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Abstract—Innovative algorithm for forming graph minimum
convex hulls using the GPU is proposed. High speed and linear
complexity of this method are achieved by distribution of the
graph’s vertices into separate units and their filtering. The key
factor for improving the performance of innovative algorithm
is the massively-parallel implementation of local hulls formation
using video accelerators. A computational process is controlled by
means of auxiliary matrices. A number of experimental studies
of the algorithm have been carried out, and its suitability for
application in the hull processing for large-scale problems has
been demonstrated. The speed of the new method is 10 – 20
times higher compared to using functions of the professional
mathematical package Wolfram Mathematica.

Index Terms—Minimum convex hull, CPU+GPU hybrid sys-
tem, GPGPU technology, High-performance computing, CUDA,
Graph

I. INTRODUCTION

F
INDING the minimum convex hull (MCH) of the graph’s

vertices is a fundamental problem in many areas of

modern research [7]. The solution of this task involves the

formation of the minimum convex set containing all the

nodes present in the graph (Fig. 1a). It is known that MCH

is a common tool in computer-aided design and computer

graphics packages [21]. For example, Bezier’s curves used

in Adobe Photoshop, GIMP and CorelDraw for modeling

smooth lines fully lie in the convex hull of their control nodes

(Fig. 1b). This feature greatly simplifies finding the points of

intersection between curves and allows their transformation

(moving, scaling, rotating, etc.) by appropriate control nodes

[23]. The formation of some fonts and animation effects in the

Adobe Flash package also uses splines composed of quadratic

Bezier’s curves [8].

It should be noted that convex hulls are used in Geographi-

cal Information Systems and routing algorithms in determining

the optimal ways for avoiding obstacles. The paper [1] offers

the methods for solving complex optimization problems using

them.

Last decades are associated with rapid data volume growth

in research processed by the information systems [19]. Accord-

ing to IBM, about 15 petabytes of new information are created

daily in the world [14]. Therefore, in modern science, there is

a separate area called Big Data related to the study of large

data sets [13]. However, most of the known algorithms for

MCH construction have time complexity O(nlogn), making

them useless when forming solutions to large-scale graphs.

Therefore, there is a need to develop efficient algorithms with

the complexity close to linear O(n).

(a)

(b)

Fig. 1. Examples of the minimum convex hulls
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TABLE I
COMPARISON OF THE COMMON ALGORITHMS FOR MCH CONSTRUCTION

Algorithm Complexity Parallel versions Multidimensional cases

Jarvis’s march O(nh), where h is a number of points on MCH + +

Graham’s Scan O(nlogn) - -

QuickHull O(nlogn), in the worst case – O(n2) + +

Divide and Conquer O(nlogn) + +

It is known that Wolfram Mathematica is one of the

most powerful mathematical tools for the high performance

computing. Features of this package encapsulate a number

of algorithms and, depending on the input parameters of the

problem, select the most productive ones [20]. Therefore,

Wolfram Mathematica 9.0 is used to track the performance

of the algorithm proposed in this article.

In recent years, CPU+GPU hybrid systems (GPGPU tech-

nology) allowing for a significant acceleration of computations

have become widespread. Unlike CPU, consisting of several

cores, the graphics processor is a multicore structure and the

number of its components is measured in hundreds [16]. In

this case, the sequential steps of algorithm are executed on

the CPU, while its parallel parts are implemented on the

GPU [20]. For example, the latest generation of NVIDIA

Fermi GPUs contains 512 computing cores, allowing for the

introduction of new algorithms with large-scale parallelism

[9]. Thus, the usage of NVIDIA GPU ensures the conversion

of standard workstations to powerful supercomputers with

cluster performance [17].

The paper goal is to develop a high-speed algorithm for

finding the minimum convex hulls using GPU. The time

complexity of the proposed method is close to linear. The

optimal values of algorithm’s parameters, with which the usage

of GPU resources is the most effective, are established in this

paper.

II. A REVIEW OF ALGORITHMS FOR FINDING THE

MINIMUM CONVEX HULLS

Despite intensive research, which lasted for the past 40

years, the problem of developing efficient algorithms for MCH

formation is still open. The main achievement is the devel-

opment of numerous methods based on the extreme points

determination of the original graph and the link establishment

among them [6]. These techniques include the Jarvis’s march

[15], Graham’s Scan [11], QuickHull [4], Divide and Conquer

algorithm and many others. The main features of their practical

usage are given in Table I.

For parallelization the Divide and Conquer algorithm is the

most suitable. It provides a random division of the original

vertex set into subsets, formation of partial solutions and

their connection to the general hull [21]. Although the hull

connection phase has linear complexity, it leads to a significant

slowdown of the algorithm, and as a result, to the unsuitability

of its application in the hull processing for large-scale graphs.

Chan’s algorithm, which is a combination of slower algo-

rithms, has the lowest time complexity O(nlogh). However,

it can work by the known number of vertices contained in the

hull [3]. Therefore, currently, its usage in practice is limited

[5].

Study [2] gives a variety of acceleration tools for known

MCH formation algorithms by cutting off the graph’s vertices

falling inside an octagon or rectangle and appropriate reducing

the dimensionality of the original problem. The paper [12]

suggests numerous methods of convex hull approximate for-

mation, which have linear complexity. Such algorithms are

widely used for tasks where speed is a critical parameter. But

linearithmic time complexity of the fastest exact algorithms

demonstrates the need for the introduction of new high-speed

methods of convex hulls formation for large-scale graphs.

III. INNOVATIVE ALGORITHM FOR FORMATION OF THE

CONVEX HULLS

We shall consider non-oriented graph G = (V,E). The new

algorithm provides a division of the original graph’s vertex

set into a set of output units U = 〈U1, U2, ..., Un〉, Ui ⊆ V .

However, unlike the Divide and Conquer method, this division

is not random, but it is based on the spatial distribution of

vertices. All nodes of the graph should be distributed by the

formed subsets, i.e.
n⋃

i=1

Ui = V . This allows the presence

of empty units, which do not contain vertices. Additionally,

the condition of orthogonality division is met, i.e. one vertex

cannot be a part of the different blocks: Ui ∩Uj = ∅, ∀i 6= j.

Fig. 2a shows an example of division taking into account the

above requirements.

The next stage of the proposed algorithm involves the

formation of an auxiliary matrix based on the distribution

of nodes by units. The purpose of this procedure is the

primary filtration of the graph’s vertices, which provides a

significant decrease in the original problem dimensionality.

In addition, the following matrices define the sets of blocks

for the calculation in the subsequent stages of the algorithm

and the sequence of their connection to the overall result. An

auxiliary matrix formation involves the following operations:

1) Each block of the original graph must be mapped to

one cell of the supporting matrix. Accordingly, the

dimension of this matrix is n×m, where n and m are the

numbers of blocks allocated by the relevant directions.

2) The following operations provide the necessary coding

of matrix’s cells. Thus, the value of cell ci,j is zero if the

corresponding block Ui,j of original graph contains no

vertices. Coding of blocks that contain extreme nodes

(the highest, rightmost, lowest and leftmost points) of
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Example of the algorithm execution

a given set is important for the algorithm. Appropriate

cells are filled with numbers from 2 to 5. Other units

that are filled, and contain no extreme peaks, shall be

coded with ones in auxiliary matrix.

3) Further, primary filtration of allocated blocks is carried

out using the filled matrix. Empty subsets thus shall be

excluded from consideration. Blocks containing extreme

vertices shall determine the graph division into parts

for which the filtration procedure is applied. We shall

consider the example of the block selection for the

section limited with cells 2 – 3. If ci,j = 2, then the

next non-zero cell is searched by successive increasing

of j. In their absence, the next matrix’s row i + 1 is

reviewed. Selection of blocks is completed, if the value

of another chosen cell is ci,j = 3. The study of the other

graph’s parts is based on a similar principle.

Partial solutions are formed for selected blocks. Such oper-

ations require the formation of fragments rather than full-scale

hulls that provides secondary filtration of the graph’s vertices.

The last step of the algorithm involves the connection of partial

solutions to the overall result. Thus the sequential merging

of local fragments is done on a principle similar to Jarvis’s

march. It should be noted that at this stage filtration mecha-

nism leads to a significant reduction in the dimensionality of

the original problem. Therefore, when processing the hulls for

large graphs, combination operations constitute about 0.1% of

the algorithm total operation time.
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We shall consider the example of this algorithm execution.

Let the set of the original graph’s vertices have undergone

division into 30 blocks (Fig. 2a). Auxiliary matrix calculated

for this case is given in Fig. 2b. After application of primary

filtration, only 57% of the graph’s nodes were selected for

investigation at the following stages of the algorithm (Fig. 2c).

The next operations require the establishment of local hulls

(Fig. 2d) and their aggregations are given in Fig. 2e. After

performing of pairwise connections, this operation is applied

repeatedly until a global convex hull is obtained (Fig. 2f).

IV. THE DEVELOPMENT OF HYBRID CPU-GPU

ALGORITHM

We know that the video cards have much greater processing

power compared to the central processing elements. GPU

computing cores work simultaneously, enabling to use them

to solve problems with the large volume of data. CUDA

(Compute Unified Device Architecture), the technology cre-

ated by NVIDIA, is designed to increase the productivity of

conventional computers through the usage of video processors

computing power [22].

CUDA architecture is based on SIMD (Single Instruction

Multiple Data) concept, which provides the possibility to

process the given set of data via one function. Programming

model provides for consolidation of threads into blocks, and

blocks – into a grid, which is performed simultaneously.

Accordingly, the key to effective usage of GPU hardware

capabilities is algorithm parallelization into hundreds of blocks

performing independent calculations on the video card [24].

It is known that GPU consists of several clusters. Each of

them has a texture unit and two streaming multiprocessors,

each containing 8 computing devices and 2 superfunctional

units [10]. In addition, multiprocessors have their own dis-

tributed memory resources (16 KB) that can be used as a

programmable cache to reduce delays in data accessing by

computing units [22]. From these features of CUDA architec-

ture, it may be concluded that it is necessary to implement

massively-parallel parts of the algorithm on the video cards,

while sequential instructions must be executed on the CPU.

Accordingly, the stage of partial solutions formation is suitable

for implementation on the GPU since the operations for each

of the numerous blocks are carried out independently.

It is known that function designed for executing on the

GPU is called a kernel. The kernel of the innovative algo-

rithm contains a set of instructions to create a local hull of

any selected subset. In this case, distinguishing between the

individual subtasks is realized only by means of the current

thread’s number. Thus, the developed hybrid algorithm has the

following execution stages:

1) Auxiliary matrix is calculated on the CPU. The program

sends cells’ indexes that have passed the primary filtra-

tion procedure and corresponding sets of vertices to the

video card.

2) Based on the received information, particular solutions

are formed on the GPU, recorded to its global memory

and sent to the CPU.

3) Further, the procedure of their merging is carried out

and the overall result is obtained.

It should be noted that an important drawback of hybrid

algorithms is the need to copy data from the CPU to the GPU

and vice versa, which leads to significant time delays [16],

[18]. Communication costs are considerably reduced by means

of filtration procedure.

When developing high-performance algorithms for the GPU

it is important to organize the correct usage of the memory

resources. It is known that data storage in the global video

memory is associated with significant delays in several hun-

dred GPU cycles. Therefore, in the developed algorithm, the

global memory is used only as a means of communication

between the processor and video card. The results of interme-

diate calculations for each of the threads are recorded in the

shared memory, access speed of which is significantly higher

and is equal to 2 – 4 cycles.

V. EXPERIMENTAL STUDIES OF THE PROPOSED

ALGORITHM

In the current survey, experimental tests were run on a

computer system with an Intel Core i7-3610QM processor

(2.3 GHz), 8 GB RAM and DDR3-1600 NVIDIA GeForce

GT 630M video card (2GB VRAM). This graphics acceler-

ator contains 96 CUDA kernels, and its clock frequency is

800 MHz.

It is known that the number of allocated blocks increases

linearly with enhancing of processed graphs dimensionality.

The complexity of calculating the relevant auxiliary matrices

grows by the same principle. The stages of multi-step filtration

and local hulls construction provide a significant simplification

of final connection procedure. Thus, the complexity of the

developed algorithm is linear O(n) for uniformly distributed

data.

MCH instances composed of all graph’s vertices are the

worst for investigation. In this case, the filtration operations

do not provide the required acceleration and the algorithm

complexity is equal to O(nlogn). However, these examples

have purely theoretical significance and almost never occur in

practice.

Fig. 3 shows the dependence of the innovative algorithm

execution time on the graph dimensionality and the number of

vertices in the selected blocks. These results confirm the linear

complexity of the proposed method. In addition, it is important

to set the optimal dimensionality of the subsets allocated in

the original graph. A selection of smaller blocks (up to 1000

nodes) leads to a dramatic increase in the algorithm operation

time.

This phenomenon is caused by the significant enhancing

of the auxiliary matrices dimensionality, making it difficult to

control the computing process (Fig. 4). Per contra, the alloca-

tion of large blocks (over 5000 vertices) is associated with the

elimination of the massive parallel properties, mismanagement

of the video card resources, and as a consequence, increasing

of the algorithm execution time. Thus, the highest velocity of

the proposed method is observed for intermediate values of
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Fig. 3. Dependence of the innovative algorithm performance on the graph dimensionality and the number of vertices in the selected blocks

Fig. 4. Dependences of the various stages performance on the graph dimensionality and the number of vertices in the selected blocks

the blocks dimensionality (1000 – 5000 vertices). In this case,

auxiliary matrices are relatively small, and the second stage of

the algorithm preserves the properties of massive parallelism.

One of the most important means to ensure the algorithm’s

high performance is the multi-step filtration of the graph’s

vertices. Fig. 5a shows the dependence of the primary selection

quality on the dimensionality of the original problem and

allocated subsets. These results show that such filtration is

the most efficient with the proviso that the graph’s vertices

are distributed into small blocks. Furthermore, the number of

selected units increases with the raising of the problem’s size,

providing rapid solutions to graphs of extra large dimension-

ality. By virtue of a riddance from the discarded blocks, the

following operations of the developed algorithm are applied

only to 1 – 3% of the initial graph’s vertices.

However, the results of the secondary filtration (Fig. 5b)

are the opposite. In this case, the highest quality of the

selection is obtained on the assumption that the original
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(a)

(b)

Fig. 5. The influence of filtration procedure over the reduction in the problem’s size

vertices are grouped into large subsets. Withal, the secondary

filtration is much slower than the primary procedure, so the

most effective selection occurs at intermediate values of the

blocks dimensionality. As a result of these efforts, only 0.05

– 0.07% of the initial graph’s vertices are involved in the final

operations of the proposed algorithm.

In order to determine the efficiency of the developed

algorithm, its execution time has been compared with the

built-in tools of the mathematical package Wolfram Math-

ematica 9.0. All choice paired comparison tests were con-

ducted for randomly generated graphs. The MCH formation

in Mathematica package is realized by the instrumentality

of ConvexHull[] function, while the Timing[] expression is

used to measure the obtained performance. The results of the

performed comparison are given in Fig. 6. They imply that the

new algorithm computes the hulls up to 10 – 20 times faster

than Mathematica’s standard features.

VI. CONCLUSIONS

The paper suggests an innovative algorithm for finding the

minimum convex hulls, which is based on the GPGPU technol-

ogy and uses graphic accelerators. Unlike its predecessors, this

algorithm is adapted to fast solving of the large-scale problems

and, therefore, is suitable for using with respect to Big Data
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Fig. 6. A performance comparison between the new algorithm and built-in tools of the mathematical package Wolfram Mathematica 9.0

direction. Compared to the classical methods it has a number

of the following benefits:

1) High speed of operation and linear complexity.

Algorithm performance is increased by the steps of

vertices’ distribution into blocks, filtration and using of

the auxiliary matrices. As a result, the speed of the new

method is 10 – 20 times higher in contrast to the usage

of professional mathematical package Mathematica.

2) Massive parallelism. Formation of partial hulls is car-

ried out independently, which contributes to the im-

plementation of these calculations by using graphics

processors.

3) The ability of hulls’ dynamic adjustment. When

adding new vertices to the initial set, calculations are

executed only for units that have undergone modifica-

tion. These operations require only local updating of the

convex hulls, because the results for intact parts of the

original graph are invariable.

4) The ability of generalization for the multidimensional

problem instances. In these cases, the selected subsets

are the n-dimensional cubes to which operations of the

developed method are applied.

These advantages may be the basis for the inclusion of the

innovative algorithm in the professional mathematical pack-

ages to promote the high-performance computations among

their users. A further direction of research is related to the

development of hybrid CPU+GPU versions of this algorithm

for complex systems with many processors and video cards.

REFERENCES

[1] Aardal K., Van Hoesel S., Polyhedral Techniques in Combinatorial
Optimization I: Theory. Statistica Neerlandica 50, pp. 3–26, 1995. DOI:
10.1111/j.1467-9574.1996.tb01478.x.

[2] Akl S.G., Toussaint G.T., A fast convex hull algorithm. Information
processing letters 7, pp. 219–222, 1978.

[3] Allison D.C.S., Noga M.T., Some performance tests of convex hull
algorithms. BIT 24(1), pp. 2–13, 1984. DOI: 10.1007/BF01934510.

[4] Barber C.B., Dobkin D.P., Huhdanpaa H., The Quickhull Algorithm for
Convex Hulls, ACM Trans. Math. Softw. 22(4), pp. 469–483, 1996.
DOI: 10.1145/235815.235821.

[5] Chan T.M., Optimal output-sensitive convex hull algorithms in two and
three dimensions. Discrete & Computational Geometry 16, pp. 361–368,
1996. DOI: 10.1007/BF02712873.

[6] Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to
Algorithms, Second Edition. Section 33.3: Finding the convex hull. MIT
Press, pp. 947–957, 2001.

[7] De Berg M., Cheong O., van Kreveld M., Overmars M., Computational
Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg,
2008. DOI: 10.1007/978-3-540-77974-2

[8] Duncan M., Applied Geometry for Computer Graphics and CAD.
Springer-Verlag, London, 2005. DOI: 10.1007/b138823

[9] Glaskowsky P.N., NVIDIA’s Fermi: The First Complete GPU Computing
Architecture. NVIDIA, 2009.

[10] Govindaraju N.K., Larsen S., Gray J., Manocha D., A memory
model for scientific algorithms on graphics processors. Proceed-
ings of the ACM/IEEE conference on Supercomputing, 2006. DOI:
10.1109/SC.2006.2.

[11] Graham R.L., An efficient algorithm for determining the convex hull
of a finite planar set, Info. Proc. Lett. 1(1), pp. 132–133, 1972. DOI:
10.1016/0020-0190(72)90045-2.

[12] Hossain M., Amin M., On Constructing Approximate Convex Hull.
American Journal of Computational Mathematics 3(1A), pp. 11–17,
2013. DOI: 10.4236/ajcm.2013.31A003.

[13] IBM: Analytics: The real-world use of big data, 2013.
[14] IBM: Storage strategies that deliver business value, 2011.
[15] Jarvis R.A., On the identification of the convex hull of a finite set

of points in the plane, Info. Proc. Lett. 2(1), pp. 18–21, 1973. DOI:
10.1016/0020-0190(73)90020-3.

[16] Lee C., Ro W.W., Gaudiot J.-L., Boosting CUDA Applications with
CPU-GPU Hybrid Computing. International Journal of Parallel Program-
ming 42(2), pp. 384–404, 2014. DOI: 10.1007/s10766-013-0252-y.

[17] Nickolls J., Dally W., The GPU computing era. Micro IEEE 30(2), pp.
56–69, 2010. DOI: 10.1109/MM.2010.41.

[18] Novakovic V., Singer S., A GPU-based hyperbolic SVD algorithm. BIT
51(4), pp. 1009–1030, 2011. DOI: 10.1007/s10543-011-0333-5.

[19] Pogorilyy S.D., Potebnia A.V., Formation and investigation of Kruskal’s
algorithm parallel scheme for shared memory systems. Scientific Papers
of Donetsk National Technical University “Informatics, Cybernetics
and Computer Science” 16(204), pp. 82–89, 2012. DOI: 10.5281/zen-
odo.16440 (in Ukrainian).

[20] Potebnia A.V., Pogorilyy S.D., Exploration of data coding methods in
wireless computer networks. Proceedings of the Fourth International
Conference on Theoretical and Applied Aspects of Cybernetics (TAAC),
Kyiv, pp. 17–31, 2014. DOI: 10.13140/RG.2.1.3186.3844.

[21] Preparata F.P., Shamos M.I., Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985. DOI: 10.1007/978-1-4612-1098-6.

[22] Sanders, J., Kandrot, E., CUDA by Example: An Introduction to
General-Purpose GPU Programming. Addison-Wesley Professional,
2010.

[23] Sederberg T. W., Computer aided geometric design course notes, 2011.
Available: http://tom.cs.byu.edu/ 557/text/cagd.pdf.

[24] Sklodowski, P., Zorski, W., Movement Tracking in Terrain Conditions
Accelerated with CUDA. Proceedings of the Federated Conference on
Computer Science and Information Systems, FedCSIS 2014, Warsaw,
Poland, pp. 709–717. DOI: 10.15439/2014F282.

ARTEM POTEBNIA, SERGIY POGORILYY: INNOVATIVE GPU ACCELERATED ALGORITHM 561


