnd (see Fig. 8) indicating that the TCP

connection is limited by the client.

Fig. 8. Receiver limited TCP connection

This reasoning is also justified by low value of buffer

delay T which is now below 100%, meaning that TCP is not

filling the network with data (see frame). The achieved TCP

throughput is about 12.7 Mbps.

Receiver limited TCP connection
min rtt [ms] = 17.5
avg rtt [ms] = 32.4
avg out data [B] = 50956
avg awnd [B] = 58616
avg cwnd [B] = 57615
measured throughput [Mbps] = 12.7
outstanding data/rtt [kbps] = 12.5
fast retransmits = 5
RTO expirations = 0
TCP efficiency (E) [%] = 99.99
buffer delay (T) [%] = 85

IV. CONCLUSIONS

The paper presents the methodology for identifying the

root cause of the TCP connection performance bottlenecks.

We have used the Linux kernel source code to implement

the algorithm for estimation of the internal TCP connec-

tion state. Such approach allows to infer the dynamics of

the TCP congestion window which is otherwise unavailable

from passive TCP monitoring. The knowledge of the internal

TCP state (cwnd, ssthr, RTO) is essential in understanding

the observed behavior of the TCP connection and allows

identifying the source of the TCP throughput limitations. In

our approach it is used together with analysis of the TCP

performance metrics proposed in RFC 6349. Such combined

approach, complimented with additional active measurements

(probing available capacity, measuring bottleneck buffers) can

be helpful in tracing down network problems related to TCP-

based applications.

REFERENCES

[1] T. Henderson, S. Floyd, A. Gurtov, Y. Nishida, RFC 6582: The NewReno

Modification to TCP’s Fast Recovery Algorithm

[2] D.X. Wei, Cheng Jin; S.H. Low, S. Hegde, FAST TCP: Moti-

vation, Architecture, Algorithms, Performance IEEE/ACM Transac-
tions on Networking, vol.14, no.6, pp.1246-1259, Dec. 2006, doi:
10.1109/TNET.2006.886335

[3] L. Xu, K. Harfoush, I. Rhee, Binary increase congestion control for

fast, long distance networks Proc. of IEEE INFOCOM, vol. 4, pp.
2514–2524, March 2004

[4] T. Kelly, Scalable TCP: improving performance in highspeed wide area

networks Computer Communications Review, vol. 32, no. 2, April 2003.

[5] H. Jamal, K. Sultan, Performance Analysis of TCP Congestion Control

Algorithms Int. Journal of Computers and Comm., Issue 1, vol. 2, 2008

[6] S. Ha, I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP

variant SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 64-74, doi:
10.1145/1400097.1400105

[7] D.J. Leith, R.N. Shorten, G. McCullagh, Experimental evaluation of

Cubic-TCP Proc. of PFLDnet, 2008

[8] G. Armitage, L. Stewart, M. Welzl, J. Healy, An Independent H-

TCP Implementation under FreeBSD 7.0 – Description and Observed

Behaviour ACM SIGCOMM Computer Communication Review, vol.
38, no. 3, July 2008

[9] D. Leith, R. Shorten, H-TCP: TCP for high-speed and long-distance

networks Proc. of PFLDnet, 2004

[10] D.J. Leith, R.N. Shorten, Y. Lee, H-TCP: A framework for congestion

control in high-speed and long-distance networks Proc. of PFLDnet,
2005

[11] S. Floyd, RFC 3649: HighSpeed TCP for large congestion windows

[12] S. Floyd, RFC 3742: Limited Slow-Start for TCP with Large Congestion

Windows

[13] K. Tan, J. Song, Q. Zhang, M. Sridharan, A compound TCP approach

for high-speed and long distance networks Proc. of INFOCOM 2006,
pp.1-12, 2006, doi: 10.1109/INFOCOM.2006.188

[14] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, R. Wang, TCP

Westwood: Bandwidth estimation for enhanced transport over wireless

links Proc. of ACM MOBICOM, 2001, pp. 287–297

[15] M. Schiavone, P. Romirer-Maierhofer, F. Ricciato, A. Baiocchi, Towards

Bottleneck Identification in Cellular Networks via Passive TCP Moni-

toring Lecture Notes in Computer Science, vol. 8487, pp. 72-85, 2014

[16] B. Constantine, G. Forget, R. Geib, R. Schrage, RFC 6349: Framework

for TCP Throughput Testing

[17] A. Afanasyev, N. Tilley, P. Reiher, L. Kleinrock, Host-to-Host Conges-

tion Control for TCP, IEEE Communication Surveys and Tutorials, vol.
12, no. 3, pp. 304–342, July 2010

[18] R.S. Prasad, M. Jain, C. Dovrolis, Socket Buffer Auto-Sizing for High-

Performance Data Transfers Journal of Grid Computing, 2003, vol. 1,
Issue 4, pp 361-376

[19] J. Semke, M. Mathis Mahdavi, Automatic TCP Buffer Tuning, Computer
Communication Review, ACM SIGCOMM, vol. 28, no. 4, October 1998

[20] M.K. Gardner, W.-C. Feng, M. Fisk, Dynamic Right-Sizing in FTP

(drsFTP): Enhancing Grid Performance in User-Space Proc. of IEEE
Symposium on High-Performance Distributed Computing, July 2002

[21] M. Mathis, R. Reddy, Enabling High Performance Data Transfers Jan.
2003; available at: http://www.psc.edu/networking/perf tune.html

[22] M. Fisk, W. Feng, Dynamic Right-Sizing: TCP Flow-Control Adaptation

Proc. of the 14th Annual ACM/IEEE SC2001 Conf., November 2001

[23] E. Weigle, W. Feng, A Comparison of TCP Automatic Tuning Tech-

niques for Distributed Computing Proc. of the 11th IEEE International
Symposium on High Performance Distributed Computing, 2002

[24] Linux kernel 3.18, https://www.kernel.org/

[25] M. Hirabaru, Impact of Bottleneck Queue Size on TCP Protocols and Its

Measurement, IEICE Trans. of Commun., vol. E89-B, no. 1, Jan 2006

[26] Yi Wang, Guohan Lu, Xing Li , A Study of Internet Packet Reordering

Lecture Notes in Computer Science, vol. 3090, pp. 350-359, 2004

[27] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, D. Towsley, Measure-

ment and Classification of Out-of-Sequence Packets in a Tier-1 IP

Backbone IEEE/ACM Trans. Netw. 15, 1 (Feb 2007), 54-66. doi:
10.1109/TNET.2006.890117

[28] M. Mathis, J. Heffner, RFC 4821: Packetization Layer Path MTU

Discovery

ANDRZEJ BĄK ET AL.;: MEASUREMENT METHODOLOGY OF TCP PERFORMANCE BOTTLENECKS 1155

[29] N. Hu , Li (Erran) Li, Z. Morley Mao, P. Steenkiste, J. Wang, Locating
Internet Bottlenecks: Algorithms, Measurements, and Implications
SIGCOMM Comput. Commun. Rev. 34, 4 (August 2004), 41-54, doi:
10.1145/1030194.1015474

[30] N. Hu, P. Steenkiste, Evaluation and Characterization of Available
Bandwidth Probing Techniques IEEE Journal on Selected Areas in
Communications, vol. 21, no. 6, August 2003

1156 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

