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Luka Fürst, Uroš Čibej, and Jurij Mihelič
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Abstract—Many practical problems are modeled with net-
works and graphs. Their exploration is of significant importance,
and several graph-exploration algorithms already exist. In this
paper, we focus on a type of vertex equivalence, called exploratory
equivalence, which has a great potential to speed up such algo-
rithms. It is an equivalence based on graph automorphisms and
can, for example, help us in solving the subgraph isomorphism
problem, which is a well-known NP -hard problem. In particular,
if a given pattern graph has nontrivial automorphisms, then each
of its nontrivial exploratory equivalent classes gives rise to a
set of constraints to prune the search space of solutions. In the
paper, we define the maximum exploratory equivalence problem.
We show that the defined problem is at least as hard the graph
isomorphism problem. Additionally, we present a polynomial-time
algorithm for solving the problem when the input is restricted to
tree graphs. Furthermore, we show that for trees, a maximum
exploratory equivalent partition leads to a globally optimal set of
subgraph isomorphism constraints, whereas this is not necessarily
the case for general graphs.

I. INTRODUCTION

Searching for patterns in structured data is one of the
most ubiquitous applications of computer algorithms in various
scientific areas. Such data is often modeled with graphs, which
efficiently represent diverse types of entities (modeled by
graph vertices) and relations between them (modeled by graph
edges) and also enable a more general and global view on the
data. In the era of ever-growing, even planetary-wide (social,
citation, traffic, etc.) networks [1], all of which can be naturally
modeled by graphs, graph representation and also algorithms
on graphs are becoming increasingly important. Applications
of graphs arise in various areas, ranging from chemistry [2],
[3], economy [4], politics [5], to popular culture [6].

In this paper, we focus on a general technique for speeding
up algorithms that search for patterns in graphs. The main idea
of our technique is to exploit symmetries of a graph, i.e., to
find equivalent vertices in such a way that if two vertices are
equivalent then the search algorithm could process only one
(and deduce the information about the other one).

The problem of finding equivalent vertices of a graph has
already appeared in the literature; see, for example, papers
on regular and structural equivalence [7], [8]. To the best
of our knowledge, our definition introduces a new form of
equivalence. We call it exploratory equivalence (EE), since its
primary intent is to be utilized in graph search algorithms; see
[9] for the introductory paper. Nevertheless, the exploitation
of symmetries of a problem to reduce the amount of time
for exploring the solution search space is not new. See, for
example, a method for solving 0/1 integer linear programs
having a large symmetry [10] or [11] for a similar method.
Another equivalence similar to ours, defined in [12], can also

be used for pruning the search space. However, our equivalence
is more general and, hence, has a greater pruning power.

To find the symmetries in a graph, the usual approach is
to find all graph isomorphisms (GI ), i.e., structure preserving
mappings. In particular, given two graphs, the graph isomor-
phism problem asks whether they are the same. Similarly, the
graph automorphism problem asks whether a graph can be
(non-trivially) mapped to itself. The GI problem has a special
place in the complexity theory, as it is a canonical example of a
possible candidate for an NP -intermediate problem. Ladner’s
theorem [13] tells us that if P is not equal to NP , then the
class of NP -intermediate problems is not empty. As a result,
a polynomial-time algorithm is unlikely for the GI problem.
Nevertheless, in practice, there are several efficient algorithms
and software packages for finding automorphisms of graphs,
e.g., NAUTY [14], [15], BLISS [16], [17], SAUCY [18], [19],
[20], and NISHE [21]. For some special cases of graphs, e.g.,
tree graphs [22], polynomial-time algorithms exist.

Based on automorphisms, one could define automorphic
equivalence, where two vertices are equivalent if and only
if there exists an automorphism that maps one to another.
Such equivalence classes are also called orbits. Notice that
exploratory equivalence is similar but not the same as auto-
morphic equivalence. Indeed, exploratory equivalence is more
restrictive.

In our preceding paper [9], we already presented the
definition of exploratory equivalences and the corresponding
problem of finding maximum exploratory equivalent parti-
tion of graph vertices, i.e., the MAXEXPLOREQ problem. In
this paper, we show that the MAXEXPLOREQ is GI -hard,
which means that a polynomial-time algorithm (in terms of
the number of graph vertices) is unlikely to exist. Hence,
it is reasonable to restrict the input to MAXEXPLOREQ to
selected subclasses of graphs. As the second contribution
of this paper, we present a polynomial-time algorithm for
solving MAXEXPLOREQ on an arbitrary tree. Thereby we
show that the restriction of MAXEXPLOREQ to trees is in
P . Additionally, we also show that for trees, a maximum
exploratory equivalent partition leads to a globally optimal
set of subgraph isomorphism search constraints. In particular,
when searching for a given tree in a given host graph using
the constraints derived from a maximum exploratory equivalent
partition of the tree, each of the occurrences of the tree in the
host graph will be discovered exactly once. For general graphs,
this is not necessarily the case.

The rest of this paper is structured as follows. In the next
section, we present mathematical notions needed for the rest
of the paper. In Section III, we present a motivational example
(based on the subgraph isomorphism problem) for exploratory
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equivalence. The definition of the MAXEXPLOREQ problem
is presented in Section IV. In Section V, we show that the
MAXEXPLOREQ problem is GI -hard. In Section VI, we
present a polynomial-time algorithm for solving the MAXEX-
PLOREQ problem on trees and determine its computational
complexity. Section VII presents an empirical demonstration
of the presented algorithm on the set of all small trees.
In Section VIII, we elaborate on the connection between
exploratory equivalence and subgraph isomorphism, with a
particular emphasis on trees. Finally, Section IX concludes the
paper.

II. PRELIMINARIES

Let G = (V,E) denote a simple undirected graph, where
V = {1, 2, . . . , n} is a set of vertices and E ⊆ V × V is
a set of edges. The graph can be labeled; let Σ denote a set
of labels, and let ℓV : V → Σ and ℓE : E → Σ denote the
functions that assign labels to individual vertices and edges,
respectively. An unlabeled graph can be viewed as a labeled
graph where all vertices and edges have the same label. A tree
is a connected acyclic undirected graph.

A (graph) homomorphism from a graph G = (V,E) to a
graph H = (U,F ) is a mapping h : V → U such that for each
(i, j) ∈ E it also holds that (h(i), h(j)) ∈ F . To simplify
notation, the homomorphism h : V → U will be denoted
h : G → H . An endomorphism is a homomorphism whose
domain is equal to its codomain, i.e., h : G→ G.

An isomorphism is a bijective homomorphism, i.e., a
mapping h : G → H such that (i, j) ∈ E if and only
if (h(i), h(j)) ∈ F . We write G ≃ H if there exists
an isomorphism from G to H; such graphs G and H are
called isomorphic. A subgraph isomorphism G → H is an
isomorphism between the graph G and a subgraph of the graph
H . A subgraph in H that is isomorphic to G is called an
occurrence of G in H .

An automorphism is both an endomorphism and an iso-
morphism, i.e., a mapping h : G → G such that (i, j) ∈ E if
and only if (h(i), h(j)) ∈ E. Note that every automorphism
is a permutation. The set of all automorphisms of a graph G
can be defined as

Aut(G) = {a ∈ Π[n] | G ≃ a(G)} (1)

where Π[P ] denotes the set of all permutations of a set
P and Π[n] ≡ Π[{1, 2, . . . , n}]. For example, the set of
automorphisms of the graph G in Fig. 1 can be denoted as
{123456, 123465, 124356, 124365, 215634, 215643, 216534,
216543}, where, e.g., 215643 denotes an automorphism h such
that h(1) = 2, h(2) = 1, h(3) = 5, h(4) = 6, h(5) = 4, and
h(6) = 3.

Given a (finite) set S, a family {P1, P2, . . . , Ps} of
nonempty subsets of S is a partition of S if every element
in S is exactly in one of the subsets, i.e., Pi ⊆ S and Pi 6= ∅,
where 1 ≤ i ≤ s,

⋃
1≤i≤s Pi = S, and Pi ∩ Pj = ∅ for all

1 ≤ i, j ≤ s with i 6= j. When the partition {P1, P2, . . . , Ps} is
given explicitly, we usually use {i ∈ P1 | i ∈ P2 | . . . | i ∈ Ps}
as a short form, e.g., {{1, 2}, {3}, {4}} is shortened to {1, 2 |
3 | 4}. In what follows, the order of the sets in a partition is
often important. To denote such an ordered partition, we use
the form 〈i ∈ P1 | i ∈ P2 | . . . | i ∈ Ps〉, e.g., 〈1, 2 | 3 | 4〉.

III. MOTIVATION

Given a pattern graph and a host graph, the goal of the
subgraph isomorphism problem is to find all (or at least one,
depending on the definition) occurrences of the pattern graph
in the host graph, i.e., the subgraphs of the host graph that are
isomorphic to the pattern graph.

Unfortunately, the decision version of the subgraph iso-
morphism problem is NP -complete [23], while its counting
version is #P -complete, since the counting version of the
clique problem is #P -complete [24]. Furthermore, not only
that it is unlikely that a polynomial-time algorithm exists,
but so far no exponential-time algorithm with a lower bound
better than what can be achieved by the naive enumeration of
the occurrences has been devised [25]. Most algorithms are
therefore based on a backtracking approach (e.g., [26], [27]).
In particular, the vertices of the pattern graph are matched with
those of the host graph until a match is found, using the vertex
neighborhood information to prune the search space.
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Graph G
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Graph H

Fig. 1. A sample pattern graph G and host graph H .

Let us assume that a given pattern graph G has m nontrivial
automorphisms. When searching for the occurrences of G in
a given host graph H , a search algorithm that establishes
all valid matches between G and subgraphs of H discovers
each of G’s occurrences m times, because the vertices of G
can be isomorphically mapped to the vertices of each of G’s
occurrences in m different ways. As an example, consider the
pattern graph G and the host graph H in Fig. 1. An algorithm
that is unaware of the eight automorphisms of G will find the
single occurrence of G in H eight times. In other words, it
will establish eight subgraph isomorphisms h : G→ H:

i hi(1) hi(2) hi(3) hi(4) hi(5) hi(6)

1 1 2 3 4 5 6
2 1 2 3 4 6 5
3 1 2 4 3 5 6
4 1 2 4 3 6 5
5 2 1 5 6 3 4
6 2 1 5 6 4 3
7 2 1 6 5 3 4
8 2 1 6 5 4 3

However, by imposing the constraints h(1) < h(2), h(3) <
h(4), and h(5) < h(6) while performing the exhaustive
subgraph isomorphism search, the sole occurrence of the graph
G in the graph H will be discovered exactly once, and this
regardless of the numbering of H’s vertices.

Motivated by this observation, we recently introduced the
so-called exploratory equivalence [9], on the basis of which
such constraints can be defined and safely imposed during
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the subgraph isomorphism search. Exploratory equivalence is
an automorphisms-based equivalence relation on the vertices
of a given graph; an exploratory equivalent partition (EE
partition) is a partition of the graph vertex set into a set
of exploratory equivalence classes. Every EE partition can
be directly translated into a safe set of search constraints,
where ‘safe’ means that the constraints never lead the algo-
rithm to miss any occurrence, regardless of the numbering
of the host graph vertices. In particular, an EE partition
{u11, . . . , u1k1

| u21, . . . , u2k2
| . . . | us1, . . . , usks

} (the
vertices u11, . . . , u1k1

constitute the first equivalence class,
etc.) gives rise to the constraint set {h(u11) < . . . < h(u1k1

),
h(u21) < . . . < h(u2k2

), . . . , h(us1) < . . . < h(usks
)}. In the

example of Fig. 1, one of the EE partitions of the graph G is
{1, 2 | 3, 4 | 5, 6}, and it leads to the above-mentioned set of
constraints.

If a graph G has nontrivial automorphisms, it has several
nontrivial EE partitions. All of them lead to a safe set of search
constraints. However, of particular interest is one that gives rise
to the set of constraints that results in the largest speedup when
searching for the occurrences of G. Such an EE partition is
called a maximum EE partition (‘a’ instead of ‘the’ because
there can be several of them), and the problem of finding such
a partition for a given graph is denoted MAXEXPLOREQ. In
our previous paper [9], we defined the problem and showed
two algorithms, both of which are polynomial only in the
number of automorphisms, rather than in the number of graph
vertices. Besides that, the algorithms fail to find a maximum
EE partition for all graphs, although counterexamples appear
to be very rare; for example, the second algorithm finds a
maximum EE partition for all but 2 graphs out of 261080
connected unlabeled undirected 9-vertex graphs.

IV. PROBLEM DESCRIPTION

Since the MAXEXPLOREQ problem is defined and thor-
oughly explained in our FedCSIS 2014 paper [9], we provide
a relatively brief review of the main definitions.

Definition 1 (cover): A set of permutations A ⊆ Π[n]
covers a set P ⊆ {1, . . . , n} if for every permutation σ of the
set P there exists a permutation a ∈ A such that a(i) = σ(i)
for all i ∈ P :

cover(A,P ) ≡ ∀σ ∈ Π[P ] ∃a ∈ A ∀i ∈ P : σ(i) = a(i). (2)

For example, the set Aut(G) for the graph G of Fig. 1 cov-
ers the set {3, 5}, since it contains both an automorphism for
which a(3) = 3 and a(5) = 5 (123456) and an automorphism
for which a(3) = 5 and a(5) = 3 (215634). For the graph
G′ of Fig. 2, the set Aut(G′) covers the set {1, 3, 5}, since it
contains an automorphism for each of the 3! permutations of
the set {1, 3, 5} (123456 for the permutation 135, 165432 for
the permutation 153, 321654 for the permutation 315, etc.)

Definition 2 (stabilizer): The stabilizer of a set A ⊆ Π[n]
with respect to a set P ⊆ {1, . . . , n} is the set of all
permutations in A that fix all elements of P :

Stab(A,P ) = {a ∈ A | ∀i ∈ P : a(i) = i}. (3)

For the graph G of Fig. 1, we have Stab(Aut(G), {1, 2}) =
{123456, 123465, 124356, 124365}, Stab(Aut(G), {3, 4}) =
{123456, 123465}, and Stab(Aut(G), {3, 5}) = {123456}.

1

2

3

4

5

6

Fig. 2. A sample graph G′.

Definition 3 (EE ordered partition): For a given graph
G = (V,E), an ordered partition 〈P1, P2, . . . , Ps〉 of V is
exploratory equivalent if for all i ∈ {1, . . . , s} we have

cover(Ai−1, Pi) and Ai = Stab(Ai−1, Pi),

where A0 = Aut(G).

For the graph G of Fig. 1, one of the EE ordered partitions
is 〈1, 2 | 3, 4 | 5, 6〉; the corresponding stabilizers are A1 =
{123456, 123465, 124356, 124365}, A2 = {123456, 123465},
and A3 = {123456}.

Definition 4 (EE partition): For a given graph G =
(V,E), a partition 〈P1, P2, . . . , Ps〉 of V is exploratory equiv-
alent if there exists an exploratory equivalent ordered partition
〈Pi1 , Pi2 , . . . , Pis〉 for a set of distinct indices ij ∈ {1, . . . , s}.

Figure 3 shows all EE partitions of the graph G in Fig. 1.

Fig. 3. The Hasse diagram of all EE partitions of the graph G of Fig. 1.
(The four partitions on the right-hand side are actually four separate vertices
in the diagram.)

As we mentioned in the introduction, an EE partition
determines a set of subgraph isomorphism search constraints.
For example, the EE partition {1 | 2 | 3, 4 | 5, 6} determines
the constraints h(3) < h(4) and h(5) < h(6), which can
be safely used when searching for subgraph isomorphisms
h : G→ H in an arbitrary host graph H . Since an EE partition
set with k vertices represents k! permutations of those vertices,
the corresponding constraint reduces the number of discoveries
of each occurrence of G in H by a factor of k!. The score of
an EE partition can thus be defined as follows:

Definition 5 (score of an EE partition): The score of an
EE partition {P1, . . . , Ps} is

∏s

i=1 |Pi|!.

The goal of the MAXEXPLOREQ problem is to find a
maximum EE partition, i.e., one with the highest score:
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Definition 6 (MAXEXPLOREQ): Given a graph G, find an
EE partition with the maximum score.

The sole maximum EE partition of the graph G of Fig. 1
is {1, 2 | 3, 4 | 5, 6}, with the score of 2! 2! 2! = 8. One of
the two maximum EE partitions of the graph G′ of Fig. 2
{1, 3, 5 | 2 | 4 | 6}, with the score of 3! 1! 1! 1! = 6. The other
is {2, 4, 6 | 1 | 3 | 5}. Note that {1, 3, 5 | 2, 4, 6} is not an EE
partition, since Stab(Aut(G′), {1, 3, 5}) = {123456} and the
resulting set of automorphisms covers only singletons.

For convenience, let us also define an exploratory equiva-
lent set and exploratory equivalent vertices:

Definition 7 (EE set): For a graph G = (V,E), a set P ⊆
V is exploratory equivalent if there exists an EE partition that
contains P .

For example, in the graph G of Fig. 1, the sets {3, 5},
{5, 6}, and {3, 6} are all exploratory equivalent. However, the
set {3, 5, 6} is not.

Definition 8 (EE vertices): Vertices v1, . . . , vk are ex-
ploratory equivalent if the set {v1, . . . , vk} is exploratory
equivalent.

We will now present an alternative interpretation of ex-
ploratory equivalence that will be used in some proofs. Let
V ′ = {v1, v2, . . . , vk} ⊆ V be a subset of vertices of an
unlabeled graph G = (V,E), and let Z1, Z2, . . . , Zk be
mutually distinct labels. Let Gj denote a copy of the graph
G in which the vertex vi (for i ∈ {1, . . . , k}) is labeled
σj(Zi), where σj (for j ∈ {1, . . . , k!}) represents the j-
th permutation of the set {Z1, . . . , Zk}. Now, the set V ′

is exploratory equivalent if the graphs G1, . . . , Gk! are all
mutually isomorphic. For instance, in the case of the graph G′

of Fig. 2, the set {1, 3, 5} is exploratory equivalent because all
3! graphs in Fig. 4 are mutually isomorphic.

Let P = 〈P1, P2, . . . , Ps〉 with Pi = {vi1, vi2, . . . , viki
}

be an ordered partition of the vertex set of an unlabeled graph
G, and let Z11, Z12, . . . , Z1k1

, Z21, Z22, . . . , Z2k2
, . . . ,

Zs1, Zs2, . . . , Zsks
be mutually distinct labels that do not

occur at any vertex in the graph G. Let Gr,j (1 ≤ r ≤ s)
denote a copy of the graph G in which the vertices vi1, vi2,
. . . , viki

(for i ∈ {1, . . . , r − 1}) are labeled Zi1, Zi2, . . . ,
Ziki

, respectively, while the vertices vr1, vr2, . . . , vrkr
are

labeled σj(Zr1), σj(Zr2), . . . , σj(Zrkr
), respectively, where

σj (for j ∈ {1, . . . , kr!}) represents the j-th permutation of
the set {Zr1, . . . , Zrkr

}. Now, the partition P is exploratory
equivalent if we have Gi,1 ≃ Gi,2 ≃ . . . ≃ Gi,ki! for each
i ∈ {1, . . . , s}. For instance, in the case of the graph G of
Fig. 1, the ordered partition 〈1, 2 | 3, 4 | 5, 6〉 is exploratory
equivalent because we have G1,1 ≃ G1,2, G2,1 ≃ G2,2, and
G3,1 ≃ G3,2 for the graphs of Fig. 5.

Alternatively, the partition P = 〈P1, P2, . . . , Ps〉 is ex-
ploratory equivalent if the set P1 is exploratory equivalent
and if for each i ∈ {2, . . . , s}, the set Pi remains exploratory
equivalent after the labels of the vertices of the sets Pj (for
all 1 ≤ j < i) have been fixed to Zj1, . . . , Zjkj

.

V. THE COMPLEXITY OF MAXEXPLOREQ

In this section, we show that MAXEXPLOREQ is at least as
hard as the graph isomorphism problem. We have the following
theorem:

Z1

1

2

Z2 3

4

Z35

6

G1

Z1

Z3Z2

G2

Z2

Z1Z3

G3

Z2

Z3Z1

G4

Z3

Z1Z2

G5

Z3

Z2Z1

G6

≃ ≃

≃ ≃

≃ ≃ ≃

Fig. 4. These 6 isomorphic graphs prove that the set {1, 3, 5} is exploratory
equivalent for the graph G′ of Fig. 2.
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1

Z12
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6G1,1

Z12 Z11

G1,2

Z11 Z12

Z21

Z22 G2,1

Z11 Z12

Z22

Z21 G2,2

Z11 Z12

Z21

Z22

Z31

Z32G3,1

Z11 Z12

Z21

Z22

Z32

Z31G3,2

≃

≃

≃

Fig. 5. The three pairs of isomorphic graphs proving that the ordered partition
〈{1, 2}, {3, 4}, {5, 6}〉 is exploratory equivalent for the graph G of Fig. 1.

Theorem 1: The MAXEXPLOREQ problem is GI -hard.

Proof: The theorem can be proved by a polynomial-
time reduction of the graph isomorphism problem to the
MAXEXPLOREQ problem. Let G and H be graphs for which
one would like to determine whether they are isomorphic. Let
us form a graph G′ by adding a vertex u0 to the graph G and
connecting it with all the vertices of G. In an analogous way,
let us form a graph H ′ from the graph H (we call the added
vertex v0). Now we solve the MAXEXPLOREQ problem on
the graph G′ ∪H ′, i.e., on the disjoint union of the graphs G′

and H ′. We claim that the graphs G and H are isomorphic if
and only if any maximum EE partition contains a set with at
least one vertex from G′ and at least one vertex from H ′. Let
us prove this.
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(If) If a maximum EE partition for the graph G′ ∪ H ′

contains a set with vertices u ∈ V (G′) and v ∈ V (H ′),
then there exists an automorphism that maps u to v and v
to u. Since the graphs G′ and H ′ are both connected, such
an automorphism can exist only if the graphs are isomorphic.
This implies that the graphs G and H are isomorphic, too.

(Only if) If the graphs G are H isomorphic, then an EE
partition for the graph G′ ∪H ′ cannot be maximum unless it
contains at least one set with at least one vertex from both
G′ and H ′. Indeed, in an EE partition that contains no such
set, one can always join the singletons {u0} and {v0} into an
EE set {u0, v0} and thus obtain an EE partition with a higher
score, since the vertices u0 and v0, owing to their degree, can
only be exploratory equivalent with each other (and they are,
if the graphs G′ and H ′, and of course also G and H , are
isomorphic).

Because of its GI -hardness, the MAXEXPLOREQ problem
for general graphs is unlikely to be solvable in polynomial
time. In the rest of this paper, we therefore restrict the problem
to trees.

VI. SOLVING THE MAXEXPLOREQ PROBLEM ON TREES

A. Prerequisites

Let a graph T = (V,E) be an arbitrary tree. For the
sake of simplicity, let us assume that the tree is unlabeled;
the algorithm could be fairly straightforwardly generalized to
labeled trees. Since T is an arbitrary unrooted tree, we will
only speak of leaves (vertices with degree 1) but not of the
root, parents, and children. Before showing an algorithm for
finding a maximum EE partition on T , let us present some
auxiliary definitions and claims.

Definition 9 (distance): The distance between vertices u
and v in a tree (denoted d(u, v)) is the number of edges on
the (unique) path from u to v.

Definition 10 (neighborhood): In a tree, the neighborhood
of a vertex u at a distance d is the subtree composed of all
vertices v such that d(u, v) ≤ d.

Definition 11 (eccentricity, center): The eccentricity of a
vertex u in a tree is the maximum distance between u and any
other vertex, i.e., e(u) = maxv∈V d(u, v). A center of the tree
is a vertex with minimum eccentricity.

Theorem 2: Any tree has either one or two centers. If it
has two, they are adjacent.

Proof: Let us focus on a longest path (several such paths
are possible) in the tree, and let u and v be the two extreme
vertices on that path. The distance between u and v is therefore
the greatest possible in the tree. The eccentricity of any vertex
w on the path is e(w) = max{d(u,w), d(v, w)}; it obviously
cannot be lower, but if it were greater, we could form a strictly
longer path in the tree (passing through w, one of u and v, and
the most remote vertex from w), contradicting our assumption.
Any center c of the tree has to be located somewhere on
the path from u to v, for if we had, say, a putative center
c′ outside of that path, then e(c′) = max{d(u, c′), d(v, c′)}
would be greater than e(c) = max{d(u, c), d(v, c)}. Since a
center is a vertex with the lowest eccentricity, we have only
two possibilities:

c1 c2

u

v

u′ v′

e

Fig. 6. An illustration of the proof of Lemma 3.

• If d(u, v) is odd, the tree has exactly one center c,
and it is located halfway between u and w, such that
d(c, u) = d(c, v).

• If d(u, v) is even, the tree has two adjacent centers c1
and c2 such that d(c1, u) = d(c2, v).

Lemma 3: Let c1 and c2 be the center(s) of the tree (by
Theorem 2, we may have c1 = c2). If vertices u and v are
exploratory equivalent, we have d(u, c1) = d(v, c2).

Proof: Let us assume that d(u, c1) 6= d(v, c2). Without
loss of generality, we may further assume that d(u, c1) <
d(v, c2). Consider Fig. 6. Let u′ be a leaf such that d(c1, u

′) =
e(c1) = e(c2) = e (since c1 is a center, such a leaf must
exist). Likewise, let v′ be a leaf such that d(c2, v

′) = e. Since
d(u, c1) < d(v, c2), we have d(u, u′) > d(v, v′). This means
that there is a leaf at the distance of d(u, u′) from u, but
there cannot be any leaf at the same distance from v. The
neighborhoods of u and v at the distance d(u, u′) are therefore
non-isomorphic, which implies that the vertices u and v cannot
be automorphically mapped to each other. Consequently, the
vertices u and v are not exploratory equivalent.

Definition 12 (centrifugal subtree): Let u be a vertex con-
nected with vertices v1, . . . , vk, and let vi, for some i ∈
{1, . . . , k}, be the sole vertex on the path from u to the
center(s) of the tree. The centrifugal subtree of the vertex u
is the tree composed of the vertex u and of all vertices on the
paths starting at u, passing through v1, . . . , vi−1, vi+1, . . . ,
vk, respectively, and finishing at leaves.

Informally, the centrifugal tree of a given vertex u contains
the vertex u and all vertices ‘below’ it in the direction away
from the center(s). The triangles in Fig. 6 represent the
centrifugal subtrees of the vertices u and v.

Lemma 4: If vertices u and v of the tree T are exploratory
equivalent, they have isomorphic centrifugal subtrees.

Proof: If the centrifugal subtrees are not isomorphic,
the vertices u and v cannot be automorphically mapped to
each other, since there exists some distance d at which their
neighborhoods are not isomorphic. Therefore, the vertices
cannot be exploratory equivalent.

Lemma 5: If vertices v1, . . . , vk of the tree T are connected
to the same vertex and all their centrifugal subtrees are
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mutually disjoint and isomorphic, then the vertices v1, . . . ,
vk are exploratory equivalent.

Proof: It is easy to see that the vertices v1, . . . , vk (and
with them the entire corresponding centrifugal subtrees) can
be automorphically mapped to each other in all k! possible
ways, which means that they are exploratory equivalent.

Lemma 6: Let the tree have two distinct centers, c1 and c2.
If the centrifugal subtrees of c1 and c2 are isomorphic, then
the centers c1 and c2 are exploratory equivalent.

Proof: Here, the same argument applies as in the proof
of Lemma 5.

Lemma 7: Let P = 〈P1, . . . , Ps〉 be an ordered partition
of the vertex set V such that the following holds:

• The set P1 is exploratory equivalent in the sense of
Lemma 5 or Lemma 6.

• Every set Pi with i > 1 is exploratory equivalent in
the sense of Lemma 5.

• If the vertices of Pj , together with their common
neighbor, all belong to the centrifugal subtree of some
vertex v ∈ Pi, then j > i.

If all the above conditions are met, the partition P is ex-
ploratory equivalent.

Proof: By Lemmas 5 and 6, the set P1 = {u11, . . . , u1k1
}

is exploratory equivalent. Let us fix the labels of u11, . . . ,
u1k1

to Z11, . . . , Z1k1
. Is the set P2 = {u21, . . . , u2k1

} still
exploratory equivalent? Yes, owing to the third condition in the
lemma, it holds that for each vertex u1i (i ∈ {1, . . . , k1}) the
centrifugal subtrees of the vertices u21, . . . , u2k2

are either dis-
joint from the centrifugal tree of u1i or completely contained
within it. In both cases, the vertices u21, . . . , u2k2

(and with
them the entire centrifugal subtrees) can be automorphically
mapped to each other in all k2! possible ways, even if the
vertices u11, . . . , u1k1

have distinct unique labels. The second
case is illustrated in Fig. 7. Since the same reasoning applies
all the way to the set Ps, we can conclude that the partition
is indeed exploratory equivalent.

c

u11 . . . u1k1

u21 u2k2
. . .

Fig. 7. An illustration of the second case in the proof of Lemma 7. The
subtrees represented by the two large triangles are isomorphic, and so are
those represented by the two small ones.

For the tree of Fig. 8, an ordered EE partition in the sense
of Lemma 7 is 〈17 | 15, 16 | 11 | 12 | 13 | 14 | 1, 2, 3 | 4, 5 |
6, 7 | 8, 9, 10〉. Non-singleton sets are represented by different
colors.

17

15 16

11 12 13 14

1 2 3 4 5 6 7 8 9 10

Fig. 8. A sample tree.

Lemma 8: If u and v are EE vertices at a distance greater
than 2, then there also exist EE vertices u′ and v′ at a distance
of at most 2.

Proof: Let us first assume that d = d(u, v) is even. Let
w be the sole vertex such that d(u,w) = d(v, w) = d/2.
Now let u′ and v′ be the neighbors of w on the paths from
w to u and w to v, respectively. The distance between u′

and v′ is therefore 2. We claim that the vertices u′ and v′

are exploratory equivalent if so are u and v. Indeed! The
automorphism that maps u to v and vice versa maps the entire
centrifugal subtree of u′ to the centrifugal subtree of v′ and
vice versa. In particular, u′ is mapped to v′ and vice versa,
which means that u′ and v′ are exploratory equivalent, too.
(However, note that the sets {u, v} and {u′, v′} cannot both
be part of the same EE partition!)

If d(u, v) is odd, then it follows from Lemma 3 that the
tree T has two distinct centers, c1 and c2, and that d(u, c1) =
d(v, c2). An automorphism that maps u to v (and v to u) also
maps c1 to c2 (and c2 to c1), implying that the vertices c1 and
c2 are exploratory equivalent, too.

Lemma 9: If u1, . . . , uk are EE vertices, then there also
exist EE vertices u′

1, . . . , u′
k such that d(ui, uj) ≤ 2 for all

distinct pairs i, j ∈ {1, . . . , k}. Furthermore, if k > 2, then
d(ui, uj) = 2 for all distinct pairs i, j ∈ {1, . . . , k}.

Proof: The first part of the lemma is a straightforward
generalization of Lemma 8. As for the second part, observe
that if distinct vertices u, v, and w are exploratory equivalent,
we cannot have d(u, v) = d(v, w) = 1 and d(u,w) = 2; such
vertices would then form a 3-vertex line subgraph u− v −w,
which can never have more than 2 automorphisms, but a set of
three vertices can be exploratory equivalent only if at least 3!
automorphisms exist. The case d(u, v) = d(u,w) = d(v, w) =
1 is clearly impossible in a tree, and so d(u, v) = d(u,w) =
d(v, w) = 2 remains as the only possibility.

Lemma 10: There exists a maximum EE partition P =
{P1, . . . , Ps} of the tree T such that for each i ∈ {1, . . . , s}
the distance between each pair of vertices in Pi is at most 2.

Proof: Let R = {R1, . . . , Rs} be a maximum EE parti-
tion such that a set R ∈ R does not conform to the conditions
in the lemma. By Lemma 9, the set R can be replaced by the
corresponding EE set R′ of vertices at a distance of at most
2. We now claim that the partition R′ = R \ {R} ∪ {R′} is
also exploratory equivalent. To see this, consider the operation
performed in the proof of Lemma 8. Let v be the vertex such
that d(v, u1) = . . . = d(v, uk). (If k = 2, such a vertex
might not exist, but then we have d(c1, u1) = d(c2, u2), and
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the same logic applies.) By replacing the EE set R = {u1,
. . . , uk} with the EE set R′ = {u′

1, . . . , u′
k} (where u′

1, . . . ,
u′
k are the neighbors of v on the paths from v to u1, . . . ,

uk, respectively), the resulting partition remains exploratory
equivalent, since an automorphism that maps ui to uj also
maps the entire path from v to ui to the path from v to uj

and since the selection of R into an EE partition precludes the
selection of any other set containing vertices on different paths
from v to u1, . . . , uk. However, the opposite is not necessarily
the case. While the choice of R′ does, of course, preclude
the selection of R, it might not rule out everything ‘between’
R′ and R. For instance, in the example shown in Fig. 8, it
would be unwise to select the EE set R1 = {1, 8} into an EE
partition, since the most we could then possibly attain would
be the partition {1, 8 | 2, 3 | 4, 5 | 6, 7 | 9, 10 | singletons}.
However, if we instead choose the set R′

1 = {15, 16}, we
can obtain the clearly better (and indeed maximum) partition
{15, 16 | 1, 2, 3 | 4, 5 | 6, 7 | 8, 9, 10 | singletons}.

The above lemma tells us that when searching for a
maximum EE partition, we may safely ignore any pairs of
vertices at the distance greater than 2. This important fact is
the basis for the algorithm we show below.

B. The algorithm

We are now ready to present a polynomial-time algorithm
that constructs a maximum EE partition for a given tree.
The algorithm is shown as Alg. 1. At the beginning, the
algorithm assigns the so-called ornament ∗ to each leaf of
the given tree; all other vertices are assigned the ornament ǫ.
The algorithm then proceeds in a reverse breadth-first fash-
ion: in each iteration, the vertices connected to the (current)
leaves that have at most one ǫ-ornamented neighbor receive
their ornaments, constructed from the ornaments of their leaf
neighbors. Simultaneously, the leaves are removed from the
tree. The output of the algorithm is a partition of the vertex
set of the original tree.

Figures 9 and 10 provide two examples for Alg. 1. The
numbers beside the vertices indicate the order in which the
ornaments are assigned to the vertices (of course, the order
within each iteration is arbitrary), while the boxes show the
ornaments. The vertices with the same non-white color belong
to the same set in the returned partition. For the tree of Fig. 9,
the algorithm thus produces the partition 〈9, 10 | 7, 8 | 5, 6 |
4 | 3 | 2 | 1〉. The partition for the tree of Fig. 10 is 〈8 | 6, 7 |
1 | 5 | 4 | 3 | 2〉.

9 10

7

8

5

6

1

2

3

4

∗

∗

∗

∗

(∗)

(∗)

(∗)

(∗)

((∗), (∗)) ((∗), (∗))

Fig. 9. The execution of Alg. 1 on a sample tree.

Algorithm 1 An algorithm for solving the MAXEXPLOREQ

problem on a given tree T .

1: function FINDMAXPARTITION(T = (V,E))
2: for all v ∈ V do orn(v)← ǫ

3: L← the set of leaves of T
4: for all v ∈ L do orn(v)← ∗

5: t← 0
6: while |V | > 2 do
7: W = {w ∈ V | (∃v ∈ L : (w, v) ∈ E) and
8: only one neighbor w′ of w has orn(w′) = ǫ}
9: for all w ∈W do

10: 〈r1, . . . , rm〉 ← the leaves connected to w,
11: lexicographically sorted by their ornaments
12: orn(w)← (orn(r1), . . . , orn(rm))
13: R← {r1, . . . , rm}
14: while R 6= ∅ do
15: r ← any vertex from R
16: t← t+ 1
17: Pt ← {r

′ ∈ R | orn(r′) = orn(r)}
18: R← R \ Pt

19: remove each vertex in Pt from T

20: L← the set of leaves of T
21: if |V | = 1 then return 〈V, Pt, Pt−1, . . . , P1〉
22: else
23: {u, v} ← V
24: if orn(u) = orn(v) then return 〈V, Pt, . . . , P1〉
25: else return 〈{u}, {v}, Pt, . . . , P1〉

8 7 5 3

6

4

2

1

∗
(∗, ((∗)), ((∗))) ((∗)) (∗)

∗

((∗))

(∗)

∗

Fig. 10. The execution of Alg. 1 on a sample tree.

Lemma 11: In each iteration, the algorithm removes from
the current tree all vertices that are farthest from the center(s)
of the current tree.

Proof: In each iteration, the algorithm removes all leaves
except those whose neighbor is connected to at least two non-
leaves. However, such leaves cannot be at the greatest distance
from the center(s).

Corollary 12: After each iteration, the center(s) of the
resulting tree are coincident with those of the original tree.

Corollary 13: The (at most two) vertices that remain in
the set V after the main loop of the algorithm are exactly the
center(s) of the tree.

Lemma 14: At the end of the algorithm, two vertices have
equal ornaments if and only if their centrifugal subtrees are
isomorphic.
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Proof: Since the algorithm proceeds from the leaves
towards the centers, it builds the ornaments of individual
vertices from the ornaments of their centrifugal subtrees. By
construction, the ornament of a vertex reflects the structure of
its centrifugal subtree. The lexicographical ordering ensures
that two vertices with isomorphic centrifugal subtrees also
have equal ornaments. As for the ‘only if’ part, consider
that vertices with non-isomorphic centrifugal subtrees cannot
possibly have equal ornaments; any valid ornament takes
the form (s1, s2, . . . , sk), where s1, . . . , sk are individual
subornaments, and there is exactly one way to split a valid
ornament into valid constituents. Therefore, it cannot happen
that two non-isomorphic subtrees ‘accidentally’ receive equal
ornaments.

Lemma 15: For a given tree, the ordered partition pro-
duced by the algorithm is exploratory equivalent.

Proof: First, the properties from Lemmas 5, 6, and 14
ensure that each set from the EE partition is individually
exploratory equivalent. Indeed, the algorithm adds a non-
singleton set to the partition only if all vertices from that set
have the same neighbor and isomorphic centrifugal subtrees.
Second, does the returned ordered partition 〈Ps, Ps−1, . . . , P1〉
(where s = t + 1 or t + 2, depending on the situation after
the main loop) conform to the conditions in Lemma 7, which
guarantee ‘EE-ness’? It does! The first two conditions are
clearly met; the two centers, if they exist and if they are
exploratory equivalent, constitute the set Ps. As for the third
condition, consider that the algorithm ‘peels’ the tree from the
leaves towards the centers and that the EE sets are stacked into
the partition in the reverse order. These facts ensure that the
centrifugal subtree of a vertex in Pj can be a subtree of the
centrifugal subtree of a vertex in Pi only if j > i.

Lemma 16: The EE partition produced by the algorithm
contains all possible EE sets P = {u1, . . . , uk} such that for
each distinct pair i, j ∈ {1, . . . , k} we have d(ui, uj) ≤ 2.

Proof: By Lemma 3, the vertices {u1, . . . , uk} of an EE
set all have the same distance from the center. If the distance
between each pair of them is at most 2, then they must be
connected with the same vertex or, if k = 2, the vertices u1

and u2 can also be the two centers of the tree. By Lemma 3,
EE vertices are always located at the same distance from the
tree center(s); by Lemma 4, they must also have isomorphic
centrifugal subtrees. The algorithm produces all such sets that
fulfill these conditions: (1) it considers all sets of vertices that
have the pairwise distance of exactly 2 and are located at the
same distance from the tree center(s); (2) if the tree has two
centers, the algorithm will, at the very end, certainly check
whether they have the same ornaments; (3) the algorithm adds
each such set of vertices to the output partition provided that
the vertices have isomorphic centrifugal subtrees.

Theorem 17: For a given tree, Alg. 1 produces a maximum
exploratory equivalent (ordered) partition.

Proof: By Lemma 15, the partition is exploratory equiv-
alent. By Lemma 10, every tree has a maximum EE partition
such that all pairwise distances in each EE set are at most 2.
Since, by Lemma 16, the algorithm constructs an EE partition
out of all such EE sets in the input tree, and since each of these
sets contains as many vertices as possible (owing to line 17

in Alg. 1), the output EE partition certainly has the maximum
score.

We have just proved that the algorithm indeed solves the
MAXEXPLOREQ problem for trees. To get an estimate on the
algorithm’s complexity, we proceed as follows. For each vertex
of the tree, one has to sort the signatures of its children (the
neighbors of that vertex in its centrifugal subtree). Each vertex
has O(n) children, and the length of each ornament is O(n),
giving O(n2 log n) to sort the signatures of the children of each
vertex. Since there are O(n) vertices, the total complexity of
the algorithm is O(n3 log n). We have the following theorem:

Theorem 18: Algorithm 1 is a polynomial-time algorithm
for tree graphs.

VII. MAXEXPLOREQ ON SMALL TREES

In order to give us some insight into the problem, we per-
formed a small empirical study of MAXEXPLOREQ on the set
of small trees. This analysis will show us how the symmetries
(that we can detect and exploit with MAXEXPLOREQ) are
present in the studied set of trees.

Since trees are a ubiquitous structure, there are a lot
of applications that can benefit from the symmetries found
with our algorithm. An application that directly relates to the
set of small trees is graphlet counting. In [28], the authors
present a method for counting graphlets by exploiting many
symmetries of small graphs (up to 5 nodes). Their method
is currently considered one of the best, and with the use
of MAXEXPLOREQ some of those symmetries could also
be used to count larger graphlets much faster than with the
straightforward approach.

For the analysis of this set of trees, we generated all
nonisomorphic unlabeled trees of sizes 2 to 20 (let us call the
set T 20

2 ) and computed MAXEXPLOREQ on every generated
tree. Table I gives the number of trees for each size; in
parentheses, we give the number of trees that have only the
trivial automorphism, i.e., all sets in the MAXEXPLOREQ

partition are singletons. Figure 11 shows the distribution of
MAXEXPLOREQ score in T 20

2 . This histogram shows that
maximum EE partitions are non-trivial in a vast majority of
trees.

To view the potential of MAXEXPLOREQ in more detail,
let us examine trees of different sizes separately. For each
separate set, we computed the median MAXEXPLOREQ score.
The resulting chart is shown in Fig. 12. From this chart, we
can see the potential speedup of at least half of the trees in the
set of all trees with the same size. For example, for the trees
of size 15, half of the trees have the potential speedup of 12,
and for larger trees the median value is even larger, implying
an almost exponential growth of the median value.

The two charts shown above demonstrate features of the
MAXEXPLOREQ score, but they do not show the structure
of individual partitions in any way. To show a feature of the
MAXEXPLOREQ partitions, we measured the frequencies of
the largest set in the partition (for each tree in T 20

2 ). Figure 13
shows the frequencies of these sets. In this histogram, we
can see that most of the partitions are composed of pairs and
triplets; the frequency of other partitions drops exponentially.
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TABLE I. NUMBER OF NONISOMORPHIC TREES OF A SPECIFIED SIZE. IN PARENTHESES, THE NUMBER OF TREES WITHOUT AUTOMORPHISMS IS GIVEN.

size 2 3 4 5 6 7 8 9 10 11

#trees 1 (0) 1 (0) 2 (0) 3 (0) 6 (0) 11 (1) 23 (1) 47 (3) 106 (6) 235 (15)

size 12 13 14 15 16 17 18 19 20

#trees 551 (29) 1301 (67) 3159 (139) 7741 (313) 19320 (671) 48629 (1487) 123867 (1487) 317955 (7264) 823065 (16137)
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Fig. 11. The histogram of the frequencies of MAXEXPLOREQ values
(logarithmic x axis) in T 20
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VIII. EXPLORATORY EQUIVALENCE AND THE SUBGRAPH

ISOMORPHISM PROBLEM

We motivated exploratory equivalence by its application
to the subgraph isomorphism problem. In this section, we
will establish the relationship between these two concepts in
more depth. First, note that there is a bijection between the
set of automorphisms of a pattern graph G and the set of
isomorphisms between G and each occurrence of G in an
arbitrary host graph H:

Lemma 19: If G′ is an occurrence of a graph G in a
graph H , then for each automorphism of G there exists an
isomorphism G→ G′, and vice versa.

Proof: A subgraph isomorphism between the graphs G
and H is an isomorphism between two copies of the graph
G (G and G′ in our case). An automorphism of G can
be interpreted in exactly the same way: as an isomorphism
between two copies of G.

Lemma 20: Let G = (V,E) be a pattern graph, and let G′

be its occurrence in a host graph H . If a set {v1, v2, . . . , vk} ⊆
V is exploratory equivalent, then there exists an isomorphism
h′ : G→ G′ such that h′(v1) < h′(v2) < . . . < h′(vk).

Proof: Without loss of generality, we may assume that the
graph G′ consists of the vertices u1, u2, . . . , uk such that u1 <
u2 < . . . < uk. Let h0 : G→ G′ be an isomorphism such that
h0(vi) = uσ(i) (for each i ∈ {1, . . . , k}), where σ is some
permutation of the set {1, . . . , k}. Since the set {v1, v2, . . . ,
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vk} is exploratory equivalent, there exists an automorphism of
G for each of the k! permutations of the set. One of those
automorphisms (e.g., h) has the property that h(vi) = vσ−1(i)

for each i ∈ {1, . . . , k}. Now, let us define the isomorphism
h′ = h0 ◦ h. For each i ∈ {1, . . . , k}, we have h′(vi) =
h0(h(vi)) = h0(vσ−1(i)) = ui and hence h′(v1) < h′(v2) <
. . . < h′(vk).

Theorem 21: Let G be a pattern graph, and let G′ be its
occurrence in a host graph H . If P = 〈P1, . . . , Ps〉 (where
Pi = {vi1, . . . , viki

} for i ∈ {1, . . . , s}) is an EE ordered
partition, then there exists an isomorphism h′ : G → G′ such
that h′(vi1) < h′(vi2) < . . . < h′(viki

) for all i ∈ {1, . . . , s}.

Proof: Since P1 = {v11, . . . , v1k1
} is an EE set, Lemma

20 ensures the existence of an isomorphism h1 : G→ G′ with
the property h1(v11) < h1(v12) < . . . < h1(v1k1

). Now, the
fact that P is an EE ordered partition implies that the set P2

remains exploratory equivalent even if we assign unique labels
to the vertices in P1. In other words, even if the set of all
possible isomorphisms h : G → G′ is restricted to those that
satisfy h(v11) < h(v12) < . . . < h(v1k1

), there will still exist
an isomorphism h2 : G → H such that h2(v21) < h2(v22) <
. . . < h2(v2k2

) (in addition to h2(v11) < . . . < h2(v1k1
)). The

same reasoning applies for P3, P4, etc., up to Ps. Therefore,
there exists an automorphism h′ such that h′(ui1) < . . . <
h′(uiki

) for all i ∈ {1, . . . , s}.

From Theorem 21, it follows that if P = {P1, . . . , Ps} is
an EE partition of a pattern graph G, we can safely impose the
constraints h(vi1) < . . . < h(viki

) (for each i ∈ {1, . . . , s})
while searching for subgraph isomorphisms h : G → H in
an arbitrary host graph H . However, these constraints are not
necessarily optimal in the sense of redundancy elimination:
they might not reduce the number of residual isomorphisms
between G and each of its occurrences in H to 1. For
example, consider the graphs G and H in Fig. 14. The set
of automorphisms of G (and simultaneously the set of G-to-
H isomorphisms) is {1234, 2341, 3412, 4123, 4321, 3214,
2143, 1432}, and the maximum EE partition is {1, 3 | 2, 4},
giving the set of constraints {h(1) < h(3), h(2) < h(4)}.
However, these constraints still retain two isomorphisms, 1234
and 2143. (In fact, two isomorphisms would remain regardless
of how the vertices of H were numbered.) This means that in
this case, the set of constraints resulting from the maximum
EE partition does not eliminate the entire redundancy in
subgraph isomorphism search and hence cannot be regarded
as optimal. Incidentally, the optimal set of constraints is
{h(1) < h(3) < h(4)}, but the partition {1, 3, 4 | 2} is not
exploratory equivalent.

1 2

34

Graph G

1 2

34

Graph H

Fig. 14. A sample pattern graph G and host graph H .

In the case of general graphs, a maximum EE partition
might lead to a suboptimal set of constraints because the

number of automorphisms might be greater than the score of
a maximum EE partition. In a tree, however, these two values
are exactly the same.

We will state the following lemma without a formal proof.
We can employ the same techniques as in the proofs of lemmas
and theorems of Section VI. In addition, note that the set of
automorphisms forms a group: if h and h′ are automorphisms,
then h ◦ h′ and h′ ◦ h are automorphisms, too.

Lemma 22: For any tree T , the following properties hold:

• If T contains an automorphism that maps a vertex u
to a vertex v, then the vertices u and v are exploratory
equivalent.

• Let c1 and c2 be the centers of the tree (we may also
have c1 = c2). If the tree has an automorphism h such
that h(u) = v, then (1) d(u, c1) = d(v, c2) and (2) the
centrifugal subtrees of u and v are isomorphic.

• For each nontrivial tree automorphism h, there exists
a pair of vertices u and v such that 1 ≤ d(u, v) ≤ 2
and h(u) = v.

• Let the set P = {v1, . . . , vk} be exploratory equiv-
alent. Let h and h′ be automorphisms such that
h(v1) = h′(v1) = σ(v1), . . . , h(vk) = h′(vk) =
σ(vk) for some permutation σ of the set P . If, on
top of that, h(u) = w1 and h′(u) = w2 with
{u,w1, w2} ∩ {v1, . . . , vk} = ∅ and w1 6= w2, then
the set W = {w1, w2} is exploratory equivalent
independently of the set P , which means that the sets
P and W can both be part of the same EE partition.

• If the sets of tree vertices P = {u1, . . . , up} and
Q = {v1, . . . , vq} are both exploratory equivalent
and if they cannot be extended by any other vertices
without becoming non-EE, then the number of distinct
automorphisms permuting the sets P and Q is equal to
p! q! only if (1) the centrifugal subtrees of the vertices
in P are all pairwise disjoint from the centrifugal
subtrees of the vertices in Q or (2) the vertices v1, . . . ,
vq are all part of the centrifugal subtree of a vertex ui

for some i ∈ {u1, . . . , up} (or vice versa). Otherwise,
the number of distinct automorphisms permuting the
sets P and Q is p! = q!. In this case, we must have
p = q, and each of the vertices of Q is located in the
centrifugal subtree of a different vertex of P (or the
other way around).

Theorem 23: Let P = 〈P1, P2, . . . , Ps〉 be the maximum
EE ordered partition obtained by Alg. 1 for a given tree T .
Then the number of automorphisms of T is |P1|! . . . |Ps|!.

Proof: If s = 1, the vertices of P1 can be mapped to each
other in all |P1|! ways, which means that there are at least
|P1|! automorphisms. However, the number of automorphisms
is exactly |P1|!. Suppose there were two automorphisms, h
and h′, for the same permutation of the set P1. In particular,
if P1 = {v1, . . . , vk}, suppose that h(vi) = h′(vi) = σ(vi) for
all i ∈ {1, . . . , k} and for some permutation σ of P1. For h and
h′ to be distinct, we must have, say, h(u) = w1 and h′(u) =
w2 with w1 6= w2 and u,w1, w2 ∈ V \ P1. However, in this
case, the set {w1, w2} is exploratory equivalent independently
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of the set P1 (Lemma 22) and is therefore part of the same
maximum EE partition as the set P1.

Now, let us assume that the theorem holds for some s > 1,
and let us verify that it also holds for s + 1. Indeed: for any
fixed permutation of the vertices in the set P1∪ . . .∪Ps, there
are exactly |Ps+1|! automorphisms, one for each permutation
of the set Ps+1, which, together with the inductive assumption,
gives the property stated in the theorem. The number of
automorphisms cannot possibly be more than that; if it were,
that would imply the exploratory equivalence of some set not
present in P (independently of the sets in P) or the fact that
the set Ps is not at the bottom of the centrifugal subtree
containment hierarchy (which would, in turn, imply that P
is not an EE ordered partition).

Theorem 23 implies the optimality of the subgraph isomor-
phism constraints derived from a maximum EE partition for
an arbitrary tree. In the search for occurrences of a pattern tree
T in an arbitrary host graph H , the use of these constraints
reduces the number of generated isomorphisms between T
and each of its occurrences in H to 1, thus eliminating the
automorphism-induced redundancy completely.

IX. CONCLUSION

Recently, we defined the so-called MAXEXPLOREQ prob-
lem, the goal of which is to find a maximum exploratory
equivalent (EE) partition of the vertex set of a given graph
G. This problem is closely related to the problem of finding
occurrences of a graph G in a graph H (the subgraph iso-
morphism problem), since every EE partition of G determines
a set of redundancy reduction constraints that can be safely
imposed during the subgraph isomorphism search. In the
MAXEXPLOREQ problem, we try to find an EE partition
that gives rise to the optimal set of constraints in terms of
redundancy elimination in subgraph isomorphism search.

In this paper, we proved that MAXEXPLOREQ is GI -hard,
which means that it is unlikely to be solvable in polynomial
time. For this reason, we restricted the MAXEXPLOREQ prob-
lem to an important subclass of graphs — the class of trees.
By devising a polynomial-time algorithm, we showed that the
restricted MAXEXPLOREQ problem belongs to the complexity
class P . Our algorithm finds a maximum EE partition in time
O(n3 log n), where n is the number of vertices of the input
tree. Note that in contrast to the algorithms presented in our
previous paper [9], Alg. 1 does not require or enumerate the
set of automorphisms of the given tree. If it did, it could not
possibly run within polynomial-time bounds, since the number
of automorphisms for a tree with n vertices can be up to
(n− 1)!.

Besides that, we showed that the score of the maximum
EE partition is equal to the number of automorphisms in the
case of trees, but not necessarily in the case of general graphs.
For any tree, a maximum EE partition thus gives rise to an
optimal set of subgraph isomorphism search constraints.

To demonstrate the large potential of MAXEXPLOREQ, we
performed a small empirical study on the set of all trees of
sizes 2 to 20. The study demonstrates that large speedups could
be obtained in various search algorithms, especially for finding
tree-shaped patterns in larger structures. The automorphisms

on trees have been, of course, well known for a long time;
however, our algorithm finds the partition of nodes that can
be completely interchanged in search algorithms, and thus we
give an explicit recipe on how to exploit these symmetries.

Could we apply the approach presented in this paper to
general graphs? The GI -hardness of the MAXEXPLOREQ

problem does not offer much hope to find a polynomial-time
algorithm for arbitrary graphs. Nevertheless, the lemmas and
theorems of Section VI — if, of course, they could really be
extended to arbitrary graphs in some way — might at least
give rise to a relatively efficient branch-and-bound algorithm
for finding a maximum EE partition. However, a number of
problems will have to be solved before arriving at a viable
algorithm. A general graph might have an arbitrary number of
centers, and it is not yet clear whether the concepts such as
‘centrifugal subtree’ could be generalized at all.
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