

Abstract— Formal methods offer a great potential for early

integration of verification in the design process. These are based

on theories and mathematical notations that allow the formal

specification of a program and check its implementation. They

offer a global vision and a high-level structure and system

organization. In addition, the software architecture plays a key

role as a pivot point between the requirements of a system and

its implementation. In this paper, we present a formal approach

based on Bigraphical Reactive Systems for specifying and

verifying the main features of the Multi Agent Systems (MAS)

architectures based on the Belief-Desire-Intention (BDI) agent

model. The proposed approach supports both the static and

dynamic aspects of BDI-MAS architectures at different levels of

abstraction. Further, we use automatic proof tool BigMc to

analyze the specifications and verify system properties.

Keywords: Multi-Agent Systems, software architecture description
language, Bigraphical Reactive System, formal specification,
reconfiguration, formal verification, Bigraphical Model Checker.

I.INTRODUCTION

he emergence of large-scale IT networks has given rise

to numerous distributed applications. These

applications require a strong interaction between

different entities distributed on the network that may share

the same resources and the same goals. Several distributed

development models for these applications have been

proposed in the literature. However, the importance of the

issue, is to be convinced of the legitimacy and trust granted

to IT applications. These concerns have led to methods of

development and verification. Lately software systems tend

to be more distributed, open and concurrent. This evolution

of computing has changed the way of thinking but also the

design of such systems. Multi-Agent Systems (MAS) are

particularly suitable for developing these kinds of systems.

However, the diversity and complexity of the basic concepts

that characterize multi-agent systems involve a difficulty in

understanding and designing of such systems.

Formal methods offer a great potential for early

integration of verification in the design process, these are

based on theories and mathematical notations allowing both

to formally specify the program, to check and prove that its

implantation’s compliance with all the properties described

in the specification. This is called proper implementation

with respect to the specification and formally verified

program. Formal methods are recognized by standard

references, so that the seventh and final confidence level of

the Common Criteria [1] is granted to applications built with

them. The awareness of the importance of checking more

carefully the programs and the maturity of tools dedicated to

this task has generated a considerable growth of programs

formal verification in the last decade. Offering a global

vision and a high-level structure and organization of a

system, the software architecture plays a key role as a pivot

point between the requirements of a system and its

implementation.

The diversity of design concerns in general and

particularly in MAS, request support on formal techniques,

which offer enough flexibility and expressiveness to

rigorously specify MAS architecture at both the static and

dynamic level.

In our previous work [2] we proposed a new approach for

modeling and analyzing MAS architectures called BDI MAS

architecture in which Bigraphical Reactive Systems (BRS)

[3] are adopted as a semantic framework to formalize MAS

architectures that are based on the Belief-Desire-Intention

(BDI) agent model [4] which is the most commonly used

approach for representing agent internal state and it also has

been used to build a number of significant real-world

applications (i.e. web applications,...). Therefore, Milner’s

BRS are very suitable to formalize MAS fundamental

architectural aspects and their reconfiguration.

Thus, in this work we argue that in addition to their

graphical aspect and rigorous basis, BRS are capable of

representing both locality and connectivity constituting main

concepts of MAS architecture then we propose our a

bigraph-based model in order to reason about their

properties for that we use the automatic proof tool BigMC to

analyze the specifications and verify system properties

during configuration. The rest of the paper is organized as

follows. In section 2, we introduce Bigraphical Reaction

Systems (BRS) and the automatic proof tool BigMc . Section

3 and 4 present the related works and then our bigraphical

specification of BDI-MAS architecture. The given

T

Model Checking of Multi Agent System Architectures Using BigMC

Ahmed Taki Eddine Dib
Faculty of New Information Technologies and

Communication
LIRE Laboratory, University of Constantine II.

Nouvelle Ville Ali Mendjeli - BP : 67A,
Constantine – Algeria

Email: dibtaki@gmail.com

 Zaidi Sahnoun
Faculty of New Information Technologies and

Communication
LIRE Laboratory, University of Constantine II.

Nouvelle Ville Ali Mendjeli - BP : 67A,
Constantine – Algeria

Email: sahnounz@yahoo.fr

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1717–1722

DOI: 10.15439/2015F300

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1717

formalization approach is verified and validated by the

BigMC tool through examples in section IV. Finally, some

concluding remarks and ongoing work finish the paper.

II.BIGRAPHS AND BIGRAPHICAL MODEL CHECKER

A. Bigraphs

Bigraphical Reactive Systems were initially introduced
by Milner [3] to provide a completely graphical intuitive
formal model capable of representing at the same time
connectivity and locality of distributed entities which is very
close to MAS concepts. The proposal of BRS provides a
model for information systems with mobile placing and
mobile linking, in which real-world pervasive and distributed
systems can be described and analyzed. Further, it provides
the unification of existing process calculi for concurrency
and mobility (such as π-calculus, Petri nets, λ calculus, and
so on) in a simpler way [5].

 Structural Aspects: A bigraph is the combination of two
independent structures place and link graphs. The place
graph represents system entities geographical distribution.
The link graph is a hypergraph representing interconnections
between these entities. Within a BRS, system entities are
represented by nodes and interactions between them are
represented by edges (see Fig. 1.). A node can be dotted with
ports representing connexion points to edges or inner/outer
names.

Each node has a control, which is an identifier belonging
to a set that is called a signature (usually denoted as S). Each
control indicates how many ports the node has, whose
controls are atomic (node empty), and which of the non-
atomic controls are active (node permitting reaction inside)
or passive. The inner names and outers names of a bigraph
indicate connecters to which other bigraphs or roots (i.e.

regions) can be connected. Such interconnection is possible
only if the outer name of a bigraph or root is equal to the
inner name of another bigraph. Sites represent holes into
which a root or node can be nested. They are considered as
an abstraction indicating the presence of other elements.
Definition [3]: a bigraph is formally defined by G = (V, E,

ctrl, GP,GL) ∶ I → J, I = <m, x>, J = <n, y>, where:
- V and E represent finite sets of nodes and edges
respectively.

- ctrl ∶ V → K a control map that assigns a control to each
node. The signature K is a set of controls.
- GP and GL are Place and Link graphs respectively.
- I and J represent inner and outer names (interfaces)
respectively of the bigraph G.

Fig. 1 The anatomy of bigraphs

Bigraph can also be expressed by term language. In [5]
Milner axiomatises the structure of bigraphs, to prove that

the theory is complete, the algebra of bigraphs structure is
surprisingly simple, the primary operations and elements
used in this paper are summarized in Table 1.

TABLE 1. TERMS LANGUAGE FOR BIGRAPHS.

Term Signification

U || V Juxtaposition of roots

U | V Juxtaposition of nodes

U ◦ V Composition

U . V Nesting(U contains V)

/x . U U with outer name x replaced by an edge

x /y Connection inner names y to outer name x

 Dynamical aspects: Bigraphs structural dynamics is

expressed through a BRS (Bigraphical Reactive System)

consisting of a category of bigraphs and a set of reaction

rules; each one defines a redex bigraph to be transformed to

a reactum bigraph. Formally, a reaction rule takes the

form(R,R’,n) where R : m → J is a redex, R’ : m’ → J is a

reactum and n : m’ → m is a map of ordinals [3]. The

category of all bigraphs and their reaction rules constitute a

BRS.

B. Bigraphical Model Checker (BigMC)

The use of formal methods allows rigorous verification of
computer systems. There exist a number of formal
verification techniques, model checking [6, 7] is one of many
and BigMC (Bigraphical model checker) [8] is one of the
few model checking tool devoted to the verification of
models encodes as a Bigraphical Reactive System. BigMC
ensures that the system’s behavior meets the expected
properties. This verification is fully automated and consists
in exploring all the possible cases. The result of this analysis
is to confirm that each property is verified, or not. In the
latter case, and this is one of the main interests of this tool,
the model checker returns a counter-example. Fig. 2 shows
the full BigMC bigraph term:

Fig. 2 BigMC terms language

Using the grammar in Fig. 2, we can specify a model M

which may be a composed of another model or an expression

E or both. In turn an expression E can be composed of nodes

1718 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

(being active or passive and assigning an arity to each one of

them), reaction rules (whose form is as follows T -> T) and

properties denoted by P (which are expressed as a logical

formula). In this work, we will use the BigMC grammar to

specify our proposed BDI-MAS architecture model in order

to check and validate some properties.

III.MULTI AGENT SYSTEMS BIGRAPH BASED SPECIFICATION

To better understand the multi agent system development,

we have reviewed the literature related to Architecture

description languages (ADLs) and those of MAS. Therefore,

in our previous work [2] we have captured the fundamental

concepts to better ensure the specification, evolution and the

verification of MAS architecture. This modeling has studied

both the structural and dynamic dimension of multi-agent

systems architectures. These two dimensions (structural and

dynamic) will be developed in this section to show how the

proposed framework based on the BRS as a formal notation,

express the multi-agent architectures.

At a high level of abstraction, multiagent system is

considered as a set of computing entities (a set of agents)

that are distributed across multiple sites, and are often

referred to as nodes. In Table 2, we summarize fundamental

elements intervening in a BDI-MAS architecture.

TABLE 2. CORRESPONDENCE BETWEEN MAS AND BRS

CONCEPTS.

MAS architectural element Bigraph
element

Agents, Beliefs module, Desires module,
 Intention module, plans.

Node

Physical or logical location the agents Root

Various type of links between the different
elements

Edge/Hyper
Edge

Abstract elements Site

A. Structural description of the BDI-MAS model

Our BDI-MAS architecture model structure follows core

principles, which we organize in two levels of abstraction: (i)

internal (or agent) level; (ii) social (or MAS) level. The

former describes the internal structure and state of the agent

(i.e. the basic construct elements of the MAS) and the second

describes the assembly and interaction among agents that

compose the MAS architecture. A multi-agent system does

not reduce to a centralized computer system; it consists of a

set of interconnected agents. Where each agent can initiate

communication, generate messages, and respond to other

agent’s messages, in order for agents participating in these

interactions to achieve overall system goals [9].

a) Agent level:

The Fig. 3 shows our BDI agent and its internal structure.
Each agent (denoted by AG) is composed of three principal
nodes, which in turn contains other nodes that structure

them. In what follows, we will take a closer look on the
nodes that compose the agent AG1, for more details see [2].

Fig. 3 Bigraphical model of BDI Agent.

The signature associated to a BDI-MAS bigraph is as
follows:
K = { L: (2, active), M: (1, active), N :(0, active), O :(1,

atomic), P :(0, atomic)}, L, M, N, O and P represent
controls associated to different nodes. The different nodes
types used in the model and their associated controls are
summarized in Table 3.

TABLE 3. NODES TYPES OF BDI-MAS ARCHITECTURE.

Node Control Attribute Arity Meaning

AG L Active 2 Agent

B M Active 1 Beliefs Module

G N Active 0 Goal Module

I M Active 1 Intention Module

P O Atomic 1 Plan

D O Atomic 1 Desire

K P Atomic 0 Knowledge

b) Social level:

The model presented provides notations for describing
the structure of MAS in terms of hierarchical configurations
of interacting components. It provides an explicit and
common basis for describing MAS architectural
configurations (see Fig. 4).

Fig. 4. Bigraphical model of BDI-MAS configuration.

AHMED TAKI EDDINE DIB, ZAIDI SAHNOUN: MODEL CHECKING OF MULTI AGENT SYSTEM ARCHITECTURES USING BIGMC 1719

B. Modeling BDI-MAS Architectural Reconfiguration

As defined in our previous work [2] the BDI-MAS

architecture dynamics is formalized using reaction rules

expressing changes of form in terms of shape shifting while

preserving architectural constraints. In this subsection, we

give some reaction rules samples defined to model BDI-

MAS internal and external behavior and reconfiguration.

Table 4 depicts how we defined the behavioral model, based

on reaction rules.

TABLE 4. MODELLING MULTI AGENT SYSTEM

DYNAMICS.

Multi Agent System BRS

Configuration MAS. Bigraph : �MAS= (�MAS, �MAS, ���݈MAS, �MAS � ,�MAS �)

Reconfiguration from MAS
to MAS’

Meta reaction rule: �� = (MAS,

MAS’, ݉′ → ݉)

Example RL1: Resolution of an internal goal reaction rule

AGx y .(Be1.(K |d2) |G.(D1 |d4) |Ie1 .(P |d3) |d1) |d0

→

AGx y .(Be1.(K |K1 |d2) |G.(D1e2 |d4)| Ie1 .(Pe2 |d3) |d1) |d0

Example RL2: Resolution of an external goal (collaboration)
reaction rule

AGxy.(Be1.(K|K1|d2)|G.(D1|d4)|I.(d3)|d1)|AG1xy.(B1e2.(K2|d7)|G1.(

D3|d9)|I1e2.(d8) |d6)

→

AGxy .(Be1.(K |K1 |K3 |d2) |G.(D1e6 |d4) |I.(P2e6 |d3) |d1) |

AG1xy.(B1e2.(K2 |K3 |d7) |G1.(D3 |d9)|I1e2.(d8) |d6)

IV.FORMAL ANALYSIS OF PROPERTIES

Software verification becomes essential to the

development of computer systems. Indeed, the use of formal

methods allows to prove that a system satisfies a given

specification. In fact, these methods appear one of the main

solutions for the development of high quality and safe

systems at a reasonable costs and time span. Further, the use

of these methods in the development process allows the

verification and validation of the specification and facilitates

the passage to the implementation. These techniques are

accompanied by powerful tools that can be used to automate

various stages of verification. The use of rather conventional

design methods (composition, aggregation, etc.) in the

development cycle has paved the way for the smooth

introduction of techniques such as model checking.

In our case, we use BigMC a Bigraphical Model Checker

to check properties such as deadlock and some violations

that the model should not allow to happen during its

execution. First, we specify the structural aspect (i.e., nodes

and their signature and outer and inner interfaces …) then
the dynamic aspect (i.e., reaction rules ex internal resolution

of goal …) using the BigMC syntax term language. Then we

formulate the properties that we would like to verify on each

example. Finally, we will analyze and validate the resulted

output given by the BigMC tool.

A. Reachability checking

In this section, we would like to verify the soundness of

our model. For that purpose, we decide to start with the

building blocks of our model’s dynamic, which are no other

than the reaction rules for the resolution of an internal,

external goal resolution and the reconfiguration example of

adding a new agent to the system specified in the section 4.

Fig. 5 describes, how our BDI agent is able to solve an
internal goal, as it may be seen in the redex, the presence in
the node G of a desire D1 to satisfy, one can also notice the
presence into the node B of a knowledge node denoted by K,
which is necessary for triggering the rule. In the reactum one
can first see the appearance of a node P, which is the best

plan among plans that can satisfy the desire D1 (choosing the
best possible plan remains tied to heuristics that cannot
appear in the architectural level). Secondly, the creation of a
link e2 between the node D1 and P specify that the desire D1
could be satisfied by the execution of the plan P. Finally, the
execution of P induces two possible cases either: (1) adding /
removing knowledge at the node B (2) beliefs of the agent
do not change [2].

Fig. 5. Internal goal resolution reaction rule.

Fig. 6 below represents the structural bigraphical
specification of the resolution of an internal goal in BigMC
term language.

Fig. 6 Internal goal resolution in BigMC term language

1720 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 7 shows the dynamics of our example, through the
presentation of a sequence of meta-reaction rules written in
BigMC, we can also see that there are two types of reactions

of rules linking and placing reaction rules. The former is
responsible for creating or deleting links between nodes
while the second type is responsible for creating, moving or
deleting nodes in our BDI-MAS Agent.

Fig. 7. Internal goal resolution dynamics

Now that we have specified our model structural and
dynamical aspects in BigMC the penultimate stage before the
checking is to specify or formulate the property to check on
our example. For this purpose, BigMC provides a set of
predefined predicates using the syntax showing in Fig. 2, in
the following example, we will use two of them, the first
property that we would like to verify named violation_free
uses the predicate !match(T) which states that we must not
find a match to the expression between brackets during our
system execution. The second property is deadlock_free
which uses the predicate !terminal() the predicate as
transcribed here states that there will be a possible future
state reachable by a step of reaction rule from the current
one. For more elaborated properties the common boolean
operator such as AND, OR and NOT are used.

%property secure !matches(Agent[in,out].(Beliefs[e1].(K | K1 |
$2)|Goals.(Desire1[-] | $0) |Intensions[e1].(Plan1[-] | $1)));

%property deadlock_free !terminal();

The result of the model checking is shown in the figure after
20 steps the model checker reached successfully the intended
state and does not report any property violation (due to the
lake of space intermediate rewriting steps are omitted) .

Fig. 8. Internal goal resolution checking result.

Example 2 the external goal resolution implies at least two
agents as shown in the Fig. 4 of the section 4. The Fig. 9

represents the example transcribed in BigMC term language.

Fig. 9 External goal resolution written in BigMC.

The model checker rewriting steps is limited to 50, the result
is without call the model is free of violation. As a result, the
BigMC tool does not give a counter example see Fig. 10.

Fig. 10. External goal resolution checking result.

V.RELATED WORK

There is an important core of work regarding to the design

and development at the architectural level as mentioned in

[9] and [10], several works propose different languages,

formal and semi-formal, Architecture Description Language

(ADL). Such as Darwin, Rapide, Dynamic-Wright [11] and

π-ADL[12] for representing and analyzing software

architectures in order to predict architectural qualities before

the implementation, and guiding the design and coding

process. Nonetheless, these works are labeled by a lack of

coverage of concepts related to the definition of a multi-

agent system, for example, the representation of the agent is

AHMED TAKI EDDINE DIB, ZAIDI SAHNOUN: MODEL CHECKING OF MULTI AGENT SYSTEM ARCHITECTURES USING BIGMC 1721

generally limited by a single object devoid of the necessary

concepts to express its autonomy and cognitive aspects (such

as beliefs, knowledge and competences). As cited in [13]

there exist various analysis techniques among the existing

ADLs for testing, model checking, and evaluating

performance based on architectural models. Bordini in [15,

16] has presented an approach for verifying multi-agent

programs. In this approach, the system is written with the

logic-based agent-oriented programming language

AgentSpeak and automatically translated into either Promela

or Java. This is an important work; however, the verification

of MAS focuses on the program rather on the architecture. In

[17] Walton address the verification of communication

between agents participating in multi-agent web service

systems, the approach is based on the application of model

checking techniques. This approach is too specific, it is used

to verify lightweight protocol language and it cannot be

applied to a wide range of multi agent systems and neither at

the architectural level. In [18] and [19] are abstract formal

models for developing formal specifications of multi-agent

systems these approachs uses the Z notation as formal

foundation. However, the Z language cannot model in an

effective way the interaction, distribution and the

concurrence in a MAS. Fisher in [20] describes the first steps

towards a formal specification and verification of multi-

agent systems using Concurrent METATEM and the

temporal belief logics. This approach suffers from a low

level of abstraction and does not take into account the

reconfiguration of the system at the architectural level.

VI.CONCLUSION

In this paper, we have described our proposed formal

modeling approach of the BDI-MAS architecture. The

system has been specified at both individual (agent) and

social (MAS) levels. The BDI-MAS bigraph simplifies

considerably the MAS architectures readability. A MAS

architecture is seen as a hierarchical configuration of

interacting nodes. The model emphasizes on both locality

and connectivity that can be used to represent the location

and interconnection of MAS architectures. On the other

hand, reaction rules allow developers to correctly analyze the

BDI-MAS architecture features, including modeling the

behavior of the BDI agents and describing reconfigurations

that could be added to the architecture. Further, the use of

bigraphs as formal basis in the development process allows

the verification and validation of the specification. Using the

BigMC tool we have shown that our BDI-MAS architecture

model through its Meta reaction rules are free of violations

and deadlock. Our aim is to have a graphical intuitive solid

formal foundation for modeling MAS architecture in order to

handle the complexity of the systems in general, adopting a

high level of abstraction that removes unnecessary details

regarding all the expected properties and facilitates the

passage to the implementation.

In the perspectives of this work, we plan to:

- Formally analyze and verify some non-functional

properties such as security of the BDI-MAS

architectures model.

- Provide a tool that generates executable implementation

from our BDI-MAS architecture model,

- Develop a methodology around the model in order to

guide the development of MAS.

REFERENCES

[1] Commoncriteriaportal.org, 'Common Criteria : New CC Portal', 2015.
[Online]. Available: http://www.commoncriteriaportal.org/.
[Accessed: 16- Feb- 2015].

[2] A. Dib and Z. Sahnoun, 'Formal Specification of Multi-Agent
System Architecture', in International Conference on Advanced
Aspects of Software Engineering, Constantine, 2014, pp. 65-72.

[3] R. Milner, 'Bigraphs and Their Algebra', Electronic Notes in
Theoretical Computer Science, vol. 209, pp. 5-19, 2008.

[4] A. Rao and M. Georgeff, 'Modeling rational agents within a BDI-
architecture', Australian Artificial Intelligence Institute, Victoria,

Australia, 1991.
[5] R. MILNER, 'Axioms for bigraphical structure', Math. Struct. in

Comp. Science, vol. 15, no. 06, p. 1005, 2005.
[6] S. Merz, 'Model Checking: A Tutorial Overview', in Modeling and

Verification of Parallel Processes, 2001, pp. 3-38.
[7] S. Merz, 'Model Checking Techniqes for the Analysis of Reactive

Systems', Synthese, vol. 133, no. 12, pp. 173-201, 2002
[8] G. Perrone, S. Debois and T. Hildebrandt, 'A model checker for

Bigraphs', Proceedings of the 27th Annual ACM Symposium on
Applied Computing - SAC '12, 2012.

[9] R. Allen, 'A Formal Approach to Software Architecture', Phd,
Carnegie Mellon University, 1997.

[10] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione and A. Tang,
'What Industry Needs from Architectural Languages: A Survey',
IIEEE Trans. Software Eng., vol. 39, no. 6, pp. 869-891, 2013.

[11] N. Medvidovic and R. Taylor, 'A classification and comparison
framework for software architecture description languages', IIEEE
Trans. Software Eng., vol. 26, no. 1, pp. 70-93, 2000.

[12] R. Allen, R. Douence and D. Garlan, 'Specifying and analyzing
dynamic software architectures', Fundamental Approaches to

Software Engineering, pp. 21-37, 1998.
[13] F. Oquendo, pi-ADL', SIGSOFT Softw. Eng. Notes, vol. 29, no. 3, p.

1, 2004.
[14] P. Zhang, H. Muccini and B. Li, 'A classification and comparison of

model checking software architecture techniques', Journal of Systems
and Software, vol. 83, no. 5, pp. 723-744, 2010.

[15] R. Bordini, M. Fisher, W. Visser and M. Wooldridge, 'Verifying
Multi-agent Programs by Model Checking', Autonomous Agents and
Multi-Agent Systems, vol. 12, no. 2, pp. 239-256, 2006.

[16] R. Bordini, M. Fisher, C. Pardavila, W. Visser and M.
Wooldridge, 'Model Checking Multi-Agent Programs with CASP',
Computer Aided Verification, pp. 110-113, 2003.

[17] W. Wan, J. Bentahar and A. Ben Hamza, 'Modeling and Verifying
Agent-Based Communities of Web Services', Trends in Applied
Intelligent Systems, pp. 418-427, 2010.

[18] D'Inverno, M., Luck, M., Georgeff, M., Kinny, D. and Wooldridge,
M. (2004). The dMARS Architecture: A Specification of the
Distributed Multi-Agent Reasoning System. Autonomous Agents and
Multi-Agent Systems, 9(1/2), pp.5-53.

[19] Luck, M. and d'Inverno, M. (2006). Formal Methods and Agent-

Based Systems. NASA Monographs in Systems and Software
Engineering, pp.65-96.

[20] M. Fisher and M. Wooldridge, 'On the Formal Specification and
Verification of Multi-Agent Systems', International Journal of
Cooperative Information Systems, vol. 06, no. 01, pp. 37-65, 1997.

1722 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

