
Reconfigurable FPGA-based embedded

Web services as distributed computational

nodes

Robert Brzoza-Woch ∗, Piotr Nawrocki †

∗AGH University of Science and Technology,

al. A. Mickiewicza 30, 30-059 Krakow, Poland

e-mail:rabw@agh.edu.pl
†e-mail:piotr.nawrocki@agh.edu.pl

Abstract—In this article we propose a concept for an experi-
mental class of control devices that use both a microcontroller
unit (MCU) and a field-programmable gate array (FPGA) circuit.
These devices can provide the functionality of full-featured Web
services that are compliant with the Service-Oriented Architec-
ture (SOA) paradigm. Despite the fact that FPGA circuits are
more expensive than consumer-grade MCUs, they potentially
offer much more computational power. In scenarios in which
FPGA computational power is required on demand and for short
periods only, a large part of such resources might, however,
remain unused or disabled. Thus we propose a system archi-
tecture and software infrastructure that simplify the utilization
of temporarily unused resources for performing various tasks
that can be offered as Web services on a commercial basis.

I. INTRODUCTION

F
PGA-based hardware Web services have already been

implemented and described (refer to [1] and [2]). Their

embedded nature allows developers to easily adapt those ser-

vices to actively interact with their environment, e.g. to acquire

real-world measurement data or control various actuators.

Such entities can be called environment-aware Web services in

contrast to classical Web services that work on remote physical

or virtual machines. Despite the fact that environment-aware

Web services may be implemented using much less expensive

MCUs and sequential code, programmable hardware may

perform better where very intensive computational tasks are

involved.

In our solution we propose that environment-aware Web

services can be reconfigured in order to exploit the poten-

tial of their temporarily unused logic resources. At times

of lower utilization they can be reconfigured to offer their

spare resources as additional data-processing Web services.

Whenever a more intensive processing task is to be performed,

their resources can be employed back to provide the device’s

original functionality. This idea can also be applied to regular

devices that offer no Web service compliance. In the latter

case, however, we would lose some useful features such

as interoperability or the ability to utilize the management

software tools already available, etc.

There are common scenarios where considerable computa-

tional power is required only on demand for a short period. For

example, in an industrial process temperature measurement

results are collected for many hours to finally update a local

numeric prediction module. During the time of collection, the

acquisition device may be idle or in sleep mode or, if it uses

FPGA, a large part of its logic may be disabled. By using the

dynamic reconfiguration technique for FPGA, we can change

the device’s configuration depending on momentary needs, e.g.

to adapt to changing environment conditions or the current

context.

FPGA-based environmental-aware Web services may also

be employed to perform control tasks in smart home automa-

tion systems. The less demanding the control task, the more

resources can be assigned to perform “idle” computations. For

example, an intelligent water heater may periodically compute

predicted hot water usage and perform computations for a

commercial Web service during its “spare” time.

In this paper we describe the concept for a system that uses

FPGA-based Web services to perform such dual operation. In

Section II we present the current state of the art in related

fields. Then in Section III we describe the architecture of

sample FPGA-based Web services and discuss the architecture

of the entire system. In Section IV we introduce the service

management and integration mechanism, which is responsible

for providing the essential functionality of the system and

ensuring its security. Finally, in Section V we conclude our

work and discuss the planned evolution of our solution.

II. RELATED WORK

Web service implementations using FPGAs can be found,

however such publications are relatively rare. In [3], the au-

thors propose a Web server architecture that is implemented in

FPGA. The evaluation of the system confirms that hardware-

favored architecture brings higher throughput, lower power

consumption and the full functionality of a stand-alone Web

service. Such good results are achieved thanks to the execution

of Web services directly on the FPGA without using an

additional operating system. The authors conclude that by

utilizing reconfigurable hardware (FPGA) in the area of cloud

computing it is possible to improve performance and optimize

operating costs.

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 159–164

DOI: 10.15439/2015F37

ACSIS, Vol. 6

c©2015, PTI 159



Important research in this field is described in [4]. The

authors present a reconfigurable architecture for Web service

implementation. The important features of the system pre-

sented are:

• high overall performance because of the very low re-

sponse time and potentially high processing power;

• a reconfiguration ability which allows the system to be

updated to meet new requirements.

Both advantages mentioned result from the use of the FPGA

technology. The platform supports the SOAP protocol and is

able to auto-register into a UDDI server. Even more interest-

ingly, the platform presented works without any embedded mi-

crocontroller (such as NIOS-II) yet it is partially implemented

using the Handel-C language. The overall performance results

are good because the platform has a lower response time (a

minimum of 0.5 ms) than a PC running the same service (a

minimum of 2 ms). A disadvantage of the solution described is

its very simple functionality—in the configuration presented,

it only provides a Wake on LAN service for computers within

a local area network.

Another FPGA-based Web service implementation is de-

scribed by C.E. Chang in [5]. It is a RESTful Web service

designed to perform simple control tasks for home appliances.

The service functionality is rather minimalistic and its im-

plementation has less features than the system described in

[4], e.g. it supports static IP assignment only (no DHCP), the

TCP/IP buffer size is limited to just a single packet or 576

bytes, and only one TCP connection can be accepted at a

time.

The possibility of using reconfigurable hardware and Web

Service technology within the framework of the concept of

the Internet of Things (IoT) is described in [6]. The authors

of that paper discuss the prospects of reconfigurable hardware

solutions in the area of enterprise applications. They present

requirements for reconfigurable computing solutions and argue

that this type of platform can assist the performance of

business processes. They also estimate that reconfigurable

computing platforms will play a key role in connecting two

worlds: the “Internet of Services” and the “Internet of Things”.

In [7], the authors note the need for connecting the concept

of IoT with service-oriented methodology. They suggest the

use of RESTful Web services due to their popularity and

lightweight nature. In order to utilize the RESTful concept in

the IoT domain, the article proposes an architecture composed

of six levels. The authors also demonstrate how to invoke

RESTful Web services from the IoT and publish a Business

Process Execution Language (BPEL) process as a RESTful

Web service.

Important areas that utilize the IoT and Web service con-

cepts are the Smart Home and Smart Building. In order to

provide IoT services in Smart Home/Smart Building environ-

ments, in [8] the authors propose a Web-of-Objects platform in

the IoT service environment. This platform has been designed

in order to create user-centered IoT services. In addition,

complex services can be developed by combining elements

of existing Web services.

Fig. 1. General concept of networked reconfigurable FPGA-based Web
services.

III. HARDWARE INFRASTRUCTURE AND SYSTEM

ARCHITECTURE

As stated in Section I, SOA-compliant Web services may

be implemented not only on classical server farms, but also

on embedded devices, obviously including FPGA-based ones.

During the course of our research we developed several FPGA-

based Web services on various hardware platforms. One of the

most versatile hardware platforms we developed was described

in detail in our previous publications: [1] and [2]. Each

platform was equipped with a high-end Stratix-II FPGA chip

and multiple blocks of synchronous dynamic random access

memory (SDRAM) and was able to support built-in as well

as external sensors and actuators. In this article we describe

how we experimented with the deployment of those platforms

within dynamically managed and reconfigurable distributed

systems.

A. System architecture

The architecture of the distributed control computing system

is shown in Fig. 1. In that scenario, FPGA-based Web services

perform several tasks. First, they provide part of the Web

service interface and perform their default control and sensing

tasks that require only a fractional amount of their logic

resources while their spare resources are assigned to perform

a Computing Task. We assume that the computing task is

required for the process being supervised only during certain

periods, for example after a sufficient amount of data has

been collected – this is quite a common scenario in computer

systems. During the service’s lower activity periods, its re-

sources can be assigned to perform a completely independent

task thanks to the massive parallel capabilities of the FPGA

technology.

FPGA-based Web services can be conveniently intercon-

nected within a local area network or may operate in a virtual

private network (a VPN, which is logically equivalent to local

area network operation). At this basic level, data transmission

security can be ensured either using the Wi-Fi Protected

160 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015



Access (WPA) technology for wireless entities or by using

wired connections (it is fair to assume that an attack on a

building’s backbone network is equally invasive as tampering

with physical devices). Depending on security requirements,

we may or may not allow trusted clients to have unrestricted

access to FPGA-based Web services in the local area network.

Access restrictions can be introduced using various techniques,

even very simple ones: e.g. by means of Media Access Control

(MAC) address filtering.

More sophisticated features are available when using the

Service Management subsystem shown in Fig. 1. The man-

agement subsystem runs on a stand-alone computer or on

server infrastructure and it provides Proxy Services for each

physical or logical Web service on the network. Proxy Services

facilitate access to local embedded services by increasing the

number of simultaneous client connections and introducing

the Enterprise Service Bus (ESB). ESB significantly increases

the solution’s scalability and accessibility from mobile de-

vices. Separate services are connected to the ESB to provide

control logic and access to the local service repository. The

Control Logic service on ESB is the core of our concept.

It decides whether an FPGA-based Web service should be

reconfigured and which of these services can be offered as

spare computational resources to the outside world. The logic

may also advertise available resources to service brokers. As

computational services may not be always available on the

programmable hardware (during idle periods only), the control

logic should be able to move the execution of tasks from

FPGA-based services to its internal software and back to the

FPGA after hardware resources have been released again. At

lower level, this functionality can be easily implemented on

various existing FPGA platforms with additional reconfigura-

tion hardware. Another challenge concerns the algorithms that

support decision whether the functionality should be moved

to or from FPGA to the control logic. Those algorithms may

vary from a single busy-idle state detection to more advanced

solutions which also consider potential time and energy costs

of the task moving operation. That functionality, however,

is still under development and is to be introduced in future

versions of the system.

B. FPGA-based Web service architecture

In order to cooperate within the system presented, each

FPGA-based embedded Web service should follow some par-

ticular architectural recommendations. The most trivial issue

with the FPGAs’ remote reconfiguration is that most common

FPGAs completely lose their previous functionality during

the process of reprogramming their internal memory. This

is the reason why all FPGA-based Web services should be

implemented as hybrid devices. A simple way to ensure

uninterrupted operation in this case is to implement part of the

communication interface and reconfiguration logic on a differ-

ent chip. In the most trivial case, the reconfiguration logic can

be implemented on a popular inexpensive microcontroller unit

(MCU) with network communication capabilities as shown in

Fig. 2.

Fig. 2. The idea of multiplexing network hardware between the FPGA-based
Web service and the reconfiguration subsystem.

In practice, a relatively simple and effective solution was to

introduce multiplexing at the network socket level by imple-

menting communication functionality up to the transport layer

of the Open System Interconnection (OSI) model. Depending

on the available resources of the reconfiguration subsystem,

performance constraints may occur. In practical implemen-

tations it was not the case, for two reasons. First, FPGA-

based Web services tend to process data locally whenever

possible and transmit processing results only. For example, a

smart camera, which we have previously implemented (refer

to [2]), runs a motion detection or object classification service.

Instead of transmitting an entire video frame, the camera

sends mainly coordinates for which it detected motion or the

identification number of the object recognized. Secondly, each

hardware service is represented by its “mirror” proxy service

in the Management subsystem. This allows the hardware

service to be exposed by a machine that has better networking

capabilities than a typical embedded system. Reconfiguration

data also do not have to be transmitted for each functionality,

but can be cached locally on each node instead as described

further in this section.

The reconfiguration logic of FPGA-based Web services can

be exposed either as a constant method available for each

service or else can use an application-specific protocol. Both

these options have their advantages. Exposing reconfiguration

capability as a service makes for a very clean system design

and ease of integration as a proxy in the Management block.

However, using a simple custom protocol may offer better

performance because it does not involve the high-level pro-

tocol overhead that is unavoidable when using e.g. SOAP.

A simple but efficient enhancement of the reconfiguration

subsystem is the introduction of mass storage capability, e.g.

in a form of a popular secure digital (SD) card or another

form of non-volatile memory. This allows the system designer

to cache the most common configuration data locally for each

hardware Web service. In our solutions we used SD and SD

High Capacity (SDHC) cards as well as DataFlash memory

manufactured by Atmel.

Network communication can be implemented in several

ways. The obvious choice for wired nodes is to use an Ethernet

connection for the easiest possible interoperability with the

network infrastructure already available. In our solutions, we

PIOTR NAWROCKI, ROBERT BRZOZA-WOCH: RECONFIGURABLE FPGA-BASED EMBEDDED WEB SERVICES 161



Fig. 3. View of the hardware part of sample implementations: the newly
developed inexpensive remote reconfiguration and communication subsystem
(RCS) based on the ENC28J60 and a mid-end STM32 MCU (A), the
previously developed RCS based on the EM1206 network module, an STM32
MCU and CPLD, the embedded image sensor (C), and the Stratix-II FPGA
module which provides Web service functionality (D).

initially tested in practice the operation of EM1206 network

modules by Tibbo. These offer very simple programming

capabilities thanks to their high autonomy and can be con-

nected to any device (either an FPGA or a microcontroller)

that supports asynchronous serial communication. Another

simple solution is to use the ENC28J60 chip, which provides

physical layer (PHY) capabilities and is equipped with a

synchronous serial interface. Upper layers should then be

implemented in microcontroller software. More demanding

applications would require the utilization of a PHY chip with

a fast Media Independent Interface (MII). Wireless network

access can be provided using a Wi-Fi chip or module, e.g.

ESP8266. It is a very inexpensive and easy-to-use module

which became very popular recently. The ESP8266 makes it

possible to connect virtually any embedded device to a Wi-

Fi network and, importantly, has basic connection security

measures already implemented. In our research we developed

multiple FPGA-based Web services using EM1206 (wired)

and ESP8266 (wireless) modules. Now we continue to further

develop our solutions using other alternatives, mainly revolv-

ing round medium-power microcontroller (such as Cortex-M3)

with external PHY chip. Fig. 3 shows a sample inexpensive

hardware with ENC28J60 PHY and STM32F100 board that

we have used in our development.

IV. SERVICE MANAGEMENT SUBSYSTEM DETAILS

The considerable computing capabilities of FPGA-based

Web services make it worthwhile to enable them to interact and

integrate with other systems. This type of solution, integrating

independent but compatible services, lies at the foundation of

the SOA concept and the Web service technology is one of

the components of this concept. SOA may take advantage of

service orchestration, which defines the model of cooperation

between services. Within the framework of orchestration, there

TABLE I
RESTFUL AND WS* SERVICE COMPARISON.

RESTful WS-* (SOAP)

Lightweight architectural style “Heavy-weight” XML standard

Description of the service in
WSDL 2.0

Description of the service in
WSDL

Format agnostic (XML, JSON,
HTML, etc.)

Requests and responses are well
structured (SOAP)

Problems with reliable messaging
and security

Security mechanism possible
(WS-Security)

is a single parent process that manages the interoperability

between services. The implementation of such a process,

which allows for the provision of management and super-

vision services, is achieved via the Enterprise Service Bus

(ESB), which specifies an intermediate layer that enables the

integration of services. In order to enhance the processes

of composing and configuring FPGA-based Web services,

Proxy Service is created depending on current needs. This

mechanism allows for the provision of FPGA-based Web

service functionality using the ESB. The main advantages

of this solution are standardization, scalability, reliability and

manageability. The Proxy Service, which is implemented in

Java, exposes the functionality of an FPGA-based Web service

in an ESB container and allows it to better integrate with other

services. Most Java implementations of ESB use the OSGi

platform that allows, inter alia, the re-use of components, easy

deployment and the ability to dynamically update components.

In order to implement FPGA-based Web services and ensure

their cooperation with the Proxy Service mechanism we could

use two approaches: WS-* using SOAP and Representational

State Transfer (RESTful) Web services built on the basis

of HTTP. These are briefly compared in Table I. The first

method describes the functionality of the service using the

Web Service Description Language (WSDL), and communi-

cation with the service is implemented using the SOAP and

HTTP protocols. The WS-* concept was originally developed

for interoperability between enterprise applications. A lighter

version of the WS-* was developed, named Devices Profile

for Web Services (DPWS), in which services are directly

associated with the equipment. The main DWPS area of

application is home and industrial automation systems ([9]).

In the second approach, RESTful services are identified by

a Uniform Resource Identifier (URI) and the HTTP protocol

is used to access the resources thus defined. The RESTful

approach can be used to install services on smart devices.

Some studies such as [10] suggest that for smart devices used

in the development of IoT applications, a more suitable method

for the provision of services is RESTful. On the other hand, the

WS-* concept is more appropriate for applications requiring

an adequate level of security and QoS. Therefore the authors

of this article decided to choose the WS-* approach due to

the potential application of the solution developed in systems

that require reliable and secure data delivery.

After further analysis, we decided to use WS * and OSGi

containers as our ESB implementations. Integration and ser-

162 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015



vice management have been achieved through the exposi-

tion of FPGA-based hardware Web services using the Proxy

Service—a service engine that is implemented in Java. The

Proxy Service has been deployed within the ESB (OSGi

container). The functionality of the service can also be exposed

directly in a local area network as a Web service reachable

using SOAP communication standards. In both cases, the

interface can be specified in WSDL.

In our solution, each of the FPGA-based hardware Web ser-

vices is described by an appropriate WSDL file. For each such

service, it is possible to generate one corresponding Proxy

Service with methods identical to those of the original service.

All operations on a Proxy Service are delegated through

standard WS requests (SOAP) to the server appropriate for the

target device. Recently we have also developed experimental

REST-based implementations of the embedded Web services

because of the REST’s simplicity and smaller communication

overhead.

The automated generation process of a Proxy Service re-

quires several steps:

1) generating a Proxy Service as an ESB adapter;

2) looking up a matching service reference in repositories;

3) downloading a WSDL file that describes the service’s

interface;

4) creating a hardware service interface in the Proxy.

Afterwards, the FPGA-based hardware Web service is avail-

able and ready to be used in enterprise class information

systems.

The functionality of the FPGA-based hardware Web service

is accessible through the Proxy Service mechanism thanks

to mediation between the SOAP binding component and the

OSGi Remote service binding component such as the R-

OSGi (see [11]) or ECF Remote Services. The use of such

ESB implementations as Fuse ESB 4.3, Apache ServiceMix

4.3.0 or Apache Felix (installed on mobile devices supporting

the Android system) enables direct access to these services

through the OSGi environment.

In addition to providing the functionality of the FPGA-

based hardware Web service, each Proxy Service provides an

interface that also allows for the remote reconfiguration of the

FPGA device and provides completely new functionality. De-

tails of the reconfiguration process are presented in Section III.

A very important issue in the integration and management of

FPGA-based hardware Web services is the discovery process.

All FPGA-based hardware Web services use network com-

munication modules that provide a multi-socket TCP/IP stack.

Some sockets have fixed roles and the rest are used for clients’

connections. One socket is reserved for discovery purposes,

enabling the FPGA-based hardware Web service currently

running to be found within the local area network. There

is a local (service) repository responsible for maintaining a

directory of FPGA-based hardware Web services, detecting

new services connected to the system and managing service

configuration. The prototype service repository used in our

solution utilizes the LDAP (Lightweight Directory Access

Protocol) for FPGA-based hardware Web service inventory

management purposes. Each device in the system is obliged to

send beacon signals periodically. These beacon signals are sent

as UDP datagrams to a multicast destination IP address and

received by the service repository. Contents of each beacon

message are generated in the internal logic of each individual

FPGA-based hardware Web service and sent through the

network communication module, which then transmits them

using UDP.

An internal user who intends to interact with an FPGA-

based hardware Web service browses the service repository in

search of the service’s details such as the invocation point and

the signature of the operations supported. Upon finding them,

the client application can connect to the hardware service

directly. An external user can interact with an FPGA-based

hardware Web service (find and run it) through the Internet

and ESB.

A significant aspect of using FPGA-based Web services

concerns the construction of a proactive system. Both proto-

cols investigated (RESTful and WS*) have request/response

characteristics that do not support the generation of asyn-

chronous notifications to clients. The fact that the classic

approach to Web Service technology has been selected implies

that we cannot implement such a notification mechanism in

our solutions. Notwithstanding this, in the concept developed

we have the ability to send notifications on service status

via the local (service) repository that is found under a well-

known address, which acts as a proxy that performs notifica-

tion operations. In the solution proposed, FPGA-based Web

services automatically send registration information to the

repository. The same method can be used to send information

about service status to the repository. In this case, a separate

notification mechanism can be implemented in the repository.

Such a solution can be perceived as a step towards event-driven

services.

During the design and implementation of our chosen so-

lution, we also considered issues related to security. It was

assumed that the local area network, which is not connected

directly to the Internet, is safe. If secure communications in

the local area network are required, SOAP and REST can be

used over HTTPS. If wireless technology is used, security is

provided by standard mechanisms such as Wi-Fi Protected Ac-

cess (WPA / WPA2) as implmented in the ESP8266 modules

that we use, Wireless Intrusion Prevention Systems (WIPS)

or Wireless Intrusion Detection Systems (WIDS). User access

from the Internet to FPGA-based hardware Web services is

possible only through the ESB, where various user autho-

rization and authentication mechanisms can be implemented

through secure communication channels such as the HTTPS

protocol.

V. CONCLUSIONS AND FUTURE WORK

In this article, we present a concept for a better utilization

of spare FPGA resources by employing them to perform

independent computational tasks. We apply this approach to

FPGA-based embedded and environment-aware Web services

compliant with the SOA paradigm. Additional functional

PIOTR NAWROCKI, ROBERT BRZOZA-WOCH: RECONFIGURABLE FPGA-BASED EMBEDDED WEB SERVICES 163



modules have to be provided for each service and particular

architectural guidelines have to be followed, which we present

in this paper as a reference. We attempt to keep additional

hardware costs as low as possible. Initially, we applied the con-

cept presented to the previously developed FPGA hardware-

software platform designed to run various Web services. Future

development goals include 1) automatic service advertising

(which is related to the issue of service repository [12]); and

2) developing or adapting available algorithms which would

allow us to automatically move computations between FPGA-

based Web services and the service management subsystem to

ensure uninterrupted Web service operation.

ACKNOWLEDGMENT

The research presented in this paper was partially supported

by the European Union in the scope of the European Regional

Development Fund program no. POIG.01.03.01-00-008/08,

the National Centre for Research and Development (NCBiR)

under Grant No. PBS1/B9/18/2013 and by the Polish Ministry

of Science and Higher Education under AGH University

of Science and Technology Grant 11.11.230.124 (statutory

project).

REFERENCES

[1] A. Ruta, R. Brzoza-Woch, and K. Zieliński, “On fast development
of FPGA-based SOA services—machine vision case study,” Design

Automation for Embedded Systems, vol. 16, no. 1, pp. 45–69, 2012.
doi: 10.1007/s10617-012-9084-z. [Online]. Available: http://dx.doi.org/
10.1007/s10617-012-9084-z

[2] R. Brzoza-Woch, A. Ruta, and K. Zieliński, “Remotely reconfigurable
hardware-software platform with web service interface for automated
video surveillance,” Journal of Systems Architecture, vol. 59, no. 7, pp.
376 – 388, 2013. doi: 10.1016/j.sysarc.2013.05.007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S138376211300074X

[3] J. Yu, Y. Zhu, L. Xia, M. Qiu, Y. Fu, and G. Rong, “Grounding
high efficiency cloud computing architecture: HW-SW co-design and
implementation of a stand-alone web server on FPGA,” in Applica-

tions of Digital Information and Web Technologies (ICADIWT), 2011

Fourth International Conference on the, Aug 2011. doi: 10.1109/I-
CADIWT.2011.6041412 pp. 124–129.

[4] S. Cuenca-Asensi, H. Ramos-Morillo, H. Lloren-Martinez, and F. Macia-
Perez, “Reconfigurable architecture for embedding web services,” in
Programmable Logic, 2008 4th Southern Conference on, March 2008.
doi: 10.1109/SPL.2008.4547742 pp. 119–124.

[5] C. Chang, F. Mohd-Yasin, and A. Mustapha, “An implementation
of embedded RESTful Web services,” in Innovative Technologies in

Intelligent Systems and Industrial Applications, 2009. CITISIA 2009,
July 2009. doi: 10.1109/CITISIA.2009.5224244 pp. 45–50.

[6] M. Middendorf and B. Scheuermann, “Perspectives of extending runtime
reconfigurable computing to the enterprise application domain,” in
Industrial Informatics (INDIN), 2010 8th IEEE International Conference
on, July 2010. doi: 10.1109/INDIN.2010.5549416 pp. 266–273.

[7] L. Zhang, S. Yu, X. Ding, and X. Wang, “Research on IOT RESTful
web service asynchronous composition based on BPEL,” in Intelligent
Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth Inter-

national Conference on, vol. 1, Aug 2014. doi: 10.1109/IHMSC.2014.23
pp. 62–65.

[8] Y. Kim, S. Lee, Y. Jeon, I. Chong, and S. H. Lee, “Orchestration in
distributed web-of-objects for creation of user-centered iot service ca-
pability,” in Ubiquitous and Future Networks (ICUFN), 2013 Fifth Inter-

national Conference on, July 2013. doi: 10.1109/ICUFN.2013.6614920.
ISSN 2165-8528 pp. 750–755.

[9] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” Industrial Informatics, IEEE Transactions on, vol. 1, no. 1,
pp. 62–70, Feb 2005. doi: 10.1109/TII.2005.844419

[10] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things
service architecture: REST or WS-*? a developers’ perspective,” in
Mobile and Ubiquitous Systems: Computing, Networking, and Services,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, A. Puiatti and T. Gu,
Eds. Springer Berlin Heidelberg, 2012, vol. 104, pp. 326–337. ISBN
978-3-642-30972-4. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-30973-1_32

[11] J. S. Rellermeyer, G. Alonso, and T. Roscoe, “R-OSGi: Distributed
applications through software modularization,” in Proceedings of the

ACM/IFIP/USENIX 2007 International Conference on Middleware, ser.
Middleware ’07. New York, NY, USA: Springer-Verlag New York,
Inc., 2007. doi: 10.1007/978-3-540-76778-7_1 pp. 1–20. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-76778-7_1

[12] P. Nawrocki and A. Mamla, “Distributed web service repository,”
Computer Science, vol. 16, no. 1, pp. 55–73, 2015. doi:
10.7494/csci.2015.16.1.55. [Online]. Available: http://journals.agh.edu.
pl/csci/article/view/1205

164 POSITION PAPERS OF THE FEDCSIS. ŁÓDŹ, 2015


