
Unsupervised Extraction of Graph–stream Structure

for Purpose of Knowledge Retrieval and

Information Fusion

Radosław Z. Ziembiński

Poznan University of Technology

Faculty of Computing

Piotrowo 3, 60–965 Poznan, Poland

Email: radoslaw.ziembinski@cs.put.poznan.pl

Abstract—Technologically inevitable introduction of various
kinds of sensors to our life resulted in the production of huge
amount of data delivered as streams. An improper acquisition of
information may lead to errors caused by mixing observations
coming from different processes threads. Some remedy can
bring a proper representation of information. Hence, this paper
introduces a graph–stream structure representing performance
of complex multi–threaded process. The proposed network rep-
resentation can separate information describing multiple threads
and allows for modeling causal relationships between them. It
gives separated and segregated information opening opportunity
for development of qualitatively better and simpler knowledge
retrieval algorithms. Further, the paper delivers a method for
this representation extraction from multivariate data stream. It
would be done by a clustering algorithm particularly designed
for this purpose and evaluated quantitatively and qualitatively
on example sets of data.

I. INTRODUCTION

A
RECENT decade revealed even more profoundly how

modern life interleaves technology and habits. Miniatur-

ization gained momentum when the processing performance

and storage capacity (in relation to price) reached a threshold

allowing for inexpensive execution of complex algorithms

used in knowledge retrieval and machine learning. Then, it

became possible to adjust functionality and interface of the

device to the user expectations in semi–automatic manner

using machine learning methods.

Modern smart devices have to handle big amounts of data

and provide feedback to the user in a reasonable time. Services

quality usually depends on the performance of the knowledge

retrieval. Unfortunately, the deadline put on the processing

time is rather difficult to met by many categories of data min-

ing algorithms developed for stationary data sets. Particularly

it happens, if the search space exponentially depends on the

input size.

Another difficulty may arise if the observed process is a

complex one (e.g., multi–threaded) but the sensor used to

make observations is relatively simple. Then, the acquired

data stream contains information which is a superposition of

observations coming from different objects. Direct handling

by common motifs finding or patterns mining algorithms may

be difficult in the case. Simply speaking, we cannot identify

Fig. 1. The structural context “flattening” after the serialization of informa-
tion.

particular objects and separate them easily for the mining

purpose. Thus, even slight lack of synchronization in the

recorded objects behavior can reorder parts of data. It may

lead to low quality results whose application poses risks. An

example ambiguity introduced by such distortions is illustrated

on Fig. 1, where a small shift in events order changes historical

circumstances. In the context of information fusion, it is more

difficult to benefit from synergy in observations made by

different kinds of tools. It happens, because direct comparison

of context is not possible after the “collapse” of information

collected from differently synchronized threads.

The confidence in the processing can be improved if the

simple sequential representation will be replaced by a vessel

crafted particularly for the purpose of knowledge retrieval.

Coming from such motivation, this paper provides study of the

research on a new graph–stream data structure. An introduced

container is a network graph capable of storing separated

information about episodes observed in the process. Its nodes

carry segregated information about events while edges can

describe complex causal relationships between them. Accord-

ing to author expectations this structure should solve some

from above issues. Mainly, these related to unreliable context

construction where events mixture describing different threads

try to define causal relationships.

Looking at literature, knowledge retrieval focuses partic-

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 53–60

DOI: 10.15439/2015F288

ACSIS, Vol. 6

c©2015, PTI 53

ularly on the patterns mining in data streams. The context

separation problem can be partially solved, if data are con-

verted to chronologically ordered set of sequences. Then, each

sequence may describe a single subprocess. Such method

can be supported by various data mining algorithms [1],

[2], [3], [4], [5]. Even, if this approach seems to be better

from the single stream approach, this representation still loses

information about conditional dependency between constituent

sequences. A similar approach has been used also in the

context of multivariate data sets [6].

The conditional dependency can be preserved, if sequential

representation would be replaced by relevant multidimensional

data structure. Particular interest raises graphs as natural ex-

tension of sequential representation on multidimensional ones.

However, ways to construct graphs from sequential data can

be very diverse. The mining of the graph–based representation

has been studied for stationary and non–stationary graphs e.g.,

[7], [8], [9]. Unfortunately, exploration of general graphs is

computationally expensive since verification of graph isomor-

phisms is non–polynomial [10] (but sub–isomorphisms is NP–

complete [11]). These considerations lead to the conclusion

that the compromise solution should be sought in specific

families of graphs e.g., directed acyclic graphs. In this spirit,

there have been proposed methods for mining partial orders

in sequential data [12], [13].

This paper contributes to the state of art by an introduction

of the graph–stream structure and algorithm for its extraction

from observations collected by set of sensors. It has a fol-

lowing outline. A next section introduces the graph–stream

definition. Then, the paper delivers the extraction algorithm

which can be used to obtain the graph–stream from the stream

of observations. A following section contains a presentation of

results from the algorithm performance evaluation on artificial

data sets. Reported experiments have involved finding frequent

episodes in the graph–stream and measurement of their auto-

correlation. Remaining part focuses on conclusions.

II. GRAPH–STREAM DEFINITION

The proposed data structure is intended to store information

about observations of a complex process. It is assumed that

the observed process includes few subprocesses that produce

stimulus to sensors simultaneously. Alternatively, the pro-

cess is observed by different sorts of sensors from various

perspectives at once. In a consequence, the acquired data

stream usually contains a mixture of information generated

by observed subprocesses. Introduced structure and algorithm

should keep it separated for the purpose of the following

processing.

It was already mentioned that the graph–stream is the

customized directed acyclic graph. Let’s begin its introduction

from a definition of some basic carriers of information. In

our case, the processed data stream is described by a set of

nominal or continuous attributes A.

Subsets of A determine informational content of graph

nodes. Node nptype,i(pts, Ai) ∈ N is a unit of information

collected at one moment. It is described by type ptype, event

Fig. 2. The graph–stream data representation.

occurrence time–stamp pts and attributes’ values Ai ∈ A.

Directed edge ei,j(ni, nj) ∈ E connects nodes ni and nj and

represents causality relation between nodes. It uses the symbol

→.

Above definitions lead to formulation of the directed acyclic

graph. A directed cycle is a sequence n1 → n2, ..., nk−1 →
nk ∈ N of nodes collected along a path made from directed

edges where n1 ≡ nk. GDAG(N,E) is a directed graph where

the cycle is absent.

The graph–stream uses distinct types of nodes to describe

static and dynamic properties of observed objects:

• State node nS,i(pts, Ai) ∈ N collects all values of

attributes describing state of a particular observed object

in the process. This node is used to represent a boundary

state of the episode just after its creation or deletion.

However, it can be produced from the interaction, too.

• Transformation node nT,i(pts, Ai) ∈ N describes a

modification of a single observed object. However, it is

self modification without external influences. This node

represents the transformation event.

• Interaction node nE,i(pts, Ai) ∈ N describes an observed

incident involving an interaction between objects from

different threads. At this moment episodes that went into

the interaction event collapses and produce a new non–

empty set of episodes. It emerges from this definition, that

node binds causally set of interacting episodes to their

products. This node has only the time–stamp attribute.

There is no constraint in this proposal shaping attributes

distribution between state and transformation nodes. It is

only a suggestion to keep boundary states information in

54 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

state nodes and operations or changes of the episode state

in transformation nodes.

Above definitions have to be complemented about con-

straints imposed on edges. The interaction node joins episodes

by causal relation. According to graph–stream’s structural

assumptions it can connect only a non–empty set of deletion

nodes to a non–empty set of creation nodes. It is many–

to–many relation reflecting causality dependencies between

episodes. Relationship between transformation and state nodes

have simpler interpretation. They can be connected only

by single ingoing and outgoing edges. Hence, they form a

sequence beginning from the creation node, lasting through

transformation nodes and ending with the deletion node. It is

called the episode (body).

Finally, let us define the graph–stream GST (N,E) as a

set of episodes S connected by interaction nodes according to

above constrains imposed on edges. Illustrations of introduced

structures are drawn on Fig. 2 at different levels of details.

III. GRAPH–STREAM EXTRACTION METHOD

A. Episodes identification

Algorithm proposed for the graph–stream extraction con-

verts data stream in three subsequent phases. Due to complex-

ity and size of the algorithm code it is difficult to describe all

details. Hence, this description primarily put attention on the

most important design features. It should give sufficient hints

about algorithm structure to understand its construction. For

matter of convenience, the algorithm will be called GATAC

(GrAph–sTreAm extraCtor).

The first phase of the processing is handled by a dedicated

on–line clustering algorithm. Its overall pipeline for processing

new data objects and performing the graph–stream extraction

presents Fig. 3.

Fig. 3. The process of the graph–stream extraction.

Proposed implementation of the algorithm uses a fixed set

of attributes A. However, it does not enforce their full usage

for each processed data object. This clustering is performed

within groups of data objects described by the same sets of

attributes (subsets of A). In a consequence, this method can

construct the graph–stream from separate sources of data even

if they share some or neither attributes.

Let’s now describe life–cycle of a single data object pro-

cessed by this algorithm. At the beginning, values of data

object attributes are normalized. It is a necessary initial step

because later a similarity function aggregates partial similar-

ities calculated for compared attributes. The normalization is

done according to intervals approximating attributes domains

ranges (updated on–line). Then, incoming data objects are

sorted in B according to values. If the main buffer appears

to be full then the oldest data object is removed from B to

make a free space for the new one (step 1, Fig. 3).

After placing the data object in B, the algorithm begins

sending messages to objects in the neighborhood to determine

the set of the most similar neighbors. Messages that are

circulating between data objects are stored in two structures:

a message queue and replies sorted list. Those from new data

objects are stored in message queues of neighbors. In this

implementation all structures storing messages have fixed sizes

to delimit the memory usage. Limits prevent from accepting

too many messages from other data objects at the cost of

neighborhood identification accuracy (step 2).

The procedure is performed in several subsequent iterations

to determine the neighborhood of specified size. By this way

the algorithm performs iteratively the neighborhood search in

the breadth–first manner.

σo(o1, o2) = (δd(o1, o2) ∗ δt(o1, o2)
∗δl(o1, o2))

1/3 − 1
where:

δd(o1, o2) = 1 + (
∑

i=1..|Ao1,o2
| |o1.A[i]

−o2.A[i]|)/|Ao1,o2 |
δt(o1, o2) = 1 + (|Ao1,o2 | ∗ |o1.tstamp

−o2.tstamp|)/(|B| ∗ |B.tspan|)
δl(o1, o2) = 2− (o1.labels ∩ o2.labels)

/(o1.labels ∪ o2.labels)

(1)

Afterward, the algorithm browses all non–empty message

queues and prepares replies to their senders. They contain

information about similarities between pairs of data objects.

The range of replies is delimited by a decreasing skip counter.

In a consequence, only the closest neighbors are visited by

replies sent to new data objects.

Equation 1 is used to calculate similarity between two data

objects. If it is equal to 0, then objects are identical. The

similarity computation takes into account three properties of

data objects pair i.e., difference of attributes values δd(o1, o2),
timestamps δt(o1, o2) and labels δl(o1, o2). Variables and

constants used in the equation have following explanation:

set of common attributes for pair of objects Ao1,o2 ⊆ A,

data object’s time stamp o.tstamp, main buffer B, time span

B.tspan (calculated on–line from timestamps of stored data

object’s), labels associated to data object o.labels. Labels are

nominal values that can be used for further differentiation of

data objects by describing e.g., data source properties.

RADOSŁAW ZIEMBIŃSKI: UNSUPERVISED EXTRACTION OF GRAPH-STREAM STRUCTURE 55

After the sender data object (the new one) received all

replies from close neighbors, a swapping procedure begins to

filter out some of them. This operation is performed to preserve

smoothness of the cluster distribution. In the result, data

objects from subspaces containing different densities become

better separated, even if they adjoin. It prevents from merging

sparse clusters to denser ones (if the density proportion is

above the parametrized threshold) and excludes noise.

If the replies list becomes empty, then the new data object

receives a new cluster identifier. However, the new cluster

buffer is created only if the second object appears with the

same identifier. Hence, a standalone object does not invoke

creation of the cluster buffer and new thread. It makes the

processing more efficient by eliminating noise.

At this moment, data objects are moved to the cluster buffer

assigned to a single thread that can produce one or more

subsequent episodes (step 3). An event signaling the cluster

creation is thrown if its population passes the parametrized

threshold. The threshold ensures that the statistics from data

distribution in the cluster buffer are robust.

The newly added data object can merge two or more clusters

if both are located in its neighborhood (step 4). The algorithm

maintains alteration counters assigned to cluster buffers. If

their values become greater than threshold ΘC , then the algo-

rithm begins a breadth–first introspection of the main buffer. It

is performed according to neighborhood information stored in

replies lists of objects. This procedure rewrites all identifiers

of data objects from clusters that become connected since the

previous introspection. The new cluster identifier value is taken

from the most populous contributor to preserve the strongest

supported thread. This operation throws interaction event, if

the merger occurs.

If the main buffer is full, then the algorithm removes the

data object according to FIFO rule. Removal procedure also

modifies the alteration counter associated to the cluster. So,

it may trigger the breadth–first introspection of the main

buffer, too. If it happens, a fragmentation of the cluster

may be revealed. Then, each new fragment of the original

cluster receives distinct new cluster identifier, while the most

populous one retains the previous one. Additionally, a relevant

interaction event is produced.

The cluster buffer describing episode may be discarded

if its support terminates. It happens, after it has not been

supported for a time longer than average “time distance”

between data objects already stored in the cluster multiplied

by the parametrized threshold. Such termination procedure

facilitates clusters supported at different rates by input data.

Moreover, it is robust to a slow drift of the support frequency.

B. Detection of transformation events

The detection of transformation events is necessary to

construct the episode body. It uses the cluster tracing mech-

anism to detect significant changes reflecting shifts in data

distribution. At this stage, it can be done relatively simply

due to the fact that the clustering phase binds each episode to

the life–cycle of a single cluster.

The data drift tracing begins just after sending of the

interaction event related to the episode creation. After this

event, the algorithm can calculate plausible statistics and send

following transformation events notifying about changes in the

data distribution. To prevent from unnecessary recalculation of

statistics, the algorithm uses modification counters assigned to

clusters. The counter is incremented each time when new data

object is added or removed from the cluster buffer. Statistics

become recalculated if it passes ΘC .

Algorithm 1 Procedure for transformation events detection.

Require: Set of clusters - C, set of modified statistics - M ,

mean threshold - Θmean, standard deviation threshold -

Θmean, density threshold - Θdens

Ensure: Generated data object - o
for all c ∈ C do

if c.modificationsCounter > ΘC then

c.modificationsCounter = 0
M = c.calculateStatistics(Θang,Θmean,
Θstd,Θdens)
if M <> ∅ then

c.updatePreviousStatistics(M)
c.fireTransformationEvent()

end if

end if

end for

In the current implementation, calculated statistics include

means and standard deviations calculated for each attribute

alone. Additionally, the event may include average density

of the cluster. Their calculation is performed according to

Alg. 1. Current calculated values are compared to previously

determined state ps and the reference state rs reported in the

preceding event. If statistics pass adequate thresholds (mean,

deviation and density) for attributes, then the procedure sends

the transformation event with the current state (or optionally

information about changes). The step also involves replace-

ment of modified statistics from the reference state by current

ones. Hence, supporting procedure detects drift occurring for

linear changes in data statistics. It reduces output information

by preventing from a flood of following events delivering

information about linear shifts in data distributions.

The construction of the graph–stream is a simple step.

Events contain full information about predecessors, successors

and episodes affiliation inherited from cluster buffers. It is used

for building a graph–stream just by extending a set of episodes

tails by incoming events (step 5 and 6). At interaction,

participating episodes are closed and bound to result in a form

of newly created tails of following episodes. For this purpose,

the proposed algorithm uses a map of episodes M that allows

for fast manipulation of them.

C. Computational complexity and scalability of the extraction

algorithm

The computational cost of the algorithm depends on data

dimensionality, sizes of the main buffer and cluster buffers.

56 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
PARAMETERS OF THE GRAPH EXTRACTION ALGORITHM.

Parameter: |B| |C| Θρ Θσ ΘC ΘT

Value: 500 40 2 2 16 2

Parameter: Θmean Θstd Θdens

Value: 0.1 1.5 1.5

The data in the main buffer are sorted thus the complexity is

bound to O(|A| ∗ log(|B|)), where |B| is the size of the main

buffer. Its size determines the assignment of new data objects

to cluster buffers and data distribution “forgetting”. On the

other hand, size of each cluster buffer is relatively small. It

has to be sufficiently large for accountable statistics calculation

(few dozens of data objects). Data objects update procedure

requires O(|A| ∗ |B|) steps for maintaining messages and

replies. However, the calculation of statistics requires a double

loop on each cluster’s data set. Therefore, the complexity is

O(|A| ∗ |C|2) where |C| is the size of the cluster buffer.

Fortunately, statistics are recalculated only if the cluster’s

modification counter becomes greater than the threshold ΘC .

Hence, the rate of statistic recalculation is delimited by 1/ΘC .

The construction cost of the graph–stream is in order of

O(|A| ∗ |C| ∗ log2(|M |)) if all cluster buffers would send

messages to neighbors.

Memory costs of the algorithm have been delimited by fixed

buffers sizes. It refers to the main buffer |B|, clusters (buffers)

|C|, both messages queues attached to data objects and

used for the neighbors finding. The described implementation

prefers the control on memory usage over the results quality.

This design assumption allows its deployment on mobile or

embedded devices. Of course, it is feasible until small buffer

sizes would immerse the processing quality below acceptable

level.

IV. EXPERIMENTAL EVALUATION

The purpose of experiments was to evaluate the process

description stored in the extracted graph–stream. Described

experiments were conducted on data obtained from real and

artificially generated streams. Different kinds of experiments

were performed to measure the algorithm’s performance effi-

ciency and its extraction accuracy. During them, a quality has

been performed by measurement of episodes autocorrelation.

The process of autocorrelations identification can be related

to the problem of finding frequent item sets in nominal data

stream [14], [15].

The extraction algorithm was evaluated in experiments with

default settings on Table I. The main buffer size was set to

|B| = 500 and clusters buffers sizes were delimited to |C| =
40.

A. Description of data sets

Artificial data sets are generated by procedure that produces

data objects describing a group of interacting clusters. There

are three modes of the generator described in Alg. 2. The

data generation algorithm selects the cluster that produces

Algorithm 2 Synthetic data generation algorithm.

Require: Clusters radixes - crad, time step - cstep and vari-

ability - tvar, data object dimensionality - |A|, algorithm

mode - mode, number of clusters - cno
Ensure: Generated data boject - a
{make a timeshift}
iteration = iteration+ 1
timeStep = randomUniform(cstep, cstep+ tvar)
phase = phase+speed∗timeStep; sPhase = sin(phase)
oidx = iteration%cno
if mode == 3 then

cobj = (int)(phase/PI)
if random(0, 1) ¡ abs(sPhase) then

oidx = cobj%cno
end if

end if

{select cluster identifier}
eidx = oidx/2 + 1
dirId = (oidx%2 == 0)?(eidx) : (eidx)
{calculate attributes’ values}
for all d ∈ 1...|A| do

dir = (dirId&(1 << d))?(1) : (−1))
dir = dir ∗ (1.0− crad)
if mode == 1 then

disp = randomNormalDist(0, crad)
a[d] = (dir ∗ sPhase+ disp)/2 + 0.5

else if mode == 2 then

disp = randomNormalDist(0, 3 ∗ (crad+0.0001) ∗
absT (sPhase))
a[d] = (dir ∗ crad ∗ 2 + disp)/2 + 0.5

else if mode == 3 then

disp = randomNormalDist(0, crad)
a[d] = (dir ∗ crad ∗ 5 + disp)/2 + 0.5

end if

end for

return a

data objects according to round–robin. Then, the generation

is performed by distorting the cluster’s center with a random

value from Gaussian distribution.

The described generator has three modes of operation. For

mode = 1, the generator forms hyper–spherical clusters with

movement driven by sinusoid. They are moving forth and

back, from edges to the center of hyper–box. If mode = 2
then it generates pulsating clusters. This process produces data

objects intermixed in the middle of the hypercube in repeatable

intervals. The final one is generated for mode = 3. It generates

“blinking” clusters that gain and lose support periodically. In

this case, clusters do not change their position or size but their

density oscillates. These generated data streams show Fig. 4.

These distributions represent different kinds of interactions

between observed objects. In the first case, the behavior of

clusters leads to their complete coverage in the middle of the

hypercube. Then, subprocesses become indistinguishable. The

second stream describes subprocesses that interfere partially.

RADOSŁAW ZIEMBIŃSKI: UNSUPERVISED EXTRACTION OF GRAPH-STREAM STRUCTURE 57

mode=1 mode=2 mode=3

Fig. 4. Artificial data streams obtained from the generator.

The interference manifests itself as overlapped distributions. In

the last case, there are no interactions between clusters at all.

Observed subprocesses do not interact and their oscillations

are relatively fast.

B. The processing performance measurement

Measurement of the processing efficiency has been done

on artificial data stream containing 100000 data objects. It

was generated for mode = 1. This experiment was performed

on data streams generated for different clusters numbers at

different dimensionality and processed with various main

buffer sizes.

The conducted experiment included four sub–experiments

from whom results are presented on Fig. 5. The top–left plot of

Fig. 5 contains performance measurement of the graph–stream

extraction algorithm for data of different dimensionality. This

experiment was conducted for a1 : |A| = 12, a2 : |A| = 9,

a3 : |A| = 6, a4 : |A| = 3 and |B| = 500. It can be noticed,

that the number of dimensions have impact on the algorithm’s

iteration performance. It acknowledges the theoretical analysis

of the main buffer and messaging performance. The main

buffer has size |B| and consists of |A| sorted lists. A low

cost of logarithmic access to B is reflected in results. The

top–right plot delivers measurement of the computational costs

for different main buffer sizes. Results were obtained for data

dimensionality |A| = 9 and b1 : |B| = 500, b2 : |B| = 800,

b3 : |B| = 1100 and b4 : |B| = 1400. Impact of main

buffer size on the iteration cost is small because the binary

search is used to get access to sorted objects. For both above

experiments cno was equal to 2. All measurements include

time required to store the produced graph–stream in memory.

It explains slightly increasing costs during the processing.

Bottom plots describe the dependence of the extraction

algorithm performance on data complexity. These experiments

have been performed for stream carrying different number of

clusters in the stream c1, d1 : cno = 2, c2, d2 : cno = 4,

c3, d3 : cno = 6 and c4, d4 : cno = 8. The results were

measured for |A| = 9 and |B| = 500. The bottom–left plot

contains the processing cost measured per iteration, while the

bottom-right one delivers cumulative numbers of generated

events by the algorithm for the graph–stream extraction.

Intensity of all data streams was the same. Therefore, the

frequency of data objects per cluster was lower for streams

delivering more clusters. It can be observed that the costs

of the processing is the greatest for the smallest number of

clusters at cno = 2. This result seems to be counterintuitive but

it is caused by more intense messages forwarding. For a lower

number of denser clusters the count of connections between

data objects is relatively higher. Thus, the cost of handling

communication is higher, too. Results form the bottom–right

plot can be interpret according to intuition since it is clear that

more clusters requires proportionally more events generated to

describe them.

All experiments involving measurement of the performance

were conducted on x64 workstation at clock 3 GHz. Each

measurement was an average from 1000 following iterations.

Microseconds scale oscillations observed on plots are presum-

ably caused by hardware, operating system or C++11 standard

libraries. All experiments have been performed on multi–core

hardware. The affinity of processes to cores changed during

the processing what might promote oscillations.

C. Similarity of episodes

Evaluation of autocorrelation requires a similarity measure

that would allow for mutual comparison of episodes. Similarity

computed for a pair of nodes takes into account differences in

attributes values, the relative occurrence times (in the respect

to timestamps of the episodes heading nodes) and densities.

It is a geometrical mean from above partial similarities. To

calculate partial similarity, attributes values difference dif
is transformed with function exp(−abs(dif) ∗ weight). It

standardizes results by scaling them using weights chosen per

attribute. Then results are averaged and partial similarity of

attributes is computed. The densities and occurrences times are

threated separately as qualitatively distinct entities. But their

differences are also standardized by that weighted exponential

function. Weights help in the similarity function tuning. They

can be used when we need to underscore particular property.

Calculated similarity takes continuous values from 0 to 1. The

value equal to 1 means that nodes are identical and related

events have occurred in the same relative time measuring from

respective episodes heads.

Episodes are evaluated according to fairly complicated pro-

cedure. Initially, pairs of state nodes beginning and terminating

episodes are compared. Then, all possible pairs of transforma-

tion nodes from both episodes are enumerated to calculate

their similarities. Afterwards, pairs are sorted according to

similarity value and there are chosen ones with the greatest

similarities. During this selection, it is forbidden to take two

pairs containing at least one transformation node the same.

In the result, only the strongest set of ties between the pair

of distinct episodes survives selection. The selection is done

58 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 5. The graph–stream extraction process efficiency.

regardless sequential order of transformation nodes in the

episode. Fortunately, the order of nodes is taken into account

elsewhere. Let’s remind that the time–stamp difference is

considered in events similarity calculation. Therefore, a pair

of events occurred at different times in reference to their

episodes heads time–stamps have low similarity and chance

to be selected.

Global similarity is calculated as an average of similarities

obtained from the comparison of pairs state and transformation

nodes. It delivers a normalized result, where an episode

compared to itself would receive the score equal to 1. The

aggregation raises status of state nodes in relation to inner

transformation nodes underscoring importance of border states

of episodes. The introduced similarity function favors episodes

containing the same attributes values in nodes and the same

order of transformation nodes. Therefore, pairs of episodes

that differ in duration would have lower similarity.

D. Autocorrelation of episodes in experiments

Results presentation begins from ones obtained for arti-

ficial data streams. These streams provided data describing

4 dynamic clusters (subprocesses) in 9 dimensions. Heat

maps presents mutual similarities for episodes that belong

to graph–streams and extracted from artificial data sets are

presented on Fig. 6. They show only 200 of the most mutually

similar episodes. Two figures for each graph–stream represent

similarities of episodes (left) and contexts preceding them

(right). Bottom legend contains information about correlation

coefficient value between episodes and their contexts. Episodes

are sorted according to their length (a number of transforma-

tion nodes) and the longest ones are located in the top–right

corner of each heat map.

Fig. 6 reveals existence of similarities between episodes

for periodic processes. There are observable groups of mu-

tually similar episodes that have comparable sizes. They form

“squares” located on the diagonal. They describe different

stages of the subprocess evolution in a cycle and reveal charac-

mode=1

mode=2

mode=3

Fig. 6. Heat maps representing autocorrelation of episodes (the left column)
and their the best contexts contributors (the right column) for artificial data
streams.

teristic lattice patterns inside. It is caused by the fact that data

carry the description of 4 clusters that behave symmetrically.

Thus, episodes describing them have very similar sizes and

find their places in the same “square”. Autocorrelation between

episodes tells about a periodicity in the observed process and

acknowledges the generator properties.

Contributing contexts similarities are weakly correlated to

related episodes. Aside from the artificial set generated at

mode = 2, almost all correlation coefficients are very low.

This suggests that the past context information has to be

analyzed by looking deeper to the past. It is in line to

RADOSŁAW ZIEMBIŃSKI: UNSUPERVISED EXTRACTION OF GRAPH-STREAM STRUCTURE 59

conclusions made for the sequential patterns mining where

frequent elements of the pattern may be separated by many

infrequent elements [1]. However, for some data sets e.g.,

ones generated at mode = 2 the correlation occurs using

this algorithm even for adjacent episodes. Improvement in

the cluster buffer tracing algorithm and casting transformation

event may increase the efficiency of the correlated episodes

finding.

Obtained results acknowledge that the exploration methods

for finding patterns in graph–stream threads have to look

deeper into past contexts of episodes. The “lattice–square” pat-

terns on heat maps prove that the method correctly identifies

episodes from distinct subprocesses. Because all experiments

used the same parameter values therefore we can expect a

further results improvement for algorithm parameters tuned to

properties of particular data stream.

V. CONCLUSIONS

The proposed graph–stream extraction algorithm can pro-

duce directed acyclic graphs describing multivariate and

multi–modal data streams. It has some advantages over com-

monly used sequential representation. In the first place, it can

separate individual subprocesses within the observed complex

process. This feature may be useful when we observe the

process through array of heterogeneous detectors with one sink

of data. Concluding, the data structure proposed in this paper

may contribute in following areas to the state of art:

• It can help to identify undisturbed context of events.

Events from different threads (subprocesses) become seg-

regated and organized in episodes. Such structure is more

robust when it comes to issues with synchronization for

concurrent subprocesses. This allows for building simpler

algorithms for knowledge retrieval and information fu-

sion. This representation does not transform information

stored in attributes. It just makes observations more

understandable for the following processing by better

organization.

• Network structure can be used to model complex causal

relationships between events. Causality can be better re-

flected since DAG can represent relations many–to–many

between dependent episodes. Preservation of attributes

values from the original data stream and exposition

of data dynamism would be useful in observation and

analysis of dynamic processes.

• There are different sorts of nodes for representing in-

teractions, transformations and border states. They form

a grammar of a simple language e.g., like Feynman

diagrams in physics this language is sufficiently capable

to express a description of almost all discrete processes.

• It can lead to novel algorithms better exploring in-

formation about relationships between subprocesses in

the complex process. This makes new opportunities for

episodes clustering, classification, forecasting and cor-

relations mining. In my opinion, a domain related to

correlations mining between subprocesses is particularly

interesting (regarding a subsequent information fusion).

It may lead to new methods of information processing

benefiting from synergy of data retrieved simultaneously

from many qualitatively different sensors.

ACKNOWLEDGMENT

This paper is a result of the project financed by National Sci-

ence Centre in Poland grant no. DEC-2011/03/D/ST6/01621.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. of

the Eleventh International Conference on Data Engineering, ser. ICDE
’95. Washington, DC, USA: IEEE Computer Society, 1995. ISBN
0-8186-6910-1 pp. 3–14.

[2] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu, “Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth,” in ICDE ’01: Proceedings of the

17th International Conference on Data Engineering. Washington,
DC, USA: IEEE Computer Society, 2001, p. 215. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2001.914830

[3] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal,
“Multi-dimensional sequential pattern mining,” in Proc. of the Tenth

International Conference on Information and Knowledge Management,
ser. CIKM ’01. New York, NY, USA: ACM, 2001, pp. 81–88.
[Online]. Available: http://dx.doi.org/10.1145/502585.502600

[4] R. Ziembiński, “Algorithms for context based sequential pattern mining,”
Fundam. Inf., vol. 76, no. 4, pp. 495–510, Dec. 2007.

[5] M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong,
“Mining multidimensional and multilevel sequential patterns,” ACM

Trans. Knowl. Discov. Data, vol. 4, no. 1, pp. 1–37, Jan. 2010.
[Online]. Available: http://dx.doi.org/10.1145/1644873.1644877

[6] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Causal information
approach to partial conditioning in multivariate data sets,”
Comput Math Methods Med., p. 17, 2012. [Online]. Available:
http://dx.doi.org/10.1155/2012/303601

[7] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in Proc. of the 2002 IEEE International Conference on Data Mining

(ICDM02). Washington, DC, USA: IEEE Computer Society, 2002, p.
721. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2002.1184038

[8] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense pattern mining in
graph streams,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 975–984, Sep.
2010. [Online]. Available: http://dx.doi.org/10.14778/1920841.1920964

[9] A. Bifet, G. Holmes, B. Pfahringer, and R. Gavaldà, “Mining frequent
closed graphs on evolving data streams,” in Proc. of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’11. New York, NY, USA: ACM, 2011, pp. 591–599.
[Online]. Available: http://dx.doi.org/10.1145/2020408.2020501

[10] U. Schöning, “Graph isomorphism is in the low hierarchy,” J. Comput.

Syst. Sci., vol. 37, no. 3, pp. 312–323, Dec. 1988. [Online]. Available:
http://dx.doi.org/10.1016/0022-0000(88)90010-4

[11] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.

ACM, vol. 23, no. 1, pp. 31–42, Jan. 1976. [Online]. Available:
http://dx.doi.org/10.1145/321921.321925

[12] H. Mannila and C. Meek, “Global partial orders from sequential
data,” in Proc. of the Sixth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 161–168. [Online]. Available:
http://dx.doi.org/10.1145/347090.347122

[13] R. Gwadera, G. Antonini, and A. Labbi, “Mining actionable partial
orders in collections of sequences,” in Machine Learning and

Knowledge Discovery in Databases, ser. Lecture Notes in Computer
Science, D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis,
Eds. Springer Berlin Heidelberg, 2011, vol. 6911, pp. 613–628.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23780-5 49

[14] J. H. Chang and W. S. Lee, “Finding recent frequent itemsets
adaptively over online data streams,” in Proc. of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’03. New York, NY, USA: ACM, 2003, pp.
487–492. [Online]. Available: http://dx.doi.org/10.1145/956750.956807

[15] M. Deypir and M. H. Sadreddini, “A dynamic layout of sliding
window for frequent itemset mining over data streams,” J. Syst.

Softw., vol. 85, no. 3, pp. 746–759, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2011.09.055

60 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015

