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Abstract—The generalized Wiener polarity index Wk(G) of a
graph G = (V,E) is defined as a number of unordered pairs
{u, v} of G such that the shortest distance between u and v is
equal to k:

Wk(G) = |{{u, v}, d(u, v) = k, u, v ∈ V (G)}|

In this paper we give some results for 2-trees in case of mentioned
index. We present an infinite family of 2-trees with maximum

value of generalized Wiener polarity index.

I. INTRODUCTION

L
ET G = (V (G), E(G)) be a connected, simple graph
with V (G) the vertex set and E(G) the edge set. Let

n be the number of vertices and m the number of edges. By
d(u, v) we denote the distance between two vertices u and v in
the graph G. What we call a diameter diam(G) is the longest
distance between two vertices of G. The degree of the vertex
u in the graph G is denoted by deg(u). Other definitions, not
mentioned here can be found in [1].
The Wiener polarity index of a graph G = (V (G), E(G)) is
defined as

WP (G) = |{{u, v} : d(u, v) = 3;u, v ∈ V (G)}|

which is a number of unordered pairs of vertices {u, v} of G
such that d(u, v) = 3. Authors of [4, 5, 7, 13] studied this
index for trees with different parameters such that number of
pendant vertices, diameter or maximum degree. Additionally,
in [12] there are described algorithms for counting Wk(T ) for
trees.
The generalized Wiener polarity index of a graph G =
(V (G), E(G)) is defined as

Wk(G) = |{{u, v}, d(u, v) = k, u, v ∈ V (G)}|

which is a number of unordered pairs of vertices {u, v} of G
such that the distance between u and v is equal to k.
Let us now remind the definition of the Wiener index W (G)

W (G) =
∑

{u,v}⊆V (G)

d(u, v) =
1

2

∑

v∈V (G)

D(v),

where D(v) =
∑

u∈V (G) d(u, v) is the sum of all distances
from the vertex v. As we can see W (G) is defined as the
sum of the distances between all pairs of vertices in the

graph G. Note that: W (G) =
∑diam(G)

k=1 kWk(G). The Hosoya
polynomial (Wiener polynomial) of G in x is defined as
follows

W (G, x) =
∑

u,v∈V (G)

xd(u,v) =

diam(G)
∑

k=1

Wk(G) · xk

More information about Hosoya polynomial the reader can
find in [9].
The applications of mentioned indices are described in the
papers [2, 3] and also in [9, 10]. Probably the best known
topological index is the Wiener index and this is the one
described by many authors, for example [2, 8].

II. GENERALIZED WIENER POLARITY INDEX

In case of generalized Wiener polarity index for trees there
are some known results presented in [12]. Let T be a tree. If
k = 1 then W1(T ) = m, where m is the number of edges. If
k = 2 then

W2(T ) =
∑

v∈V (T )

(

deg(v)

2

)

=

∑

v∈V (T ) deg
2(v)

2
−m

=
M1(G)

2
−m

where M1(G) is the first Zagreb index of a graph. For
detailed information on Zagreb indices the reader is referred
to [11].
If k = 3 we have

W3(T ) =
∑

uv∈E(T )

(deg(v)− 1)(deg(u)− 1)

=
∑

uv∈E(T )

deg(u)deg(v)−
∑

v∈V (T )

deg2(v) +m

= M2(T )−M1(T ) +m

where M2(T ) is the second Zagreb index of a graph.

Let us now assume that k ≥ 3. In a situation when
diameter of T is less than k we have Wk(T ) = 0 and that is
why the minimum value of Wk(T ) is equal to zero. This is
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achieved for all trees for which diam(T ) < k. Actually, this
is simple fact for each graph.

Now we will study the generalized Wiener polarity index
for 2-trees. Let us define a 2-tree first. The smallest 2-tree is
a complete graph K3 of order n = 3. A 2-tree of order n is
obtained from a 2-tree G of order n − 1 by attaching a new
vertex v and two edges {vx, vy} such that {x, y} ∈ E(G).
Concerning 2-trees with diam(G) ≥ k is more difficult than
for trees.
Let G be a 2-tree of order n and size m. A pendant vertex in
a 2-tree is a vertex with degree equal to 2. Now, for k = 1
the value of W1(G) stays the same as for trees. For k = 2 we
have

W2(G) =
∑

v∈V (G)

((

deg(v)

2

)

−m

)

But let us move on to what will be considered now and this
are the maximum values of Wk(G) where G is a 2-tree.

What we are going to do is to decompose all vertices v in
G with deg(v) = 2 into some number of groups. Each group
has the following property

Ai = {v ∈ V (G) : deg(v) = 2∧∃ei={ui,wi}; vui, vwi ∈ E(G)}
for i = 1, 2, ...
We have at least two such groups. Let us say that the

distance between two arbitrary pendant vertices from different
groups is not equal to k. Distances between vertices in each
group are equal to 2.

Let p1 and p2 be the numbers of vertices on distance k
from an arbitrary pendant vertex from A1 and A2, respectively.
We can ssume that p1 ≥ p2 with no loss of generality. After
removal of all pendant vertices from A2 and addition to the
group A1 we get the transformed 2-tree G′

Wk(G
′)−Wk(G) ≥

= (|A1|p1 + |A2|p1)− (|A1|p1 + |A2|p2) =
= |A2|(p1 − p2) ≥ 0

(1)

Note this is true for two groups. If there are more of them
inequality in (1) may not hold.
By repetition of this transformation we will get a new 2-tree
with possibly greater generalized Wiener polarity index. The
diameter of G′ after each transformation is less or stays the
same as the one for G. Each transformation gives us also one
new pendant vertex. If we will choose the most distant groups
of pendant vertices we will get a 2-tree with diameter equal
to k. After that we can apply the transformation finitely many
times until all pendant vertices are on distance k and no other
vertex of the final 2-tree has eccentricity equal to k. During
this process the Wk(G) may be changing by decreasing or
increasing. Some example is presented in Fig.1.

Let us assume we have p groups of pendant vertices with
sizes: a1, a2, ..., ap and a1+a2+...+ap = q. We consider a 2-
tree with diam(G) = k. We have then n− 2(k− 1) ≥ q ≥ 2.

Assume that the distance between any two pendant vertices
not from the same group is equal to k and that is why

Wk(G) =
1

2

p
∑

i=1

ai(q − ai) =
1

2

(

q2 −
p

∑

i=1

a2i

)

(2)

In the case when the distance between the group Ai and Aj

for i 6= j is less than k the generalized Wiener polarity index is
less than the one presented above. If p = 2 we have Wk(G) =
a1a2. This value is maximum for a1 + a2 = n − 2(k − 1),

a1 =
⌊

n−2(k−1)
2

⌋

and a2 =
⌈

n−2(k−1)
2

⌉

.

Wk(G) =

⌊

n− 2(k − 1)

2

⌋⌈

n− 2(k − 1)

2

⌉

=

=

(⌊

n

2

⌋

− (k − 1)

)(⌈

n

2

⌉

− (k − 1)

)

=

=

⌊

n

2

⌋⌈

n

2

⌉

− (k − 1)

(⌊

n

2

⌋

+

⌈

n

2

⌉)

+ (k − 1)2

so

Wk(G) =

⌊

n

2

⌋⌈

n

2

⌉

− (k − 1)(n− (k − 1)) (3)

Let p > 2 and k > 2. First we consider the even k. By
n ≥ 2 + p(k − 2) + q and 2 < p ≤ q we have p ≤ n−2−q

k−2 , so

p <
n− 2

k − 2
. (4)

We have the following

q =

p
∑

i=1

ai,

n = 2 + 2p

(

k

2
− 1

)

+

p
∑

i=1

ai = 2+ p(k − 2) +

p
∑

i=1

ai.

Hence
n ≥ 2 + p(k − 2) + q. (5)

We apply Cauchy - Schwarz ineqality to the formula (2) with
q ≤ n− 2− p(k − 2)

Wk(G) =
1

2

(

q2 −
p

∑

i=1

a2i

)

≤ 1

2

(

q2 − q2

p

)

≤ 1

2
f(p) (6)

where

f(p) = (n− 2− p(k − 2))2
(

1− 1

p

)

.

The extremal generalized Wiener polarity index Wk(G) is
obtained for the case when we have equality in (6). We are
going to study this case. We will give some examples of
extremal 2-trees and then we will state the final result in
Theorem 1.
So for real variable p we study

f(p) =
(

(n− 2)2 + p2(k − 2)2
)

(

1− 1

p

)

− 2(k − 2)(n− 2)(p− 1).

(7)
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Fig. 1. A process of moving pendant vertices G1 → G2 → G3 → G4 → G5. W4(G1) = 8, W4(G2) = 9, W4(G3) = 10, W4(G4) = 9, W4(G5) = 5.

Let h(p) = 2(2 − k)(1 − 1
p
) + n−2−p(k−2)

p2 . Then the first
derivative equals

f ′(p) = (n− 2− p(k − 2))h(p)

By (4) we have f ′(p) = 0 if and only if p = p̂, where

p̂ =
1

4
+

1

4

√

8n+ k − 18

k − 2
(8)

Similarly f ′(p) > 0 if and only if h(p) > 0. This is
equivalent to the inequality

g(p) = 2p2 − p− n− 2

k − 2
< 0.

So g(p) < 0 if and only if p < p̂ .
Let

s = 4p̂ = 1 +

√

8n+ k − 18

k − 2
.

Then

1

p̂
=

√

(k − 2)(8n+ k − 18)− (k − 2)

2n− 4
=

(k − 2)(s− 2)

2n− 4
.

By (6) we can write

f(p̂) =

(

n− 2− 1

4
(k − 2)s

)2 (

1− (k − 2)(s− 2)

2n− 4

)

.

Then

f(p̂) =

(

(n− 2)2 − (n− 2)(k − 2)

2
s+

(k − 2)2

16
s2
)

·
(

1− (k − 2)(s− 2)

2n− 4

)

.

(9)

We are interested in the case with p̂ ≥ 3. By (8) we get
n ≥ 15k − 28.

Example 1:

By the formula (9) for k = 6 we get

f(p̂) =
(

(n− 2)2 − 2(n− 2)
(

1 +
√
2n− 3

)

+
(

1 +
√
2n− 3

)2
)

·
(

1− 2
√
2n− 3− 2

n− 2

)

.

Let us set

n = 2t2 + 2 ≥ 15k − 28 = 62. (10)

By (8) for even t we have

⌊p̂⌋ =
⌊

1

4
+

1

4

√

4t2 + 1

⌋

=

⌊

1

4
+

t

2

⌋

=
t

2
. (11)

Note that by (7)

f(⌊p̂⌋) = 4t(t− 1)2(t− 2), (12)

and

f(⌈p̂⌉) = 4t(t2 − t− 2)2
1

t+ 2
> f(⌊p̂⌋),

for t > 2.
We can note that by the formula (6) we get extremal 2-trees

for the case

W6(G) =
1

2
f(⌊p̂⌋).
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Now we compare this value with Wk(G) for p > 2. By the
formula (3) for p = 2 we get

W6(G) ≤ (t2 + 1)2 − 5(2t2 + 2) + 25 = t4 − 8t2 + 16.

So we get the following inequality

1

2
f(⌊p̂⌋) > t4 − 8t2 + 16.

By the formula (12) we get

2t(t− 2)(t− 1)2 > t4 − 8t2 + 16. (13)

The inequality (13) is equivalent to the following one

2t(t− 1)2 > (t− 2)2(t+ 2). (14)

Suppose now that t = 6, then by (10) we have n = 2 · 62+
2 = 74 and by (9) we have ⌊p̂⌋ = 3. The inequality (14) holds
in this case. So we obtained the maximum W6(G) = 3 · 202
for the 2-tree G with parameters n = 74, k = 6, p = 3 and
|Ai| = (n− 14)/3 = 20.

An extremal 2-tree is presented below in Fig. 2.
Example 2:

By the formula (9) for k = 4 we get

f(p̂) =
(

(n− 2)2 − (n− 2)
(

1 +
√
4n− 7

)

+
1

4

(

1 +
√
4n− 7

)2
)

·
(

1−
√
4n− 7− 1

n− 2

)

.

We have:

n = t2 + 2 ≥ 15k − 28 = 15 · 4− 28 = 32. (15)

By (8) for even t we have

⌊p̂⌋ =
⌊

1

4
+

1

4

√

4t2 + 1

⌋

=

⌊

1

4
+

t

2

⌋

=
t

2
. (16)

and then by (7)

Fig. 2. An extremal graph of order n = 74 with k = 6 and three groups
|Ai| = 20, i = 1, 2, 3.

Fig. 3. An example of extremal graph for k = 4.

f(⌊p̂⌋) = t(t− 2)(t− 1)2,

and
f(⌈p̂⌉) = t(t2 − t− 2)2

1

t+ 2
,

We can note that by the formula (6) we get

W4(G) =
1

2
f(⌊p̂⌋).

By the formula (3) for p = 2 and k = 4 we get W4(G) =
1
4 t

4 − 2t2 + 4.
Now we get the following inequality

f(⌊p̂⌋) = t(t− 2)(t− 1)2 > t(t2 − t− 2)2
1

t+ 2
= f(⌈p̂⌉).

The above inequality is equivalent to the following one

(t+ 2)(t− 2)(t− 1)2 > (t2 − t− 2)2. (17)

Suppose now that t = 6, then by (15) we have
n = 62 + 2 = 38 > 32 and ⌊p̂⌋ = 3. So the inequality (17)
holds in this case and we have the maximum W4(G) = 3 ·102
for the 2-tree G with parameters n = 38, k = 4, p̂ = 3 and
|Ai| = (n− 8)/3 = 10, i = 1, 2, 3.
An extremal 2-tree is presented in Fig. 3.

In general case we have the following result.
Let p− = ⌊p̂⌋ and p+ = ⌈p̂⌉ where p̂ is defined in (8) . We
present a theorem for 2-trees of order n equal to g(k), where
g(k) is some function defined in the proof.

Theorem 1. Let n and k be integers. For each even

integer k ≥ 4 there exists a 2-tree G of order n with extremal

generalized Wiener polarity index Wk(G) and with p− ≥ 3
or p+ ≥ 3 groups of pendant vertices for n = g(k) where

g(k) is some function in variable k. Then we have an infinite

family of such 2-trees.

Proof: By (7) and (8) we have p− ≤ p̂ ≤ p+ and Wk(G) =
1
2 max{f(p+), f(p−)}, where

f(p−) =
(

(n− 2)2 + p2−(k − 2)2
)

(

1− 1

p−

)

− 2(k − 2)(n− 2)(p− − 1).
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Fig. 4. Examples of 2-trees of the same order with diameter k = 7, where
W7(G1) > W7(G2) for even x ≥ 12.

We get the inequality

1

2
f(p−) >

⌊

n

2

⌋⌈

n

2

⌉

− (k − 1)(n− (k − 1)).

Hence

p3−(k − 2)2 − p2−(k − 2)(2n+ k − 6)

+ p−

(

(n− 2)2 − 2

⌊

n

2

⌋⌈

n

2

⌉

+ 4kn− 6n− 2k2 + 6

)

− (n− 2)2 > 0.

Similarly we can compare

1

2
f(p+) >

⌊

n

2

⌋⌈

n

2

⌉

− (k − 1)(n− (k − 1)).

This two above inequalities are equivalent to the following
one:

n2 − n(12((p− 2)k − 2p) + 52) + 52− 12k2

+ 6p((p− 2)(k − 2)2 + (k − 2)(k + 2)) > 0

where p = p+ or p = p−.
By solving this inequality we can construct 2-trees G with

p− ≥ 3 or p+ ≥ 3 groups of pendant vertices with extremal
generalized Wiener polarity index Wk(G). It is enough to take
g(k) = 2 + p(k − 2 + a), where a = |Ai| for each integer
a ≥ (k − 2)max{11, 2(p− 1)} and i = 1, ..., p with p = p−

or p = p+. It follows by formula (8). This is the end of the
proof.

In the theorem we are presenting the results for even k.
Note that for odd k the generalized Wiener polarity index
Wk(G) for 2-trees of order n with two groups of pendant
vertices in general case is not greater than such index for
2-trees of order n with p = 3 groups of pendant vertices.
An infinite number of such examples of 2-trees is presented
in Fig. 4.

In this paper we proved Theorem 1 for 2-trees of order n
with an extremal Wk(G) for given n and k. In the future work
we wish to find an efficient algorithm for counting Wk(G) for
the considered family of graphs.
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