
Feature Model Driven Generation of Software
Artifacts

Roman Táborský and Valentino Vranić
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava, Bratislava, Slovakia

E-mail: crudecrude@gmail.com, vranic@stuba.sk

Abstract—The objective of feature modeling is to foster soft-
ware reuse by enabling to explicitly and abstractly express
commonality and variability in the domain. Feature modeling
alone is not sufficient to express all the aspects of the software
being developed. Other models and, eventually, code is necessary.
These software assets are being configured by the feature model
based on the selection of variable features. However, selecting
a feature is far from a naive component based approach where
feature inclusion would simply mean including the corresponding
component. More often than not, feature inclusion affects several
places in models or code to be configured requiring their nontriv-
ial adaptation. Feature inclusion recalls transformation and this
is at heart of the approach to feature model driven generation of
software artifacts proposed in this paper. Features are viewed as
solution space transformations that may be executed during the
generative process conducted by the feature model configuration.

Index Terms—feature modeling; transformation; metatrans-
formation; generative process; reuse

I. INTRODUCTION

FEATURE modeling is an approach used in software

development proposed in 1990’s [1] with the growing

popularity of software product lines. The objective of this

approach to modeling is to foster software reuse by enabling to

explicitly and abstractly express commonality and variability

in the domain. Based on commonality and variability, appro-

priate implementation mechanisms can be selected [2].

Feature modeling alone is not sufficient to express all the

aspects of the software being developed. Other models and,

eventually, code is necessary. These software assets are being

configured by the feature model based on the selection of

variable features. However, selecting a feature is far from

a naive component based approach where feature inclusion

would simply mean including the corresponding component.

More often than not, feature inclusion affects several places

in models or code to be configured requiring their nontrivial

adaptation. Feature inclusion recalls transformation and this

is at heart of the approach to feature model driven generation

of software artifacts proposed in this paper.

The rest of the paper is organized as follows. Section II

discusses the possibilities of representing software artifacts

in feature modeling. Section III identifies specifics of feature

modeling necessary for the employment of this technique

in the generative process. Section IV explains how features

can be perceived as transformations, which is the essence

of the approach proposed in this paper. Section V presents

the overall process of feature model driven generation of

software artifacts. Section VI reports the implementation of

the approach. Section VII presents the evaluation. Section VIII

discusses related work. Section IX concludes the paper.

II. REPRESENTING SOFTWARE ARTIFACTS IN FEATURE

MODELING

Feature modeling can be used to configure software assets—

models and code—in order to create software instances that

exhibit desired features. One way to achieve this is by

employing so-called superimposed variants [3] where the

software models or code contain all the variants that are being

reduced based on the features selected—or not selected—in

the corresponding feature model [4], [5]. The FeatureHouse

project [6] implements an approach that uses these models

and allows language independent source code generation.

The pure::variants software tool [7] uses a specialized

family model to represent a feature to architecture mapping.

In this model, it is necessary to specify the type of the impact

on the software instance. There are several possible impact

specifications that allow for a wide scope of software artifact to

be created, such as files, file fragments, XSLT transformations,

conditional XML or text, C/C++ flag files, makefiles, class

alias files, or symbolic links to folders or files.

These types of interaction can be effectively used to de-

scribe various architectural parts of elements, but provide no

way of direct implementation of quality attributes [8]. Extra-

functional1 features can be mapped to specific modules/com-

ponents or software artifacts in general by implying rules the

software artifacts have to comply with, such as specific testing

procedures or documentation requirements, or by specifying a

human interaction task to be performed, such as evaluating

a managerial decision or performing human assessment of a

feature instance in a finalized product (e.g., evaluating user

experience or GUI usability) [10].

In automatic software composition, software artifacts repre-

sent the reusable and generated parts of software. By putting

together these parts and rules expressed by extra-functional

1We use term extra-functional—as proposed by Mary Shaw [9]—to refer
to requirements and features that go beyond software system functionality
instead of more widely used, but potentially confusing term non-functional.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1007–1018

DOI: 10.15439/2015F364

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 1007

features, it is possible to automatically compose large parts of

software.

III. FEATURE MODELING FOR THE GENERATIVE PROCESS

To drive the generative programming by a feature model, it

is necessary to represent the software assets in a configurable

manner. Also, the feature model must be capable of expressing

different transformations of the software assets to produce the

software artifacts that correspond to the features that have been

selected.

A. Feature Types

As has been explained in Section II, features can be func-

tional or extra-functional. Some functional features exhibit a

crosscutting nature, i.e., they affect several distinct and often

unrelated parts of the system. Extra-functional features com-

monly correspond to the quality requirements (e.g., security or

performance) or to the impact of the software being created

to its environment.

Furthermore, internal and external features can be distin-

guished. Internal features are contained within the software

being created and they can be changed during the development

process. External features represent environment functionality

and quality implications and these are part of the deployment

environment and thus are not affected by the development

process. An example of an internal feature is a configuration

file for a web server to which the product is going to be

deployed. The web server and its running environment is an

example of an external feature.

B. Feature Implications

The inclusion or exclusion of specific features in a particular

feature model configuration has an impact on the final software

product being created. Apart from the features that serve

purely organizational purpose, which is mostly to group other

features, the features in a feature model can be viewed as

abstract elements having some impact on the final software

product. This idea is crucial to automated software generation

and configuration because a feature can be viewed as prescrib-

ing a change to the configuration or generative process. This

means that the whole generative process consists of a set of

events that are implied by the inclusion or exclusion of the

features in a specific configuration.

The set of features that are included in the generative

process is a result of a feature model configuration process.

This process resolves variability in the feature model and a

fully-specified feature model configuration can be used as an

input to the generative process.

A feature inclusion can have various kinds of impact on

a final software product: file or folder operations, deploy-

ment rules to provide documentation, realizing the testing

requirements, etc. It is necessary to distinguish between a fully

autonomous feature impact that requires no human interaction

to deliver a final software asset (e.g., source code generation)

and an impact that requires human interaction (e.g., designing

a splash screen). With respect to the fully automated generative

programming approach, the latter is not applicable. One way

of integrating human interaction into the generative process is

to create task placeholders that notify developers their input

is needed for the process to continue.

Autonomous actions can be described by a set of events

that perform a particular computer operation. This leads to

the concept of extending the feature model by including the

information of these events that are implied by the specific

features in the model. By this, we get the description of the

generative process event chain that has to be executed when

processing a particular configuration of a feature model.

C. Generative Process

A generative process based on a feature model is driven by

its configuration, i.e., by selecting the features. This process

represents the transformation of the input models or code into

resulting software artifacts according to the feature selection.

The process can be restricted to only a single solution space

transformation or it can represent a complex multi-tier set of

intermediate actions where each of these can be perceived as

a stand-alone process with its own inputs and outputs. In any

case, the key issue is how to realize the impact of the feature

inclusion on the underlying software assets. This is different

for functional and extra-functional features.

1) Functional Feature Inclusion: Functional features can

be directly mapped to software artifacts such as source code

or resource files. The relationships between functional features

can be quite complex and the problem of feature interaction

can aries.

A simple example of a functional feature is the choice of

the data provider for some other feature. The corresponding

feature diagram is displayed in Figure 1. In this paper, a simple

FODA-style feature diagram notation [1] is used. A feature

diagram is a tree whose nodes represent features that can be

selected or not for the resulting configuration. For a feature to

be selected, its parent feature has to be selected. Empty circle

ended edges connect parent features with their optional fea-

tures. An arc over a group of edges means the corresponding

features are mutually exclusive (alternative). Non-decorated

edges connect mandatory features. We do not elaborate on

textually expressed constraints and default dependency rules

that are necessary to overcome the limitations of the tree

structure of feature diagrams [11], [12], as for the purposes

of the approach proposed here, these can be considered as

any other feature relationships to be applied in feature model

configuration.

A configurable piece of code corresponding to this model

could in C# look like this:2

DataProvider provider = new DataProvider();

provider.DataSource = new <Template Field>();

Page.GridView.DataSource = provider;

Page.Databind();

Choosing the XML Data source changes the second line of

the code sample to the following one:

2The further examples in this paper are in C#, too, if not stated otherwise.

1008 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Data provider

XML Data Source SQL Data Source Text Data Source

Performance testing

Fig. 1. The choice of the data provider as a functional feature and
performance testing as an extra-functional feature.

provider.DataSource = new XMLDataSource(params []);

Another example would be an inclusion of the logging

feature. This example is a little bit more complex as the

points in source code to which the feature has to be bound

are changing with as the code base grows. Aspect-oriented

programming can be applied here to express so-called join

points declaratively and address them without having to actu-

ally modify their source code representation.
2) Extra-Functional Feature Inclusion: Extra-functional

features are a more difficult problem than functional features

as it is rarely possible to map them to functional software

artifacts. However, it is possible to implement the tests of

the corresponding software artifacts against the conditions

stated by extra-functional features. Consider the performance

testing requirement as an example. The corresponding optional

performance testing feature (see Figure 1) represents the fact

that the software product has to conform to performance

criterion and therefore needs to be tested against this criterion.

This type of a feature can be directly represented in source

code:

class XMLDataSource {
}

Having the XMLDataSource class to represent a functional

feature when the extra-functional feature Performance testing

is included, the source code can be transformed as follows:

class XMLDataSource {
private TestContext testContextInstance;

///<summary>

///Gets or sets the test context which provides

///information about and functionality for the current test run.

///</summary>

public TestContext TestContext {
get {

return testContextInstance;

}
set {

testContextInstance = value;

}
}
[TestMethod]

public void PerformanceTesting() {
throw new NotImplementedException();

}
}

The XMLDataSource class has been enriched by methods

and properties that support the performance testing. Among

these is the PerformanceTesting() method, which has a place-

holder that states it must be implemented manually.

IV. FEATURES AS TRANSFORMATIONS

Fully configured feature model provides a list of all features

that are affecting the generative process. Each of these features

that are included provides a partial information on what actions

shall be taken during the automated software creation. A

transformation is an entity that represents these actions to be

taken for a particular feature. Consequently, the generative

process becomes a composition of all transformations included

in the particular configuration that was the input for generative

process. A problem with this approach is that it is necessary to

define the order in which the transformations will be executed.

There are several possible solutions:

• Explicitly adding the ordering information in the input

feature model configuration

• Traversing the feature model configuration structure in a

predefined way

• Providing a priority property to transformations

An explicitly stated order in the feature model depends on

the knowledge of priority in which the transformations have

to be executed. This means that if we add a new feature

into the model, the whole model needs to be examined to

accommodate the changes in priority. Traversing the feature

model in a predefined way is based on an idea that a feature

model is a tree, so it can be scanned breadth-first or depth-

first. In both cases, a priority parameter has to be introduced

into features.

Many actions are common to different features. Consider

creating a file, creating a folder, or making a text input text

into a file. These transformations are actually generic, but rely

on specific parameters in achieving their result. Therefore, a

transformation is in fact a transformation template that uses

the information provided to create a specific transformation

instance. Consequently, a transformation in our approach is

an entity consisting of the following elements:

• List of events, i.e., actions to be performed

• List of requirements that are imposed on the feature

model

• List of metatransformations that are included in this

transformation

Transformations are bound one-to-one to features in the

feature model. This means that every feature that is included

in the feature model and is relevant to the generative process

of the final solution has its a transformation assigned to it. The

feature node in the feature model also carries all the additional

information that is bound to the transformation assigned to it.

A. Transformation Reusability

The process of the transformation design requires an inter-

action on part of a domain engineer to provide the necessary

domain information specific to the project and a software

ROMAN TÁBORSKÝ, VALENTINO VRANIĆ: FEATURE MODEL DRIVEN GENERATION OF SOFTWARE ARTIFACTS 1009

engineer to design the transformations in such a way that

they implement the information provided by the domain

engineer and the requirement analysis of the corresponding

features. For an effective cooperation between the domain and

software engineer, it is useful to distinguish different levels of

transformations with respect to reuse:

• Specialized transformations that can be used only for

the specific features in the specific configuration of the

feature model

• Specialized transformations that can be used only for the

specific features, but in any configuration of the feature

model

• Domain dependent generic transformations, which can be

used across multiple software product lines in the same

domain

• Domain independent generic transformations, which are

the most reusable transformations as they can be included

in different software product lines across multiple do-

mains

Distinguishing these transformation types helps designing

transformations that are as generic as possible at their level.

B. Transformation Hierarchy

An atomic transformation is a transformation impossible

or unwanted to be decomposed into smaller transformations.

Thus, even though such a transformation may consist of

differentiable actions, the transformation is conceptually per-

ceived as a one. Complex transformations are transformations

that can be decomposed into a set of transformations where

each of these lower level transformations represent an atomic

transformation or a complex one (see Figure 2). Complex

transformations themselves can have their own event chain

besides the event chains of atomic transformations they em-

brace.

Fig. 2. Atomic and complex transformations (UML).

C. Transformation Inheritance

The inheritance relationship known from object-oriented

programming can be applied to transformations, too (see

Figure 3). It is possible to use inheritance as a way of

combining ancestor and descendant event chains. There are

several possible approaches to inheriting event chains:

• The ancestor event chain remains the same

• Items are added or removed to the event chain

• The event chain is completely overridden in the descen-

dant transformation

+Perform chain of events()

Anscestor transformation

-Chain of events

+Perform chain of events()

-Chain of events

Child transformation

Fig. 3. Inheritance between transformations (UML).

The inheritance model can also be perceived as a way of or-

ganizing transformations into logical groups or packages. With

respect to this, the inheritance is purely a tool of categorization

and it is not necessary to maintain the typical parent–child

class relationship, i.e., if transformations are represented as

classes, it is not necessary to support inheritance mechanism

at the level of methods and attributes.

D. Metatransformations

There are some features that have a global effect that spans

throughout the whole software product (or its significant part).

Quality features, such as logging requirement or performance

and security constraints, represent a typical example. Including

such a feature with the corresponding transformation into

the configuration leads to the necessity of modifying other

transformations in one of the following ways:

• Modifying the event chain of a transformation

• Modifying the requirements of a transformation

• Providing information that is defined by the transforma-

tion requirements

The modification of the event chain means that some actions

are added or removed to or from the transformation being

modified, or some properties of these actions are changed.

This leads to the connection with the other two types of

modification that can be defined on their own or are a result

of this first type of modification.

E. Transformation Requirements

Seeing a transformation as a transformation template that

instantiates a specific transformation based on external infor-

mation, such as the file name in the create file transformation,

constitutes the need for the external information required

to perform this transformation. Therefore, it is necessary to

include the information in the feature model or the associated

feature model configuration to allow for this. However, having

two features represented by the same type of transformation,

the information provided can vary (see Figure 4).

1010 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Transformation A

Property AA

Property AB

Property AC

Transformation B

Property BA

Property BB

Property BC

Feature 1 : Transformation A

AA = value

AB = value

AC = value

Feature 2: Transformation A

AA = different value

AB = another different value

AC = completely different value

Feature 3: Transformation B

BA = some value

BB = value

BC = different value

Fig. 4. Mapping transformations and properties to features.

Each transformation defines these requirements as a list of

items that contain the particular facts about the requirements.

This means that upon including a transformation in the feature

model, it is necessary to specify its requirements.

F. Transformation Granularity

There are two extreme approaches with respect to extending

feature models with transformations. One approach is to target

the separation of concerns with a large number of small

transformations. This allows us to isolate the implications

of transformations on the final software product into many

small groups independent of each other (see Figure 5). The

advantage of this approach is that the transformation model is

easily changed without the need to analyze the impact on the

whole transformation/feature model tree.

Root feature:

Small Transformation 1

Feature 1:

Small Transformation 2

Feature 2:

Small Transformation 6

Feature 1:

Small Transformation 3

Feature 1:

Small Transformation 4

Feature 1:

Small Transformation 5
Influences

Influences

Fig. 5. Relationships between small independent transformations.

The other approach is to describe most actions in one global

transformation that can be assigned to the root feature in

the feature model. This global transformation is afterwards

modified by the metatransformations that are assigned to the

rest of the feature model nodes and their execution is based

on the inclusion or exclusion of these features in a specific

configuration (see Figure 6).

Root feature:

Large root transformation

Feature 1:

Transformation 1

Feature 2:

Transformation 2

influences

influences

Feature 3:

Transformation 3

influences

Fig. 6. The transformations influencing a large root transformation.

With respect to the transformation granularity, it is also

important to consider the number of complex transformations

in the model. Again, there are several approaches that can

be used. One approach is to define only the simplest ac-

tions as atomic transformations and then to compose other

transformations out of these atomic transformations. Another

approach is to provide fairly large transformations that perform

a substantial part of the tasks connected to a particular feature.

It is also possible to employ an approach that lies somewhere

inbetween of these extreme viewpoints. This is possible for the

high or low granularity extremes and also for the complexity

aspect of transformations. For example, metatransformations

can be avoided by providing specific transformations for each

feature.

G. Including Transformations in the Feature Model

Since one transformation corresponds to one feature, their

inclusion into the feature model means simply assigning the

corresponding information to each feature (see Figure 7).

Feature Transformation11 Requirements

1 0..*

Fig. 7. Transformations are associated with features (UML).

One way of connecting the feature model with transforma-

tions is to include it directly in the feature model (an XML

representation in used in this example):

<feature>

<feature>

<transformation>

<!−− Transformation information including

the event chain, metatransformation

information, requirements, etc. −−>

</transformation>

</feature>

</feature>

There are two main problems connected with this approach:

the degree of the transformation reuse between different mod-

els is reduced and it is necessary to parse the transformation

ROMAN TÁBORSKÝ, VALENTINO VRANIĆ: FEATURE MODEL DRIVEN GENERATION OF SOFTWARE ARTIFACTS 1011

information separately for every feature, even though the type

of the transformation they use can be the same (e.g., create a

file).
Another approach is to store the transformation definitions

outside the feature model. A sample structure of this can be

a feature model represented in XML and the transformations

defined as C# classes that are used by the generator:

<feature transformationClassName=”CreateFile”

fileName=”Samplefile.cs”>

</feature>

public class CreateFile : Transformation {
public override void ExecuteTransformation() {

... // Create a file

}
}

With this approach, it is necessary only to specify the

transformation type and requirements of this transformation.

The information about the metatransformations is not included

in the feature model as it is internal to the transformation

system and including this information in the feature model

would be redundant.

V. THE OVERALL PROCESS

The overall process of employing the feature model driven

generation of software artifacts is as follows:

1) The input to the process is a feature model

2) Transformations are assigned to the feature model

3) Transformation requirements are provided where possi-

ble

4) A specific configuration of the feature model is created

5) Configuration specific requirements of the transforma-

tions are provided

6) The metatransformations are executed

7) The requirements and changes to the configuration

model are incorporated or provided

8) The generator processes the fully specified configuration

of the feature model and performs the event chain of the

transformations included in it

9) The output of this process is a generated instance of the

software system based on the input feature model, its

configuration, and the transformations specified in the

feature model

Transformation requirements are being fulfilled at three

levels:

1) Feature model level

2) Feature model configuration level

3) Feature model configuration level after the execution of

metatransformations

One may wonder whether it is not possible to merge the

latter two levels into one. This is not possible because the

metatransformations depend on the information provided at

level 2 and therefore it is necessary to provide this information

before executing level 3.
Often, the impact of a feature inclusion is not easy to

analyze. Therefore, a stepwise approach to the transformation

defining the impact of a feature design can help to analyze

the impact of each atomic operation that a transformation

consists of and also it can help to decide the order in which the

transformations are applied. This is important because in many

cases the final impact of a transformation depends on the order

of the transformation in the sequence in which transformations

are executed.

In the manual transformation application, it is not necessary

to have this order predefined, but when a software asset

generator employs an extended feature model as an input to

perform the execution sequence, it must be deterministic and

specified before the generative process starts as the generator

is not aware of the final implications during the generative

process: it merely executes the transformations that result from

the input feature model configuration.

In summary, the main objectives of the stepwise transfor-

mation design are:

• Create complex transformation by a stepwise application

of low-level transformations

• Assess the solution space after each low-level transfor-

mation in a stepwise manner

• Analyze the whole generative process by exploring it by

this stepwise approach

When applying this approach, it is necessary to record

the steps taken in the manual application of transformations.

This recording can be further specified to create a complex

transformation that can be used in the generative process.

It also allows to analyze the impact of transformations that

perform mass file renaming or other large-scale operations.

The last important information contained in this recording

is the transformation order, which allows to analyze and

prioritize transformations in the generative process.

VI. IMPLEMENTING THE TRANSFORMATION APPROACH

The proposed approach of the feature model driven gener-

ation of software artifacts has been implemented in the .NET

framework. A study of implementing the family of simple web

sites has been performed.

A. Applying the Transformation

It takes three steps to apply a transformation:

• Process all metatransformations in the model

• Check for requirements

• Execute the transformation

Consider the transformation called CreateStaticHTMLPage

as an example. This transformation utilizes its parameters to

fill a predefined HTML template string that is processed with

the String.Replace() method. The template defines the HTML

file and contains placeholders that are replaced with the values

of the transformation parameters:

#region html text template

protected string htmlContent =

”<!DOCTYPE html PUBLIC \”−//W3C//DTD XHTML 1.0

Strict//EN\”

\”http://www.w3.org/TR/xhtml1/DTD/xhtml1−strict.dtd\”>” +

”<html xmlns=\”http://www.w3.org/1999/xhtml\”

1012 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

xml:lang=\”en\”> <head> ” +

”<meta http−equiv=\”content−language\”

content=\”en\” />” +

”” +

”<title>Title placeholder</title>” +

”</head>” +

”” +

”<body>” +

”Content placeholder” +

”</body>” +

”</html>”;

#endregion

This transformation has four parameters:

• PageName: the file name that is used when creating the

HTML file

• htmlTemplate: the template that is set up can be cus-

tomized with this parameter

• htmlTitle: the text that replaces the Title placeholder

• htmlContent: the text that replaces the Content place-

holder

If the transformation is included in the feature model, the

configuration with these parameters:

<feature name=”StaticContent−History” ID=”2”

Transformation=”org.crd.dp.CaseStudy.SimpleWebFinal,

org.crd.dp.CaseStudy.

SimpleWebFinal.Transformations.CreateStaticHTMLPage”

htmlContent=”<h1>History</h1><p>

Lorem Ipsum</p>”

htmlTitle=”StaticPage− History”

PageName=”Site\\History.html” />

creates the following HTML file:

<!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0

Strict//EN”

”http://www.w3.org/TR/xhtml1/DTD/xhtml1−strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

<meta http−equiv=”Content−Type”

content=”text/html; charset=utf−8” />

<meta http−equiv=”content−language” content=”en” />

<title>StaticPage− History

</title>

</head>

<body><h1>History</h1>

<p>Lorem Ipsum

</p>

</body>

</html>

B. Feature Model Configuration

In this sample implementation, the feature model configu-

ration is represented by an XML file. The structure of this file

follows the tree structure of the feature diagram:

<?xml version=”1.0” encoding=”utf−8” ?>

<featuremodel>

<feature>

<feature>

<feature />

<feature />

</feature>

<feature />

< /feature>

</featuremodel>

Each XML feature node has three compulsory attributes:

• name

• ID

• Transformation

Accordingly, the simplest feature node looks like this:

<feature name=”DynamicContentProvider” ID=”7”

Transformation=”Transformations.Empty” />

The name and ID attributes have solely the purpose

of identifying the node when the node is processed. The

Transformation attribute specifies the transformation that will

be used with this feature.

The transformation attribute consists of two parts delimited

by a comma. The first part represents the dynamic link

library that contains the transformation, and the second part

the full class name of the transformation. The dynamic link

library has to be a .NET managed library. Therefore, a filled

transformation attribute looks like this:

Transformation=”org.crd.dp.CaseStudy.SimpleWebFinal, ...

Transformations.Empty”

This model is afterwards transformed into an object model

contained within the TransformationStore object.

C. Transformations

The transformations in this implementation are based on a

single class called Transformation. This class implements the

ITransformation interface. This interface provides the basic

methods needed by the generator to process the transforma-

tion:

public interface ITransformation {
CheckPrerequisites();

ExecuteTransformation();

GetParameterNames();

GetMetaTransformations();

...

}

The CheckPrerequisites() method does basic requirement

checking before a transformation is processed. In this imple-

mentation, only a basic verification whether the transformation

requirements are fulfilled is performed. However, it is possible

to write a model aware method at the level of a metatrans-

formation that can check the transformation dependencies. A

sample of a model aware transformation is provided with the

dynamic access log page.

The ExecuteTransformation() method represents the action

which is contained within the transformation. This method is

called in the final step of model processing.

The GetParameterNames() method is used in the XML file

parsing, when it provides the parameter names to be retrieved

from the feature node attributes.

ROMAN TÁBORSKÝ, VALENTINO VRANIĆ: FEATURE MODEL DRIVEN GENERATION OF SOFTWARE ARTIFACTS 1013

The GetMetaTransformations() method provides a way how

to retrieve the metatransformations that are connected with this

transformation. This allows to connect a metatransformation

list with a transformation and by this provide it with model

awareness, which means that it can influence other transfor-

mations in the model within the possibilities provided by the

connected metatransformations.

Two lists are initialized in the transformation class construc-

tor:

protected Transformation() {
metaTransformations = new List<MetaTransformation>();

parameters = new Dictionary<string, object>();

}

These two lists contain the metatransformation list and key–

value pairs of parameters. As the metatransformation list is of

type List <MetaTransformation> and the interface requires

List <IMetaTransformation>, it has to be casted:

public virtual List<IMetaTransformation>

GetMetaTransformations() {
return metaTransformations.ConvertAll(

mt => (mt as IMetaTransformation));

}

The implementation of the transformation class pro-

vides two other important methods, SetParameter() and

GetParameter(), which are the basis for parameter provision-

ing:

public object GetParameter(string name) {
return parameters[name];

}
public void SetParameter(string name, object value) {

if(parameters.ContainsKey(name))

parameters[name] = value;

else

parameters.Add(name,value);

}

D. Composite transformations

To cope with complex transformations, composite transfor-

mations, i.e., transformations that contain other transforma-

tions can be used. In the following implementation sample, the

composition is based on overridden methods in a descendant

class:

public class CompositeTransformation : Transformation {
private TransformationStore transformations;

protected CompositeTransformation(): base() {
transformations = new TransformationStore();

}
public override string CheckPrerequisites() {

foreach(ITransformation transformation

in transformations.Store)

{ transformation.CheckPrerequisites();

}
...

}
public override void ExecuteTransformation() {

foreach(ITransformation transformation

in transformations.Store)

{ transformation.ExecuteTransformation();

}
}

...

}

As it is observable form the sample code, the com-

posite transformation contains TransformationStore, which

is basically an ordered list of transformations. The

ExecuteTransformation() and CheckPrerequisites() methods

operate on this list. In the case this list contains another

composite transformation, the transformations are processed

in a depth-first recursive way.

The problem that arose with implementing this list was that

at the point of creating an instance of a composite transfor-

mation, the child transformations could not access the parent

transformation parameters as these were not yet extracted from

the XML file and often these child transformations rely on the

information provided in the model. Therefore, a new method

called InstantiateChain() was introduced to the composite

transformation. This method is called after the transformation

requirements are extracted to the parent transformation. The

name of this method suggests that this child transformation

list represents a list of events as described in Section IV,

which can be modified by metatransformations as suggested

in Section IV-D.

E. Metatransformations

The metatransformations are implemented by the

MetaTransformation class. The difference between this class

and the Transformation class is that the MetaTransformation

class is model aware. This means that it can traverse the

feature model and make changes to it. The specific changes

are shown with transformation implementation samples. The

difference is in the ExecuteTransformation method():

ExecuteTransformation(object model, TransformationStore store);

In this method, the TransformationStore object is passed,

representing the feature model. To allow for the modification

of composite transformations, this method is implemented in

a recursive way:

ExecuteTransformation(objectmodel, TransformationStorestore) {
...

foreach(var trans in store.Store) {
if(IsSubclassOfClass(typeof(

CompositeTransformation),trans.GetType())) {
ExecuteTransformation(model,

((CompositeTransformation)trans).Store);

}
}

}

F. Generator

The generative process consists of these steps:

• Parse the feature model configuration from the XML file

1014 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

• Parse and execute the metatransformations contained

within the transformation from the XML file

• Check the requirements of the parsed transformations

• Execute the transformation

The step of checking the requirements before parsing the

metatransformation is omitted as it is contained within the

metatransformation parsing step. To support these steps, a

parser object is introduced. This object is represented by the

IFeatureModelParser interface:

public interface IFeatureModelParser {
ParseFeatureModel(...);

ExecuteTransformationChain(...);

ParseMetaTransformations(...);

CheckPrerequisites();

}

This object contains the methods that provide the function-

ality required to perform these steps. The XMLModelParser

class is used to represent this object. This class provides

the functionality required based on an XML feature model

representation. The steps will be described in separate sections.

1) Parse the Feature Model Configuration File: The first

step that is necessary is to translate the transformations from

the XML feature model configuration into an object model.

The transformations are parsed in a top-down order. It is

possible to override this behavior using the Priority attribute at

transformation nodes. First, the assembly and class name are

parsed from the XML node and basic reflection is performed

to create an instance of the transformation:

var assembly = Assembly.Load(assemblyName);

var ttype = assembly.GetType(typeName);

var transformationInstance = ttype.GetConstructor(

Type.EmptyTypes).Invoke(null) as ITransformation;

transformationInstance.SetID(Convert.ToInt32((string)

node.Attributes[”ID”].Value));

After creating an instance of the specified transformation,

the GetParameterNames() method is used to obtain the list of

parameters that this transformation uses. Afterwards, the XML

node attributes that correspond to this list are copied into the

dictionary containing the parameter key–value pairs:

foreach (var parameter in parameterNames) {
if (node.Attributes[parameter] != null)

transformationInstance.SetParameter(

parameter, parameter != null ?

node.Attributes[parameter].Value : null);

}
if (node.Attributes[”Priority”] != null)

transformationInstance.SetPriority(

node.Attributes[”Priority”].Value);

The last step to be done is to add the transformation to the

TransformationStore object. This object serves as an advanced

list for storing transformations. The enhancements against

a standard list lie in the AddTransformation() methods that

allow priority based insertion of transformations into the list.

Another change is that simple and composite transformations

are added in a different way as with composite transformations

it is necessary to call the InstantiateChain() method to create

instances of child transformations:

if (IsSubclassOfClass(typeof(CompositeTransformation),

transformationInstance.GetType())) {
if (node.Attributes[”Priority”] == null)

store.AddTransformation(((CompositeTransformation)

transformationInstance));

else

store.AddTransformation(((CompositeTransformation)

transformationInstance),

transformationInstance.GetPriority());

}
else {

if (node.Attributes[”Priority”] == null)

store.AddTransformation((Transformation)

transformationInstance);

else

store.AddTransformation((Transformation)

transformationInstance,

transformationInstance.GetPriority());

}

The IsSubclassOfClass() method uses .NET reflection to

recursively check for a match in all ancestor classes up to

the Object class. Reaching the Object class signals that we

are at the top of inheritance chain as in .NET the Object class

is the topmost class from which all classes implicitly inherit.

This step ends by adding all the transformation objects to the

store, by which they become a part of the object model making

the XML model unnecessary.

2) Parse and Execute the Metatransformations: After

adding the transformations into TransformationStore, it is pos-

sible to perform metatransformations over this object model.

The metatransformations are extracted from all transforma-

tions preserving their order as in the store:

foreach (Transformation trans in store.Store) {
foreach (var a in trans.GetMetaTransformations()) {

string[] parameterNames =

a.GetParameterNames().ToArray();

foreach (var parameter in parameterNames) {
if (trans.GetParameter(parameter) != null)

a.SetParameter(parameter, parameter != null ?

trans.GetParameter(parameter) : null);

}
if (trans.GetPriority() != null)

a.SetPriority(trans.GetPriority());

...

// Add the metatransformation to the temporary store

...

}

The code for adding metatransformation to the temporary

metatransformation store is similar to the code regarding

common transformations. As a metatransformation can also be

a composite transformation, it is again necessary to call the

InstantiateChain() method. After obtaining a complete meta-

transformation store, it is possible to proceed with checking

the prerequisites and perform the execution of metatransfor-

mations:

ROMAN TÁBORSKÝ, VALENTINO VRANIĆ: FEATURE MODEL DRIVEN GENERATION OF SOFTWARE ARTIFACTS 1015

foreach (IMetaTransformation trans in metaStore.Store) {
trans.CheckPrequisites();

}
foreach (IMetaTransformation trans in metaStore.Store) {

trans.ExecuteTransformation(model,store);

}

After performing this last step, the changes to the transfor-

mations contained in the processed metatransformations have

been applied to the transformation object model and therefore

it is possible to perform the final prerequisite check over the

model and proceed with executing the transformations.
3) Check the Requirements of Parsed Transformations: The

requirement checking is simple. The only thing that is nec-

essary is to call the CheckPrerequisites() method over all the

transformations in the TransformationStore object. The current

implementation uses a simple fault detection mechanism that is

based on raising an exception when a problem occurs. One of

the signals used is the TransformationParameterNullException

exception. This signal means that a parameter expected at the

XML model level was not provided:

public class TransformationParameterNullException : Exception {
public TransformationParameterNullException(string transID,

string parameter): base(”Transformation” + transID +

”:Parameter ” + parameter + ” was not defined.”){}
}

This exception can be raised afterwards in the

CheckPrerequisites() transformation method:

public override string CheckPrerequisites() {
if (GetParameter(”PageName”) == null)

throw new TransformationParameterNullException(

this.GetID().ToString(), ”PageName”);

}

With metatransformations it is possible also to check

for transformation dependencies using the enhanced

model aware method with the necessary parameters:

CheckPrerequisites(object model, TransformationStore store).
4) Execute the Transformations: The precondition for this

step is that the TransformationStore object contains a list of

transformations that is prepared in a way that the metatrans-

formations have been applied and the prerequisites checked.

Afterwards, the ExecuteTransformation() method is called in

a loop for each of the transformations contained in the list:

public void ExecuteTransformationChain(

TransformationStore store) {
foreach (var transformation in store.Store) {

transformation.ExecuteTransformation();

}
}

The order in which the transformations are executed is

defined by their order in the TransformationStore object. After

this step, the software artifacts specified in the transformations

are created.

VII. EVALUATION

To evaluate the approach of feature model driven generation

of software artifacts, we developed a study of the family of

simple web sites comprising all the possibilities that may arise

with features and transformations described in the previous

section. Figure 8 shows the corresponding feature diagram.

The page features (ID 2, 3, and 4) embrace two ways of

creating the text content: statically, by an HTML document

(ID 2 and 3) or dynamically, by a script that generates the

HTML document (ID 4).

A model aware transformation is introduced with the dy-

namic page feature (ID 4), with the utilization of a meta-

transformation providing the model traversal. Variability is

introduced with the data provider (ID 5) providing an XML

or Microsoft SQL database backend.

Optional features connected to the root feature (ID 10,

11, and 12) represent crosscutting features that require either

metatransformations to change the actual features (ID 10 and

11) or they represent a parameter influencing the generative

process (ID 12) to show an implementation of the development

or generative environment property.

VIII. RELATED WORK

The pure::variants approach [8], mentioned in Section II,

embraces a large set of predefined transformations that are

assigned to particular features in the family model. The differ-

ence lies in the implementation where pure::variants is relying

on XML transformation definitions and the solution proposed

here uses C# classes, which is more flexible, allowing for

custom programmed transformations.

Edicts [13] is another approach that aims at the mapping

of features to source code parts. In addition, Edicts supports

different binding times. The concept of binding time [14]

should be taken into account when creating feature binding

points in the suggested superimposed architectural framework.

XANA [15] strives for bringing closer the development

process to end users using feature modeling. It decouples

software product line design and implementation, which is

to be performed by more technically knowledgeable users or

professional developers, from application derivation, which

is intended to be manageable by non-technical end users.

Application derivation assumes not merely feature selection,

but also providing parameters for parameterized features. A

similar kind of decoupling can be applied to the approach

proposed here. Generic transformations could be provided as

a framework. Accompanied by an appropriate development

environment extension, these generic transformations could be

accessible to end users.

The superimposed variants approach [16] provides a way

of mapping features to variabilities in external models, which

can be used to activate or deactivate particular parts of the su-

perimposed architectural framework. The transformation based

approach proposed here is related to the idea of superimposed

variants with respect to the external system of transformations

used as the superimposed architecture or model. Differently

than in our approach, the superimposed variants approach

utilizes external models that are configured [16]. It is also

possible to create such transformations that would prepare

1016 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Simple web site

ID: 1

Contact page

ID: 2

Static content –

history

ID: 3

Dynamic content –

access log

ID: 4

Dynamic content

provider

ID: 5

ASP.Net

ID: 7

Database backend

ID: 6

MSSQL

ID: 8

XML

ID: 9

Microformat

support

ID: 10

Custom HTML

header

ID: 11

Documentation of

generative process

ID:12

Fig. 8. The feature diagram of the family of simple web sites.

and configure additional models effectively emulating the

superimposed variants approach.

One of the actions that is realized by metatransformations in

the approach proposed here is the parameter replacement. This

is similar to the template text replacement based on generic

methods in generative programming for C and C++ [17].

However, the approach proposed here is different in the way

that there are no restrictions on what is a transformation

template parameter. Another difference is that in a template

system, template fields are replaced and then the code is

built, but in the approach proposed here, a transformation can

represent a complex event chain, and not just a simple text

replacement.

Dynamic code structuring [18], [19], [20] is based on ex-

plicit representation of possibly overlapping concerns in code

for providing different perspectives. In the approach proposed

here, dynamic code structuring can be applied to the code

that defines transformations. However, dynamic structuring

is potentially applicable to feature models themselves. In

its essence, featural software decomposition is a decompo-

sition by concerns with features representing the concerns,

including the crosscutting ones [12]. Feature models with

different organization of features in the feature diagrams can

be equivalent [17]. Moreover, a feature can have alternative

decompositions into subfeatures, including not being decom-

posed at all. The different representations of the same feature

model may suit different stakeholders or situations and the

transformation code attached to it can be presented in different

ways accordingly. For large feature model presentation, design

pattern detection techniques [21] may be of interest. Feature

models can be represented as grammars [22], in which case

grammar refactoring could be applied [23] to obtain different

views.

IX. CONCLUSIONS AND FURTHER WORK

This paper proposes an approach of feature model driven

generation of software artifacts, in which features are viewed

as solution space transformations that may be executed during

the generative process conducted by the feature model config-

uration. The approach has been evaluated on a study of the

family of simple web sites comprising all the possibilities that

may arise with features and transformations.

The main advantages of this approach are is that the system

of transformations is basically self-contained and does not re-

quire additional modeling techniques except for the enhanced

feature model. The code within the transformations is not

limited with respect to its effects on the resulting software

ROMAN TÁBORSKÝ, VALENTINO VRANIĆ: FEATURE MODEL DRIVEN GENERATION OF SOFTWARE ARTIFACTS 1017

system behavior, i.e., anything that can be achieved by manual

code writing can be achieved by appropriate transformations.

In large part, the flexibility of the proposed approach lies in

the concept of metatransformation. Metatransformations are

the transformations that represent the impact of crosscutting

features by modifying the common transformations before

they are executed by changing their input parameters or by

modifying their event chains.

A practical adoption of the approach proposed in this paper

could be significantly supported by providing directly reusable

transformations, transformation templates (i.e., parameterized

transformations), or even just transformation schemes or ex-

amples to be adapted manually to the application context.

Actual feature models are huge and therefore are more

effectively presented by individual concepts [12]. In general, a

concept is an understanding of a class or category of elements

in a domain [11]. Syntactically, in feature modeling, the root

node of a feature diagram represents a concept [17]. Thus,

raising a feature to the level of a concept is a matter of

choice. Of course, this has to reflect the needs and objectives

of the particular case of modeling. Having a feature model

decomposed into a set of feature diagrams, rather than a single

tree, involves having references between the trees (i.e., concept

references [11]). Exploring how this affects feature model

driven generation of software artifacts represents a research

challenge.

ACKNOWLEDGMENTS

The work reported here was supported by the Scientific

Grant Agency of Slovak Republic (VEGA) under the grant

No. VG 1/1221/12.

This contribution/publication is also a partial result of the

Research & Development Operational Programme for the

project Research of Methods for Acquisition, Analysis and

Personalized Conveying of Information and Knowledge, ITMS

26240220039, co-funded by the ERDF.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son, “Feature-oriented domain analysis (FODA): A feasibility study,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
USA, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[2] J. O. Coplien, Multi-Paradigm Design for C++. Addison-Wesley, 1999.
[3] S. Apel, C. Kastner, and C. Lengauer, “FEATUREHOUSE: Language-

independent, automated software composition,” in 2009 IEEE 31st Inter-

national Conference on Software Engineering, ICSE 2009. Vancouver,
BC, Canada: IEEE, May 2009. doi: 10.1109/ICSE.2009.5070523 pp.
221–231.

[4] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A tem-
plate approach based on superimposed variants,” in Proceedings of 4th

International Conference on Generative Programming and Component

Engineering, GPCE 2005, ser. LNCS 3676, R. Glück and M. R. Lowry,
Eds. Tallinn, Estonia: Springer, Oct. 2005. doi: 10.1007/11561347 28
pp. 422–437.

[5] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configuration
through specialization and multi-level configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, pp. 143–169,
Apr./Jun. 2005.

[6] Software Product Line Group, Programming Group, Univeristät Passau,
“FeatureHouse: Language-independent, automated software composi-
tion,” http://www.infosun.fim.uni-passau.de/spl/apel/fh/.

[7] pure-systems GmbH, “pure::variants: Variant management,” http://www.
pure-systems.com/pure˙variants.49.0.html.

[8] pure systems, “pure::variants user guide,” 2015, http://www.pure-
systems.com/fileadmin/downloads/pure-variants/doc/pv-user-
manual.pdf.

[9] M. Shaw, “What can we specify? issues in the domains of software
specification,” in Proceedings of 3rd International Workshop on Soft-

ware Specification and Design. IEEE CS, 1985, pp. 214–215.
[10] P. Sochos, M. Riebisch, and I. Philippow, “The feature-architecture

mapping (FArM) method for feature-oriented development of software
product lines,” in 13th Annual IEEE International Symposium and

Workshop on Engineering of Computer Based Systems, 2006, ECBS

2006. Potsdam, Germany: IEEE, 2006. doi: 10.1109/ECBS.2006.69
pp. 308–318.

[11] V. Vranić, “Reconciling feature modeling: A feature modeling meta-
model,” in Proceedings of 5th Annual International Conference on

Object-Oriented and Internet-Based Technologies, Concepts, and Appli-

cations for a Networked World, Net.ObjectDays 2004, ser. LNCS 3263,
M. Weske and P. Liggsmeyer, Eds. Erfurt, Germany: Springer, Sep.
2004. doi: 10.1007/978-3-540-30196-7 10 pp. 122–137.

[12] ——, “Multi-paradigm design with feature modeling,” Computer Sci-

ence and Information Systems Journal (ComSIS), vol. 2, no. 1, pp. 79–
102, Jun. 2005.

[13] V. Chakravarthy, J. Regehr, and E. Eide, “Edicts: Implementing features
with flexible binding times,” in Proceedings of 7th International Confer-

ence on Aspect-Oriented Software Development, AOSD ’08. Brussels,
Belgium: ACM, 2008, pp. 108–119.

[14] V. Vranić and M. Šı́pka, “Binding time based concept instantiation in
feature modeling,” in Proceedings of 9th International Conference on

Software Reuse, ICSR 2006, ser. LNCS 4039, M. Morisio, Ed. Turin,
Italy: Springer, Jun. 2006. doi: 10.1007/11763864 34 pp. 407–410.

[15] V. Tzeremes and H. Gomaa, “A software product line approach for
end user development of smart spaces,” in Proceedings of 5th Interna-

tional Workshop on Product LinE Approaches in Software Engineering,

PLEASE 2015. IEEE, 2015. doi: 10.1109/PLEASE.2015.14 pp. 23–26.
[16] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A

template approach based on superimposed variants,” in Proceedings

of 4th International Conference on Generative Programming and

Component Engineering, GPCE 2005, ser. LNCS 3676, 2005. doi:
10.1007/11561347 28 pp. 422–437.

[17] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,

Tools, and Applications. Addison-Wesley, 2000.
[18] M. Nosál’ and J. Porubän, “Supporting multiple configuration sources

using abstraction,” Central European Journal of Computer Science,
vol. 2, no. 3, pp. 283–299, 2012. doi: 10.2478/s13537-012-0015-7

[19] M. Nosál’, J. Porubän, and M. Nosál’, “Concern-oriented source code
projections,” in Proceedings of 2013 Federated Conference on Computer

Science and Information Systems, FedCSIS 2013. Kraków, Poland:
IEEE, 2013, pp. 1541–1544.

[20] J. Porubän and M. Nosál’, “Leveraging program comprehension
with concern-oriented source code projections,” in Proceedings of

Slate’14, 3rd Symposium on Languages, Applications and Technologies,
Bragança, Portugal, 2014. doi: 10.4230/OASIcs.SLATE.2014.35 pp. 35–
50.

[21] I. Polášek, P. Lı́ška, J. Kelemen, and J. Lang, “On extended similar-
ity scoring and bit-vector algorithms for design smell detection,” in
Proceedings of 2012 IEEE 16th International Conference on Intelligent

Engineering Systems, INES 2012. Lisbon, Portugal: IEEE, 2012. doi:
10.1109/INES.2012.6249814 pp. 115–120.

[22] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” Software Process:

Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005. doi:
10.1002/spip.213

[23] J. Kollár, I. Halupka, S. Chodarev, and E. Pietriková, “pLERO: Lan-
guage for grammar refactoring patterns,” in Proceedings of 2013

Federated Conference on Computer Science and Information Systems,

FedCSIS 2013. Kraków, Poland: IEEE, 2013, pp. 1491–1498.

1018 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

