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Abstract—We propose a variant on the well-known Ant Colony
Optimization (ACO) general framework where we introduce the
environment to play an important role during the optimization
process. Together with diversification and intensification, the
environment is introduced with the aim of avoiding the search
to get stuck at local optima. In this work, the environment is
simulated by means of the Logistic map, that is used in ACO for
perturbing the update of the pheromone trails. Our preliminary
experiments show that our environmental ACO (eACO), with
variable environment, outperforms the standard ACO on a set
of instances of the GPS Surveying Problem (GSP).

I. INTRODUCTION

G
LOBAL optimization consists in finding the global op-

timum of a given objective function which is gener-

ally subject to a given number of constraints. Many real-

life problems can be formulated as a global optimization

problem where the objective function often contains several

local optima. A major issue in solving such problems is to

“escape” from local optima for converging towards the global

optimum of the objective function [12].
Meta-heuristics are general-purpose methods for global op-

timization. They are usually based on the simulation of animal

or natural behaviors. They consist in a list of actions (generally

repetitive) to be performed for finding an approximation of

the global optimum of a given (and generally hard) opti-

mization problem [23]. In recent years, several meta-heuristic

approaches have been proposed in the scientific literature. A

classical example is the Simulating Annealing (SA) proposed

in the 80s, which is still used in some applications, such as the

ones where it is necessary to deal with biological molecules

[16]. Other well-known examples of meta-heuristics are the

Genetic Algorithms (GAs), Differential Evolution (DE), the

Tabu Search (TS), the Variable Neighborhood Search (VNS),

etc. In this paper, we consider the Ant Colony Optimization

(ACO) approach (see Section II-A). For a quick survey on

meta-heuristics and the main references for the meta-heuristics

mentioned above, the reader can refer, for example, to [17].

Every meta-heuristic is developed in order to find the

best trade-off between two main concepts: diversification and

intensification [23]. While the former tries to widely extend

the search in the domain of the optimization problem, the latter

improves candidate solutions by focusing on local neighbors

of the current best known solutions. In ACO, diversification

is guaranteed by the simulation of the typical ant behavior,

while intensification is performed by applying a local search

to a set of candidate solutions.

In this work, we introduce the environment in our ACO

implementation. Pheromone updates are not supposed to be

performed only on the basis of found solutions, but also on

the basis of the current environment “surrounding” the ants.

As an example, particular real-life environment conditions,

such as strong wind, may alter the perception of the de-

posited pheromone. We will simulate environment changes by

employing the Logistic map [25]. This simulation will help

our artificial ants to escape from local optima, which may

otherwise focus on firstly discovered paths and completely

skip better ones. We warn the reader that the Logistic map has

already been employed in optimization for performing chaotic

searches [3], [26]. However, its use is different from the one

considered in this work for the simulation of environment

changes.

This paper is organized as follows. In Section II, we will

extend the classic ACO approach for managing environment

changes, which will affect the fitness values used in the

pheromone updating rule during the execution of ACO. We

will refer to our extended ACO as “environmental ACO”

(eACO). In Section III, we will describe the problem we

consider in our preliminary computational experiments: the

GPS Surveying Problem (GSP). Computational experiments

will be presented in Section IV: they show that our eACO,

with environment changes, outperforms the standard ACO on

the set of considered instances. Finally, conclusions will be

given in Section V.
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II. ACO WITH ENVIRONMENT CHANGES

We propose an extension of ACO for managing variable

environments during the execution of the meta-heuristic. In

Section II-A, we give a brief overview of this meta-heuristic

search, and the reader who is interested in additional details

is referred to the references given in the same section. In

our ACO implementation, the pheromone updating rule is

modified in order to take into consideration the current envi-

ronment, and not only the objective function values of obtained

solutions. Section II-B shows how to simulate environment

changes in ACO. The environment is simulated by means of

the Logistic map.

A. Ant Colony Optimization

Ants foraging for food deposit a substance named

pheromone on the paths they follow. An isolated ant would just

move randomly. Ants encountering previously laid pheromone

marks are however stimulated to follow the same paths. This

way, the pheromone trails are reinforced around the optimal

ones, so that the probability for the other ants to follow optimal

paths increases with time. The repetition of this mechanism

represents the auto-catalytic behavior of ant colonies in nature

[1], [6].

Ant Colony Optimization (ACO) is inspired by this ant be-

havior. A colony of artificial ants working into a mathematical

space is simulated. These ants search for candidate solutions

of a given optimization problem, while possible paths are

marked by artificial pheromone for guiding other ants in the

regions of the search space where good-quality solutions were

already found. In ACO, therefore, the artificial ants generally

create a sort of environment by themselves, by depositing

the pheromone on marked paths. As explained in details in

Section II-B, we will perturb this environment by means of

the Logistic map.

The ants’ search space is represented by the so-called con-

struction graph, which is a weighted graph GC = (SC,EC,η)
where vertices in SC are solution components and edges in

EC indicate the possibility to combine the two connected

components for obtaining a partial solution. The weight η :

(u,v) ∈ EC −→ ℜ associated to each edge (u,v) is named

heuristic information, whose equation is generally tailored to

the problem at hand. A path on GC allows to combine several

partial solutions and to construct one complete solution.

Alg. 1 is a sketch of the ACO-based meta-heuristic. The

transition probability puv, necessary in the algorithm when the

ants need to decide on which edge (u,v) to walk, is based on

the heuristic information ηuv and on the current pheromone

level τuv:

puv = τα
uvηβ

uv

[

∑
(u,w)∈ES :w 6⊂X

(

τα
uwηβ

uw

)−1
]

, (1)

where α and β are transition probability parameters. When the

algorithm starts, small positive values are given to every τuv,

which represent the current pheromone values on the edges

(u,v) ∈ EC. Then, every time a new solution is identified, the

Algorithm 1 Ant Colony Optimization

1: ACO (in: N, GC, α, β; out: Xbest)

2: let Xbest = /0;

3: while (stopping criteria not satisfied) do

4: for (k = 1, N) do

5: place kth ant on a random vertex u ∈ SC;

6: let X = {u};

7: while (X is incomplete) do

8: select the vertex v in the star of u having higher

probability puv (see equ. (1));

9: let X = X ∪{v};

10: let u = v;

11: end while

12: update pheromone (see equ. (2));

13: apply local search starting from X (optional);

14: if (X is better than Xbest) then

15: let Xbest = X ;

16: end if

17: end for

18: end while

edges considered by the ants are marked with a new level

of pheromone. In ACO, one possible updating rule (for a

minimization problem) is the following:

τuv = τuv +
1

f (X)
, (2)

where X is the current solution, and f is the objective function

of the considered problem.

In ACO, the general ant behavior allows to perform a wide

search on the search domain (diversification), while the local

search (see line 13 in Alg. 1) from constructed solutions X

allows to focus on promising neighbors (intensification). Our

implementation of ACO makes use of MaxMin Ant System

(MMAS). The reader is referred to the paper [22] for a wider

explanation of the ACO implementation considered in this

work.

B. Simulating the environment

The Logistic map is a quadratic dynamical equation pro-

posed in 1938 as a demographic model [25]. It is a rather

simple quadratic polynomial

xn+1 = rxn(1− xn), n > 0, (3)

where xn represents the population size at time n and r is

a constant, named growth coefficient. Given x0 ∈ [0,1] and a

value for r ∈ [0,4], this dynamical equation can either converge

or be chaotic. In the first case, given any x0 ∈ [0,1], xn tends

to the so-called “attraction domain”. In the second case, xn

never converges, but it can rather take, in an apparent random

way, any possible value in the range [0,1].
Fig 1 shows the behavior of the Logistic map for different

values of r in the range [2,4] (its behavior is linear in the

range [0,2]). On the x-axis, we consider a discrete subset of

3000 equidistant values for r between 2 and 4; on the y-axis,
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Fig. 1. The behavior of the Logistic map for different values of r (on the x-axis, for r = 2 to 4 in the figure). The attraction domain can be either regular or
chaotic.

for every considered value for r, we report the corresponding

attraction domain. In order to identify the attraction domains,

we take 1500 equidistant points in the interval [0,1] and we

apply equation (3) 1000 times for each of them. For small

values of r, the Logistic map always converges to one single

point, i.e. the attraction domain consists of one point only.

The first bifurcation appears when r = 3, where the attraction

domain consists of 2 points; then there is another bifurcation

when r = 1+
√

6, where the attraction domain consists of 4

points. For larger values for r, the Logistic map experiences

other bifurcations, and it can be chaotic for some subintervals

of r. However, in these chaotic regions, it is still possible

to identify regular attraction domains. For example, in Fig 2,

the same graphic reported in Fig. 1 is zoomed in the region

r = [3.901,3.908], where this phenomenon is clearly shown.

Regular regions, that can be glimpsed in Fig. 1, still contain

bifurcations. Moreover, we can notice that the whole graphic in

Fig. 1 reappears in our zoomed region. Other regular attraction

domains can be identified by looking at tighter subintervals of

r, as well as other copies of the entire graphic. The graphic

in Fig. 1 is in fact a fractal, because of its self-similarity [7],

[19].

We simulate regular and chaotic changes of environment in

ACO by introducing the Logistic map in equation (2), which

is used in ACO for updating the pheromone trails. In the

hypothesis the objective function of the considered problem

is positive and greater than 1, the term 1/ f (X) in equation (2)

has always values ranging between 0 and 1. It can therefore

take the place of x0 in the Logistic map, so that a perturbed

value x1 can be computed, for a given value of r in [0,4]. The

equation for updating the pheromone therefore becomes:

τuv = τuv + r · 1

f (X)
·
(

1− 1

f (X)

)

. (4)

With this simple change in the rule for updating the

pheromone, we artificially perturb the environment of the ants,

which would otherwise only depend on the solution fitness

values. Different values for r can produce different environ-

ment changes, depending on the behavior of the Logistic map.

For values of r for which the Logistic map converges, the

pheromone levels added to τuv tend to be constant, reducing

in this way the effects of good-quality solutions, that might

mislead the ants towards a local optimum. For values of

r for which the Logistic map behaves instead chaotically,

the environment is dominant on the choices of the ants,

as the pheromone update mostly depend on the simulated

environment, rather than on the actual fitness value.

We refer to ACO with environment changes as environmen-

tal ACO (eACO). In this work, we present some preliminary

experiments (see Section IV) where eACO is employed for

solving the GSP (see next section).

III. GPS SURVEYING

The Global Positioning System (GPS) was originally de-

veloped in the US for military purposes, even if it was soon

after used as well for civil applications [11]. It consists of a

certain number of satellites that constantly orbit around earth

and that are provided with sensors able to communicate with

machines located on earth. The power that is necessary for

establishing a satellite-earth communication allows for esti-

mating the distance between the two communicating machines.

Since the machine located on earth lies over a sphere that

does not contain the satellite, a very precise information about

the distance between the earth surface and the satellite would

allow for determining the precise location of the machine on

earth [15]. Moreover, the precision in locating sensor machines

on earth can still be high when the distance information is

not very precise, but the communication with more than one

satellite can be established [14].
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Fig. 2. The behavior of the Logistic map for values of r in the interval
[3.901,3.908]. This region of the Logistic map is generally chaotic, but regular
attraction domains (with the typical bifurcations) can still be identified.

GPS technology can in fact provide very accurate locations

for all sensors forming a given sensor network. The related

costs can however be too high when it is necessary to deal

with large networks. For this reason, over the last years,

researchers have been trying to design and install local ground

networks having the task of recording satellite signals with

the aim of decreasing the overall network functioning cost

[5], [20]. A network is composed by a certain number of

receivers working at different stations in different moments.

Therefore, given a certain number of sessions, representing the

temporarily assignment of a given number of receivers to a set

of distinct stations, the problem is to find a suitable order for

such sessions for reducing the overall cost. This cost is in fact

strictly related to the order of the sessions, because receivers

need to be moved from one station to another when stepping

from one session to another. Therefore, the distance between

two involved stations is important for the computation of the

costs. However, there are also additional costs that we might

need to consider: if the number of working days necessary

to perform the operation is more than one, then the need of

planning an over-night stop at a company office can make the

cost of the operation increase. The session order is also named

session schedule. Generally, in order to alleviate the impact

of measurement errors in the data, at least two receivers per

session are considered [24].

The GPS Surveying Problem (GSP) can be formalized as

follows. Let

S = {s1,s2, . . . ,sn}

be a set of stations, and let

R = {r1,r2, . . . ,rm}

be a set of receivers, with m < n. Sessions can be defined

by a function σ : R −→ S that associates one receiver to one

station. Considering that no more than one receiver should be

assigned to the same station, σ can be represented by an m-

vector (ς1,ς2, . . . ,ςm) containing, for each of the m receivers,

the labels of the chosen stations. Since m < n (and generally

fixed to 2 or 3 in the applications), the number of permutations

of m objects from n distinguishable ones is n!/(n−m)!, which

can be huge when the network is large. Notice, however, that

not all permutations may actually be possible, depending on

the problem at hand.

Let C be an n× n matrix providing the costs c(ςu,ςv) for

moving one receiver from the station ςu to the station ςv. This

matrix can be symmetric when moving between ςu and ςv is

independent from the directionality; the non-symmetric case

is however more realistic.

An instance of the GSP can be represented by a weighted

undirected multigraph G = (V,E,c) where vertices represent

sessions σv and arcs (σu,σv) indicate the possibility to switch

from session σu to session σv. The upper bound on the

cardinality of V is n!/(n − m)!, which corresponds to the

maximum number of possible sessions. The weight associated
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ACO eACO
instances |V | r = 1 r = 2 r = 3 r = 4

Malta 38 899.50 897.00 897.00 897.00 900.33
Seyshels 71 922.06 905.73 905.60 887.33 906.73
kro124p 100 40910.60 40725.40 40799.30 40753.00 40803.76
ftv170 171 3341.93 3314.20 3313.76 3319.83 3338.53
rgb323 323 1665.90 1654.40 1648.66 1649.43 1649.53
rgb358 358 1692.66 1679.63 1689.00 1682.80 1685.95
rgb403 403 3428.56 3413.63 3392.23 3393.76 3386.10

rgb443 443 3765.80 3749.93 3742.86 3742.43 3754.50

TABLE I
COMPARISON BETWEEN ACO AND eACO ON A SET OF GSP INSTANCES.

to the arcs provides the cost c(σu,σv) for moving every

receiver from the station ςu,i to the station ςv,i, for each i:

c(σu,σv) =
m

∑
i=1

c(ςu,i,ςv,i).

The graph G is not simple in general, because it might be

feasible to switch from session σu to session σv, as well as

from σv to σu, but with a different total cost. The problem

consists in finding an optimal path on G, i.e. a path for which

all selected arcs give the minimal total cost, while covering

the entire vertex set V [5].

The GSP can be seen as the classic Traveling Salesman

Problem (TSP), which asks for determining the optimal route

for a salesman to visit a given number of cities while mini-

mizing the traveled distance [13]. If the two cities are replaced

with sessions σv and the distances are replaced with the

weights associated to the arcs (σu,σv) of our graph G, the

equivalence between the two problems becomes evident. More

precisely, since the weights on the arcs (σu,σv) and (σv,σu)
are generally different, GSP better fits with the Asymmetric

TSP (ATSP), where distances between the cities depend upon

the order in which the cities are reached. Finally, we also

remark that the necessity of an over-night office stop can be

formalized by adding a fictive session in G where receivers

come back to base offices. This special session might need to

be “traveled” more than once: we can therefore say that, in

general, the GSP can be seen as a Multiple Asymmetric TPS

(MATSP) [2]. The TSP and these variants are NP-hard [18].

Therefore, the GSP is NP-hard as well.

First attempts for solving the GSP were based on the

idea of transforming GSP instances into instances of the

class of TSP-like problems, and to employ existing methods

and algorithms. In [4], a branch-and-bound approach was

employed, which is actually able to find the optimal solutions

for small GSP instances. As the size of the networks increases,

the complexity grows and the time necessary for a branch-and-

bound to converge becomes prohibitive. On the other side,

in real-life applications, there is generally the need to obtain

GSP solutions as fast as possible, even if only approximated

ones. Therefore, heuristic approaches particularly developed

for this application have been proposed over the last years

for identifying optimal or near-optimal session orders [8], [9],

[20]. In this work, we consider a set of instances of the GSP for

testing our ACO approach with environment changes described

in Section II.

IV. COMPUTATIONAL EXPERIMENTS

We apply our eACO (see Section II) for solving instances of

the GSP (see Section III). In this application, the construction

graph GC corresponds to the weighted undirected multigraph

G where vertices are sessions σu and edges indicate the

possibility to switch from one session to another. As test

cases, we consider data from two real networks: Malta [20],

composed by 38 sessions, and Seychelles [21], composed by

71 sessions. We also consider larger instances designed for

testing the ATSP, which are freely available on the Internet.1

Our eACO implementation is based on Alg. 1, where the

transition probability puv is computed by equation (1), and the

pheromone update is performed by applying equation (4). The

heuristic information ηuv is given by the formula:

ηuv =
1

c(σu,σv)
,

where c(σu,σv) is the total cost for switching from session

σu to session σv (see Section III). Finally, the values for the

transition probability parameters α and β are fixed to 1 and 2,

respectively. These values were identified in previous works

as the optimal ones for ACO when solving instances of the

GSP [10]. In the following experiments, we will focus on the

quality of the found solutions, rather than on the algorithms’

performances. In fact, the increase in complexity for using

equation (4), rather than equation (2), can be neglected when

considering the overall algorithms’ complexity. We do not

compare our results to the best results currently known for the

considered instances. In the present work, our aim is not to

improve those results, but only to give a preliminary validation

to the usefulness of the presented idea.

Table I shows some computational experiments for different

values of r. Average values over 30 runs are reported in the

table. eACO is able to identify better quality solutions in all

experiments and for almost all used values for r. This shows

that, in fact, a variable environment for the ants, instead of

a constant one, gives benefits to the search. For values of r

equal to 1, 2 and 3, the Logistic map converges to one unique

value; it is instead chaotic for r = 4. It seems therefore that

1http://www.informatik.uni-heidelberg.de/groups/comopt/

software/TSLIB95/ATSP.html
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the best results can be achieved when the environment tends to

homogenize the pheromone trails. Notice, however, that only

one experiment with r = 4, when the environment is chaotic,

was not able to provide a better solution (w.r.t the one provided

by the standard ACO).

V. CONCLUSIONS

We introduced a variant of ACO where the ant environment

is not constant but it is rather subject to change over time. This

way, in our ACO implementation, there are less chances for

the meta-heuristic search to be trapped at a local optimum. In

this work, we have tested this idea on instances of the GSP. In

order to simulate the environment in our eACO, we employed

the well-known Logistic map, which can have either a regular

or a chaotic behavior, depending on the values assigned to its

parameter r.

We believe this is the first research contribution where an

“environment” is introduced in a meta-heuristic search. In this

work, we showed that this novel idea seems to be promising

when working with ACO. Evidently, the idea still needs to be

studied in details from a theoretical point of view, as well as

from a practical one. The effect of a suitable environment

should be studied in conjunction with other meta-heuristic

frameworks. Moreover, a much wider experimental analysis

should be performed, on a larger set of instances of the GSP,

as well as on instances of other known hard problems. This

will be our main direction for future works.
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