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Abstract—In this paper we present a method of synthesis of
adaptive schedulers for real-time embedded systems. We assume
that the system is implemented using multi-core embedded
processor with low-power processing capabilities. First, the devel-
opmental genetic programming is used to generate the scheduler
and the initial schedule. Then, during the system execution the
scheduler modifies the schedule whenever execution time of the
recently finished task occurred shorter or longer than expected.
The goal of rescheduling is to minimize the power consumption
while all time constraints will be satisfied. We present real-life
example as well as some experimental results showing advantages
of our method.

I. INTRODUCTION

B
ESIDES the cost and performance, power consumption

is one of the most important issue considered in the

optimization of embedded systems. Design of energy-efficient

embedded systems is important especially for battery-operated

devices. Although the minimization of power consumption is

always important, since it reduces the cost of running and

cooling the system.

Embedded systems are usually real-time systems, i.e. for

some tasks time constraints are defined. Therefore, power op-

timization should take into consideration that all time require-

ments should be met. Performance and power consumption

are orthogonal features, i.e. in general, higher performance

requires more power. Hence, the optimization of embedded

system should consider the trade-off between power, perfor-

mance, cost and perhaps other attributes.

Performance of the system may be increased by applying a

distributed architecture. The function of the system is specified

as a set of tasks, then during the co-design process, the

optimal architecture is searched. Distributed architecture may

consist of different processors, dedicated hardware modules,

memories, buses and other components. Recently, the advent

of embedded multicore processors has created an interesting

alternative to dedicated architectures. First, the co-design pro-

cess may be reduced to task scheduling. Second, advanced

technologies for power management, like DVFS (Digital Volt-

age and Frequency Scaling) or big.LITTLE [1], create new

possibilities for designing low-power embedded systems.

Optimization of embedded systems is based on assumptions

that certain system properties are known. For example, to

estimate the performance of the system, execution times for all

tasks should be known. Sometimes it is difficult to precisely

predict all required information. Therefore, to guarantee the

proper design, the worst case estimation is used. During the

operation of the system it may occur that certain system

properties may significantly differ from estimations or may

dynamically change. It may be caused by too pessimistic

estimation, by data-dependence or by some unpredictable

events. In such cases the idea of self-adaptivity may be used

to optimize some system properties.

In this paper we present the novel method for synthesis of

the power-aware scheduler for real-time embedded systems.

We assume that the function of the system is specified using

the task graph that should be executed by the multicore pro-

cessor supporting the big.LITTLE technology. The scheduler

is generated automatically using the developmental genetic

programming (DGP). The scheduler is self-adaptive, i.e. it

dynamically reschedules tasks whenever any task finished its

execution earlier or later than expected. In the first case the

goal of the rescheduling is the reduction of power consumption

by moving some tasks to low-power cores. In the second case,

the system is rescheduled to satisfy all time constraints by

moving some tasks to high-performance cores. Example shows

the benefits of using our methodology.

The rest of the paper is organized as follows. Next section

presents the related work. Section III presents the concept of

the developmental genetic programming with respect to other

genetic approaches. In Section IV we present our method.

Section V describes an example and experimental results. The

paper ends with conclusions.

II. RELATED WORK

Although there are a lot of synthesis methods for low-power

embedded systems [2], the problem of optimal mapping of a

task graph onto the multicore processor is rather a variant of

the resource constrained project scheduling (RCPSP)[3] one,

than the co-synthesis. Since the RCPSP is NP-complete, only
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heuristic approach may be applied to real-life systems. Among

the proposed heuristics for solving RCPSP, ones of the most

efficient are methods based on genetic algorithms [4][5][6].

For systems that may dynamically change during operation,

some methods of rescheduling was proposed. In [7] the num-

ber of tasks that receives a new start time, after rescheduling,

is minimized. Another approach [8] proposes to reschedule

the remaining tasks, such that the sum of deviations of the

new finishing times from the original ones is minimized. In

[9] the sum of deviations of starting and finishing times of all

tasks is minimized. Proactive scheduling [10] does not perform

rescheduling, but it minimizes the perturbations, caused by

delays, by maximization of the minimum or total free slacks

of task executions.

Three different methods of applying big.LITTLE tech-

nology for minimizing the power consumption were

proposed[11]. In the cluster switching, low-power cores are

grouped into “little cluster", while high performance cores are

arranged into “big cluster". The system uses only one cluster

at a time. If at least one high performance core is required

then the system switches to the “big cluster", otherwise the

“little cluster" is used. Unused cluster is powered off. In CPU

migration approach, low-power and high-performance cores

are paired. At a time only one core is used while the other is

switched off. At any time it is possible to switch paired cores.

The most powerful model is a global task scheduling. In this

model all cores are available at the same time.

The big.LITTLE technology is quite new and is mainly used

in mobile devices. According to our best knowledge there are

no applications of this technology to design low power real-

time embedded systems, as well as an adaptive scheduling

method for such systems.

III. DEVELOPMENTAL GENETIC PROGRAMMING

Genetic algorithms (GA) [12] are very commonly used

in wide spectrum of optimisation problems. Main advantage

of GA approach is the possibility of getting out from the

local minima of optimization criterion. Thus, GA is efficient

for global optimization of complex problems, like RCPSP

or multi-objective optimization of distributed real-time sys-

tems [13].

Although GA approach usually give satisfactory results it

may be inefficient for hard constrained problems. In these

cases a lot of individuals obtained using genetic operators

correspond to not feasible solutions (e.g. schedule that exceeds

required deadline or incorrect schedule, in the RCPSP). Such

individuals should not be considered during the evolution. It

is provided by defining the constrained genetic operators, that

produce only correct solutions. But such constrained operators

may create infeasible regions in the search space. Such regions

may contain optimal or close to optimal solutions. This

problem is illustrated on Fig. 1. Assume that we optimize the

power consumption of the real-time system. Due to constraint

violation, the solutions above the dotted line are not valid,

hence they are never produced during the evolution. But it

is possible that such “forbidden" individuals may be used

a) Unconstrained Search Space

b) Constrained Search Space
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Fig. 1. Search space in GA

during the crossover or mutation to produce highly optimized

solutions (Fig. 1a). Unfortunately, the search space should be

limited to consider only valid solutions (Fig. 1b) and the

optimal solution may never be obtained.

Above problem may be eliminated by using the Develop-

mental Genetic Programming (DGP). DGP is an extension of

the GA by adding the developmental stage. This method first

time was applied to optimize analog circuits [14]. The main

difference between DGP and GA is that in the DGP genotypes

represent the method building the solution, while in the GA

genotypes describe the solution. Thus, during the evolution, a

method of building a target solution is optimized, instead of

a solution itself.

In the DGP the search space (genotypes) is separated from

the solution space (phenotypes). The search space is not

constrained, all individuals are evolved. Thus, all of them may

take part in the reproduction, crossover or mutation. There is

no “forbidden" genotypes.
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Phenotypes are created by using genotype-to-phenotype

mapping function, which always produces a valid solution.

During the evolution, the fitness of the genotype is evaluated

according to the quality of the corresponding phenotype. Fig. 2

presents the idea of the DGP. The search space consists of the

genotypes that evolve without any restrictions. Any genotype

may be mapped onto phenotype representing valid solution.

This can be assured by using constrained mapping function.

This function never produces solutions above the constraint

line.

This idea of DGP is taken from biology, where the genotype

corresponds to the chromosome containing information used

for synthesis of proteins. The application of DGP occurred

successful in many domains [15], where human-competitive

results were obtained. High efficiency of the DGP-based opti-

mization was also proved for hardware-software codesign[16]

and cost minimization in real-time cloud computing[17].

1

6

54

32

Fig. 3. A sample task graph

IV. SYNTHESIS OF ADAPTIVE SCHEDULER

Idea of our approach is based on the observation that when

the DGP will be applied for the RCPSP problem, then except

the final schedule we also obtain the scheduler dedicated to

the optimized system. Thus, instead of the implementation of

static schedule we may implement this scheduler, which may

adapt to any perturbation during the system operation. We

assume that the system is specified as a task graph. This is very

widely used method of specification of real-time embedded

systems. We also assume that for each task, the time of

execution and the average power consumption is known for

each available processor core. Usually these parameters are

estimated using the worst case estimation methods. During

the system operation, the scheduler will dynamically modify

the schedule to minimize the power consumption whenever it

will be possible to move some tasks to low-power cores, i.e.

when execution time of finished tasks will occur shorter than

estimated. In our method it is also possible to use average

execution time, instead of the worst case estimation. When

same task will be delayed then the scheduler will try to find

the new schedule that satisfies the time requirements. We use

ARM multicore processors with big.LITTLE technology for

implementation of the target systems. Such system consists

of two processors, usually quad-core. The first of them has

higher performance (about 40%), but consumes more power.

The second one is slower, but it is optimized to use much

less energy (about 75%), to execute the same task. The goal

of optimization is to find the makespan for which the power

consumption is as small as possible, while all time constraints

are met.

A. Task Graph

The function of an embedded system is specified as a set

of tasks. Between certain tasks may be the relationship that

specifies the order of their execution. This may be specified

as a task graph, which is the acyclic directed graph where

nodes correspond to tasks and edges describe required order

of execution. A sample task graph is given on Fig.3.

STANISŁAW DENIZIAK, LESZEK CIOPIŃSKI: SYNTHESIS OF POWER AWARE ADAPTIVE SCHEDULERS 451



TABLE I
A SAMPLE LIBRARY OF RESOURCES

Task # Core # Execution time [ns] Power Consumption [mJ]

1 0 537 5
1 1 537 5
1 2 537 5
1 3 537 5
1 4 671 3
1 5 671 3
1 6 671 3
1 7 671 3
2 0 1072 11

... ... ... ...
6 7 176 1

TABLE II
SCHEDULER’S PREFERENCES

Step Option P
1 a. The highest performance 0.16(6)

b. The lowest power 0.16(6)
c. The lowest time * power 0.16(6)
d. Determination by second gene 0.16(6)
e. The fastest starting core 0.16(6)
f. The fastest finishing core 0.16(6)

2 List scheduling 1

B. Resources

Estimated execution parameters are given in a library of

available resources. A resource is a core of a processor, which

is able to execute a task. For each core the execution time

and the power consumption are given. Part of a sample ARM

Cortex-A15/Cortex-A7 database, for task graph from Fig.3, is

presented in Table I.

C. Strategies of scheduling

The scheduler creates a makespan in two steps:

1) task assignment: tasks are assigned to cores according to

preferences specified for each group of tasks (Table II),

2) task scheduling: this step is executed only when more

than one task is assigned to the same core. During this

step a selected group of tasks is scheduled using the

scheduling strategy specified for this group (Table II).

Initial population consists of randomly generated genotypes.

During initialization, preferences defining the decision table

for the scheduler are assigned to each gene. Table II contains

the set of possible preferences that the scheduler may choose.

The last column in Table II shows a probability of the

selection.

The first option prefers the core with the highest perfor-

mance. Second one prefers a core with the lowest power

consumption. Third option prefers a core with the best ratio of

the power consumption to the time of execution. Fourth option

allows using a core, that cannot be obtained as a result of the

remaining options. The next option prefers a core, which could

start an execution of the task as soon as possible (other cores

might be busy). The last option prefers a core which could be

the first to finish a task (be freed). For the second step only

one option is available, the list scheduling method.

isLeaf: bool

cutPos: int

*nextRight: Node

*nextLeft: Node

strategy: char

Fig. 4. A node of the genotype

0

12

36

45

a) Genotype

b) Phenotype

Fig. 5. A sample genotype (a) and the corresponding phenotype (b)

D. Genotype

The genotype has a form of binary tree corresponding to

the certain procedure of task scheduling[18]. Every node in

the genotype has the structure presented on Fig. 4.

The first field isLeaf determines a type of the node in a

tree. When the node is a leaf this field equals true. Then, the

field named “strategy" defines the strategy of scheduling for

group of tasks assigned to this node. All possible strategies

are given in Table II. In this case, information from the other

fields is omitted. When the node is not a leaf, a content of

the field “strategy" is neglected. In this case, cutPos contains

a number describing which group of tasks should be assigned

and scheduled by the left node and which one by the right

one. Thus, nextLeft and nextRight must not be null pointers.

The simplest genotype consists of only one node, which is

also a leaf and a root. A sample genotype and the correspond-

ing phenotype are presented on Fig. 5.

During the evolution a genotype may grow up but the size of

the tree is limited. If a tree will be too large, the performance

of genotype to phenotype mapping, required for the fitness

evaluation, would be slightly decreased. Size limit of the

genotype also avoids constructing too many unused branches.

An initial genotype tree may grow up as an effect of genetic

operators: mutation and crossover. An action associated with

452 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015



TABLE III
THE RULES OF MUTATIONS

Is a leaf?
Yes No

Draw: switch leaf/node or not?
Yes No Yes No
Set isLeaf as
FALSE. If
nextLeft or
nextRight is
NULL - create
a new leaf for
it.

Draw new
strategy

Set isLeaf as
TRUE

Change value
for a randomly
chosen field:
cutPos,
nextLeft or
nextRight

0

12
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45

0

IVI

VIIVIII II

IIIIV

V

Cut Place

Cut Place

0

12 3

6 45

0

I
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VIIVIII

II

IIIIV

V

Cut Place

Fig. 6. An example of the crossover

the mutation depends on the type of the node and is presented

in the Table III [18].

The crossover is used to create new individuals that are a

combination of genes of parent genotypes. First, points of cut

for both trees are drawn, then the cut branches are exchanged.

In this way two new genotypes are created. A sample crossover

is presented on Fig. 6.

With every genotype an array is associated. Its size is equal

to the number of tasks and contains indexes of cores. If for

given task, strategy ’d’ is chosen, the core with an index taken

from the array is used. During the mutation, a position in the

array is randomly chosen. Then, a new index is randomly

generated. During the crossover, parts of the arrays from

both genotypes are swapped. The array defines the alternative

scheduling strategy that is not driven by the performance or

power consumption.

E. Genotype to phenotype mapping

The first step, during the genotype-to-phenotype mapping,

is to assign strategies to tasks (i.e. preferences for assigning

tasks to resources). For the example from Fig. 11, this step

0
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Fig. 7. The first step in genotype-to-phenotype mapping

is illustrated on Fig. 7. Node 0 groups tasks into two sets:

{1,2,3} and {4,5,6}. The first set is partitioned by node 2 into

next two groups. In the first one, there is only task 1. Tasks 2

and 3 belong to the second one, which is partitioned again by

node 3. The cutPos parameter of node 3 equals 4, this means

that tasks should be partitioned into group from 2 to 5 and the

rest. But tasks 5 and 6 are outside of the set assigned to node

3, these tasks are assigned to node 1. Thus, there is only one

group of tasks {2, 3} assigned to node 5.

In the second step, all tasks without any predecessor in

the task graph, or with predecessors having already assigned

core, are being searched for. These tasks are assigned to cores

according to preferences determined in the first step. This step

is repeated as long as there are tasks without assigned cores.

In the third step, the total power consumption of the solution

is calculated. For this purpose, the resource library (Table I)

is used.

F. Parameters of DGP

During the evolution, new populations of schedulers are

created using genetic operations: reproduction, crossover (re-

combination) and mutation. After the genetic operations are

performed on the current population, a new population re-

places the current one. The evolution is controlled by the

following parameters:

• population size: the number of individuals in each popu-

lation is always the same. The value of this parameter is

determined according to the value of “number of tasks"

* “number of cores",

• reproduction size: number of individuals created using

the reproduction,

• crossover size: the number of individuals created using

the crossover,

• mutation size: the number of individuals created using the

mutation.

Finally, the selection of the best individuals by a tournament

is chosen [12]. In this method, chromosomes (genotypes) are

drawn with the same probability in quantity defined as a

size of the tournament. The best one is taken to the next

generation. Hence, the tournament is repeated as many times

as the number of chromosomes for a reproduction, crossover

and mutation is required. A size of the tournament should
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be defined carefully. It should not be too high, because the

selection pressure is too strong and the evolution will be too

greedy. It also should not be too low, because the time of

finding any better result would be too long.

G. Self-adaptability of the scheduler

Finding the best makespan for low-power real-time embed-

ded system is not the only goal of our approach. DGP methods

are very effective in solving optimization problems and very

often give the optimal solution. From the other side, they give

results in relatively long time, thus genetic approach can not

be used for rescheduling in real-time systems.

In the DGP the scheduling is performed during the genotype

to phenotype mapping. This process is very fast, therefore it

can be executed during the system operation. So, instead of

implementing the final schedule we implement the method

which creates this schedule. We observed that such approach

has great self-adaptability capabilities.

Since the DGP has to consider only valid makespans. The

genotype to phenotype mapping is a constrained process. If for

a set of preferences defined by the genotype, it is not possible

to obtain the valid phenotype then the mapping selects the

next matching resource. Thus, the preferences specified by

the genotype need not be strictly adhered. For example, if for

given task preference suggest assigning this task to the low-

power core, then if this decision will lead to an infeasible

makespan, the scheduler will choose another, faster core that

best matches to this preference.

Therefore, scheduler is able not only to build a correct

solution, but also modify it if any unpredictable events will

occur. E.g. if a task execution will be longer than expected,

then the scheduler could move some tasks from a slower to

a faster core, to fulfill time requirements. Similarly, if a task

will be finished before its predicted end time, scheduler can

move other tasks from a faster core to slower one, to save

some energy.

H. Fitness function

A fitness function determines the optimization goal of the

DGP. In the presented approach, two options are possible. In

the first one, the cheapest solution which has to be finished

before a deadline is searched for. Such fitness function is

applied when hard real time constraints have to be satisfied.

In the second one, the DGP should find the fastest solution,

which does not exceed a given power consumption. This case

concerns systems with soft real-time requirements.

V. EXAMPLE AND EXPERIMENTAL RESULTS

We have verified advantages of the presented method using

example of the complex multimedia system, which was de-

scribed in [19]. The result has been compared with the method

based on Least-Laxity-First Scheduling Algorithm [20].

A. Task Graph and Run-time Parameters

The sample system is a multimedia player implemented as

a real-time embedded system. The specification of the system
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Fig. 8. Task graph of the multimedia system

consists of 40 tasks. Fig. 8 presents the task graph describing

the system, details are given in [19]. We consider shared

memory architecture, thus the communication between tasks

may be neglected. The execution time is critical - it is typical

soft real-time system. If the deadline is only slightly exceeded,

the quality of the system is decreased, but the solution may

be accepted. If the system exceeds hard deadline, then result

is unacceptable and system should be redesigned.

We assumed, that the application will be implemented in

software running on system consisting of two 4-core proces-

sors. One of them is ARM Cortex A57 and the second is ARM

Cortex A53. The first processor is faster for about 25%, but

consumes about 50% more power. Both processors support

ARM big.LITTLE technology. Run-time parameters for both

processors are given in Table IV.

The goal of our methodology is to create a self-adapting

scheduler, which run the program tasks, balancing them be-

tween the cores, to minimize the power usage. The scheduler

should be able to reschedule remaining tasks, whenever any

task will finish its execution before or after expected time

frame.
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TABLE IV
EXECUTION TIME AND POWER CONSUMPTION

Task Processor cores

A57 (high performance) A53 (energy efficient)

energy time energy time

1 5 537 3 671
2 11 1072 6 1340
3 5 537 3 671
4 4 376 2 470
5 73 7337 37 9171
6 11 1072 6 1340
7 110 10958 55 13698
8 74 7358 37 9198
9 11 1051 6 1314

10 6 559 3 699
11 5 486 3 608
12 3 286 2 358
13 13 1298 7 1623
14 37 3679 19 4599
15 21 2065 11 2581
16 53 5253 27 6566
17 75 7523 38 9404
18 11 1076 6 1345
19 4 409 2 511
20 4 409 2 511
21 11 1076 6 1345
22 2 157 1 196
23 260 26018 130 32523
24 2 176 1 220
25 2 197 1 246
26 260 26018 130 32523
27 236 23607 118 29509
28 6 559 3 699
29 11 1072 6 1340
30 110 10958 55 13698
31 5 486 3 608
32 3 286 2 358
33 11 1072 6 1340
34 4 409 2 511
35 4 409 2 511
36 236 23607 118 29509
37 74 7414 37 9268
38 3 253 2 316
39 2 179 1 224
40 2 176 1 220

B. Genetic parameters

We assumed that the deadline for the system from Fig.4

is equal to 100000 ns. The Power Aware Scheduler and the

optimized makespan were generated using DGP. During the

experiments, the following values of genetic parameters were

used:

• the evolution was stopped after 100 generations,

• each experiment was repeated 7 times,

• the population size was equal to 128,

• tournament size was equal to 10,

• the number of mutants in each generation, was equal to

20%,

• the crossover was applied for creation of 40% genotypes,

• 20% of individuals were created using reproduction.

The values of parameters described above were tuned

according to method described in our previous work [18],

thus we will describe it here very shortly. In the first step,

we estimated an influence of the tournament size. When this

parameter was too small, the evolution got stuck. When the

tournament size was too big, the DGP found semi optimal

solution very fast, but a further optimization was not possible.

Next, the influence of crossover and mutation for obtaining the

best solution has been tested. It has been done by searching

for the best solution using different combination of these

parameters. Thus the best values of these parameters have

been chosen. Finally, the best combination of other evolution

parameters has been evaluated.

C. Least-Laxity-First Algorithm

One of the most known algorithms for scheduling tasks

in real-time embedded systems is the Least-Laxity-First Al-

gorithm (LLF). Basic LLF method schedules task according

to the least laxity (slack time). The laxity is defined as a

difference between an execution time and a task deadline.

The goal of LLF is to find the schedule that satisfies all

deadlines. It does not take into account power or cost op-

timization. Therefore, we modify this method by favouring

energy-efficient cores. In other words, during scheduling, the

method first tries assign a task to low-power core, only when

it will violate the time constraint, the task will be assigned

to more efficient core. Our Low Power LLF (LPLLF) method

is used only for reference, to verify that the DGP is efficient

also for power optimization in real-time embedded systems.

D. Power-aware Scheduling

The makespans obtained using DGP and LPLLF meth-

ods are presented on Fig. 9. On Y-axis different cores are

represented, while the time of execution is represented by

the X-axis. Numbers correspond to the following tasks. The

experimental results proved that the presented method is more

efficient than LPLLF. Energy consumption for the system

scheduled using DGP equals 990mJ, while the same exam-

ple scheduled using LPLLF requires 1018mJ. To meet the

deadline, the LPLLF method assigned the long task 36 to

the most efficient core. But in the DGP, more energy-efficient

solution was found by assigning some shorter tasks, that in

total consume less power than task 36, to the faster core.

Above experiment showed that the scheduler constructed

using DGP is able to find highly optimized solutions. More

experiments proving this remark are given in our previous

work [16][17][18].

E. Self-adaptivity capabilities

Static scheduling is based on estimation of execution times

for all tasks. During the system operation, time of execution

may significantly be shorter (e.g. if the worst case estimation

was applied) or longer (e.g. in case of the most likely esti-

mation). Therefore, the system may be additionally optimized

during run-time, by using self-adaptive scheduling. In this way

certain system parameters (power consumption, performance)

may be improved. Scheduler generated using our method con-

sists of series of system construction functions, corresponding

to each gene. These functions are flexible, i.e. design decisions
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Fig. 9. Makespans obtained using LLF and DGP
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Fig. 10. Self-adaptation capabilities of power-aware scheduler
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are driven by preferences, they are not strictly defined. This is

necessary to assure that only feasible makespan will be cre-

ated. Flexibility of the system construction functions provides

to self-adaptivity capabilities of the scheduler.

An example of the self-adaptivity is presented on Fig. 10.

If the execution time of task 23 will be too long, then all

succeeding tasks should be postponed and the system would

exceed the deadline. But our scheduler adapts to the delayed

end time of task 23, and despite the fact that it uses the same

construction functions, some tasks (tasks 30 and 36 in our

example) will be assigned to more efficient cores (Fig. 10b).

In other case, if an execution time of a task 36 will be shorter

than it was expected, the scheduler will assign some tasks (task

37 in our example) to low power core (Fig. 10c). In this way

power consumption will be reduced.

To verify the capabilities of self-adaptivity of the scheduler

we performed some simulations of different changes in execu-

tion times for some task. Table V presents results obtained for

cases when execution times occurred longer than estimated.

In all cases our scheduler was able to adapt to this situation

and new makespans that satisfied the deadline were created.

Table VI presents results obtained for another cases, where

execution times for some tasks occurred shorter than expected,

i.e. estimation was too pessimistic. In such case the scheduler

has an opportunity to reduce the power consumption. It should

be noticed that in some cases the scheduler found more

energy-efficient makespans, but a lot of makespans were not

changed. The main reason is that in the most cases there was

not possible to improve the power consumption because all

remaining tasks were already assigned to low-power cores.

It is visible when we compare results obtained for different

deadlines. When the deadline is shorter than 95 000 there is

still a possibility for improvement. For longer deadlines, even

when all tasks were faster it was not possible to decrease the

power consumption.

VI. CONCLUSIONS

In this paper the method of automatic synthesis of power-

aware schedulers for real-time distributed embedded systems

was presented. Starting from the system specification in the

form of the task graph, we use developmental genetic pro-

gramming to optimize the scheduling strategy that minimizes

the power consumption. Finally, the best makespan as well

as the optimized scheduler are generated. The scheduler has

powerful capabilities of self-adaptation. This feature may be

used to dynamically minimize the power consumption as well

as to increase the system performance.

The presented method is dedicated to ARM big.LITTLE

technology, developed for a low power systems. But, since we

use general optimization method, it would be easily adapted

to other energy-efficient architectures.

The computational experiments confirmed, that the sched-

ulers, generated using DGP, are efficient and flexible. For the

sample system our method gave better results than results

obtained using LLF-based method. Moreover, simulations

showed that the scheduler is able to quickly and effectively

react to any changes of task execution times, by rescheduling

remaining tasks.

Despite the above advantages of our method, there is still

possible to improve the methodology. In the future work,

we will consider special types of adaptive genes, that could

support more possibilities for self-adaptation, we will also

consider using other scheduling methods, alternative to list

scheduling, e.g. based on mathematical/constrained program-

ming [21].
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0 (none) 95000 94463 - 0 1275
1 T8 + 32% 95000 96817 93404 1,9 1312
2 T15 + 20% 95000 94903 92766 0 1265
3 T29 + 51% 95000 94903 94903 0 1275
4 T33 + 43% 95000 94995 95039 0,04 1276

0 (none) 100000 99846 - 0 990
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