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Abstract—A qualitative model for describing 3D objects (Q3D)
using depth and different perspectives is presented in this paper.
The front, right and up perspectives are considered as canonical.
The Q3D model allow reasoning through logics defined to test the
consistency of descriptions. The maximal volume of the object
is also obtained logically using its Q3D description. Moreover,
this model infers some features of the unknown perspectives of
the object by defining logics based on the continuity of holes
and the relative depth presented by opposite perspectives. The
Q3D logics are implemented in Prolog and promising results
are obtained, which can inspire approaches to solve 3D spatial
problems computationally.

I. INTRODUCTION

Q
UALITATIVE Spatial and Temporal Representations and

Reasoning (QSTR) [1]–[3] models and reasons about time

(i.e. coincidence, order, concurrency, overlap, granularity) and

also about properties of space (i.e. topology, location, direc-

tion, proximity, geometry, intersection, etc.) and their evolution

between continuous neighbouring situations. Maintaining the

consistency in space and time are the basics in qualitative

reasoning when solving spatial and temporal problems. Spatio-

temporal reasoning models deal with imprecise and incomplete

knowledge on a symbolic level and have been successful in

many areas and applications such as robotics [4], [5], computer

vision [6], [7], ambient intelligence [8], [9], 2D shape descrip-

tion and recognition [10], colour naming and similarity [11],

architecture and design [12], spatial query solving in geographic

information systems [13], [14], etc. Furthermore, qualitative

representations are thought to be closer to the cognitive domain,

as shown in cognitive models of sketch recognition [15], spatial

problem solving tasks (i.e. visual oddity tasks) [16]. However,

further research is still needed to combine more aspects of

QSTR with cognitive spatial thinking.

In the fields of computer vision, robotics and ambient intelli-

gence, 3D object description and recognition are challenging

tasks nowadays. Dealing with three dimensional data is a

challenge because they usually suffer from distortions due to

noisy sensors, viewpoint changes and point density variations. In

the computer vision literature, approaches for object recognition

usually use 3D descriptors to encode their shapes from different

perspectives [17], [18]: feature-based approaches describe the

local or global properties of the surface of the object (i.e., colour,

curvature, texture, etc.); graph-based approaches describe the

structure or skeleton of the object, that is, the relations between

the object parts; and other approaches use other techniques like

extended gaussian images, 3D moments, volumetric errors, etc.

Research in the field of 3D object recognition has been

fostered by the availability of low-cost depth cameras based

on structured infrared light (also called RGB-Depth cameras)

such as the Microsoft Kinect and the Asus Xtion1. Since the

development of these sensors, diverse techniques have appeared

to recognise real objects which learn their shape from the

thousands of points which describe their surface from different

perspectives [19]–[21]. Although these techniques are successful

and applied in robotics and ambient intelligent systems, they

are quite computational expensive, and they are not exploiting

constraints in space to reduce this cost.

In the field of psychology, spatial cognition studies have

demonstrated that there is a strong link between success in

Science, Technology, Engineering and Math (STEM) disciplines

and spatial abilities [22], [23]. Thus, it is important to maintain

and train these abilities from the early stages. For example,

children at 4 years old have already informal awareness of

spatial relations such as parallel relations for two dimensional

shape identification before they are properly taught about par-

allelism [24]. For this reason, researchers in US and Canada

study the actualities and possibilities of training/including spa-

tial reasoning in contemporary school mathematics [25], also

because spatial learning and reasoning can be taught easily

using visual and kinetic interactions offered by new digital

technologies [26]. For example, touchscreen digital devices

can facilitate geometrical expression for young children [27].

High spatial skills are also required in space teleoperation [28]

(mental rotation and perspective-taking strategies are proved to

be used by the operator-astronaut to move a robot arm around

the workspace) and they are also decisive in Medicine [29].

Moreover, in cognitive psychology, games like Upside Down

World are used to evaluate students’ spatial skills when they are

challenged to recreate buildings composed of multilink cubes

and to use spatial language to describe the composition of these

buildings so that their colleagues can build accordingly [25].

A test of the German Academic Foundation to find children

with gifted brains among candidates for scholarships consists

in finding out the consistent view/projection for a 3D object

usually corresponding to a technological drawing2.

This paper explores the challenge of describing 3D objects

qualitatively and it is based on the levels of depth each object

1Trade and company names are included for benefit of the reader and imply
no endorsement or preferential treatment of the product by the author.

2Test der Studienstiftung: Gehirnjogging für Hochbegabte, see Spiegel On-
line: http://www.spiegel.de/quiztool/quiztool.249771.html
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has at each perspective. This approach is inspired in designs

of pieces which abstract the main features of the object from

all their properties in the real world and describe them using 3

canonical views (top, lateral and front). Moreover, this approach

is cognitively based, since in experimental psychology there

is support for the general idea that human object recognition

involves view-dependent representations, that is, people prefer

to imagine, view, or photograph objects from certain “canonical”

views [30]. Also this approach has been motivated by the

fact that the German Academic Foundation uses consistent

view/projection of a 3D object corresponding to a technological

drawing to measure intelligence in humans2. An example of

a question in this test and the instructions given may be that

provided in Fig. 1. Note that this example is made up for this

paper to avoid copyright issues, and that real examples can be

obtained online2.

(a) Intructions provided to participants

(b) Example of a question

Fig. 1. (a) Intructions of the test translated to English; (b) Plausible example
of a question regarding 3D projections in the German Academic Foundation
test.

The rest of the paper is organised as follows. In Section II,

properties of spatial substrates are explained. Section III presents

a model for Qualitative Description of 3D objects. Section IV

explains the logics encountered, and the consistency conditions

for the Q3D model are described in Section V. Section VI

presents a logic approach to obtain the maximal volume of an

object described by the Q3D model. Section VII explains how

to infer some features of the occluded views (back, down and

left) from their opposite views (front, up and right). In Section

VIII, the implementation of the model is described. Section IX

discusses the closer related work. And conclusions and future

work are presented in Section X.

II. SPATIAL SUBSTRATES AND THEIR PROPERTIES

As Freksa [31] mentions, properties of spatial objects and

configurations are intrinsically highly interdependent. If we

modify one spatial aspect (e.g. distance, orientation, topological

relation) in a spatial structure, other spatial aspects will be

changed automatically, as well. We call such a structure a

spatial substrate. If we move an object in space, the spatial

locations of all its parts as well as their relations to other objects

will change. If we change a single spatial aspect in a spatial

substrate, all these changes take place (for free); no computing

(or otherwise) effort is required.

As far as we are concerned, there is no related literature about

which are the properties spatial substrates may have. Here, we

appeal to the intuition of the reader to formulate some properties

which we envision they help in solving spatial problems:

• Abstraction: people abstract dimensions in space (i.e., by

assuming one dimension as constant) and re-represent data

in a way that helps visualising a problem. For example,

a map represents 3D space in a 2D paper, sometimes

assuming relief or altitude as constant.

• Continuity: dimensions in space are continuous. They can

be abstracted or considered as constant in a representation,

but this representation must be coherent with the space and

transmit changes in the dimension abstracted, if produced.

For example, if a change in relief is produced (i.e., a road

is cut) this change should be transmitted to the dimensions

not abstracted (i.e., an interactive or up-to-date map should

represent this discontinuity in the road).

• Interrelation: most dimensions in space are relative or

interrelated to each other. For example, when comparing

roads in a map, people usually look for the shorter-path (wrt

another) or the quicker path (wrt another). If the roads are

represented by abstracting the same dimension, then they

can be compared directly. If one road considers relief while

the other does not, then they are not comparable.

In 3D engineering object design (see Fig. 2), objects are

usually abstracted or re-represented using 3 canonical views.

In each view, the object is abstracted by considering a dimension

as constant. For example, in the front view/perspective, the

dimensions involved are the width and height of the object,

while the depth dimension is assumed as constant; in the right

view, the dimensions depth and height are represented, whereas

the width dimension is assumed as constant; and in the up view,

the dimensions represented are width and depth, while height

is assumed as constant.

Note that, in contrast to the 3D projection test by the German

Academic Foundation where views are provided disconnected

from each other, in 3D technological drawings, engineers as-

sume continuity in their abstractions or re-representations of

the object. When assuming a constant value for a dimension, it

is assumed also that this dimension is continuous. If a change

is produced in the dimension abstracted, this change has to be

reflected in the other representations. In Fig. 2 this continuity

is represented as grey lines.

Moreover, as Fig. 2 shows, in 3D technological drawings, per-

spectives are relative to each other. For example, the dimension

height is involved in the views front and right; similarly, the di-

mension depth is involved in the views right and up; and the di-

mension width is involved in the views up and front. Therefore,

following the continuity principle, a change in each common

dimension must be reflected in the other two views involved.

After observing these properties in the spatial substrates,

the following model for qualitative 3D object description was

defined.
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Fig. 2. Example of a 3D object in a technological drawing which shows the
corresponding relationships among perspectives.

III. A QUALITATIVE DESCRIPTOR FOR 3D OBJECTS

When thinking qualitatively about real objects in space, hu-

mans usually think about volumes. For example, in pictures and

paintings, observers assume sometimes depth in objects/scenes

–differentiating foreground from background [11]– which is not

easy to see in the absence of shadows. As a consequence, the

minimal unit for the qualitative description presented here is

considered a volume, specifically a cube of side x ∈ R, which

may be used to build an object similarly to how pixels are used

to build digital images.

Therefore, a reference system for qualitative 3D object de-

scription is defined as follows:

Q3DRS = {F,R,U ∈ P | P ⊆ Ndepths}

Ndepths = {a,b,c,d, · · · ,∗}

where F, R and U are the Front, Right and Up perspectives

(P) or views of the object, and N is the total number of cubes

which compose each edge of the object. That is, the edges of

the object in each perspective are described by the volume of

cubes of equal size, being the basic unit of measure considered

a cube of side x ∈ R (i.e., x = 1cm, x = 0.75cm, x = 5m, etc.).

Thus, each perspective has N levels of depth, which can be

named differently and sequentially as {a,b,c,d, · · · ,∗} where a

is the surface of the cube, b is the first level of depth (a previous

cube in the row has been removed), c is the second level of

depth (two previous cubes in the row have been removed) and

so on, until ∗ is reached, which indicates that all the cubes in

a row have been removed. The description is started from the

upper-left part at each perspective.

As a first example, let us consider the object in Fig. 3 and its

corresponding description according to the views: Front (F) in

red, Right (R) in blue, and Up (U) in yellow. Starting from the

Front Right Up

[c,c,∗] [∗,∗,b] [a,a,b]
[b,a,c] [b,b,a] [b,b,c]
[a,a,a] [a,a,a] [c,b,c]

Fig. 3. Example of 3D object divided by a 3x3x3 grid of cubes showing
the front (red), right (blue) and up (yellow) views, and its corresponding Q3D
description.

upper-left part of the front perspective, it can be observed that

2 cubes were removed in the first row, and also in the second

row, so this is represented by the parameters c,c in the Q3D

description. Then, all the cubes have been removed in the third

row, so this is represented by the parameter ∗. Going down a

level, it can be observed that only one cube is left in the first

row (represented by b), then all the cubes are filling the second

row (represented as a) and, in the third row, two cubes are

missing (represented as c). Finally, in the basis of the object,

all the rows are complete, which is represented as a,a,a. The

perspectives right and up are explained similarly.

As a second example, let us consider the object in Fig.

4 extracted from the technological drawing in Fig. 2. The

proportions of the object show that it can be modelled by a

grid of 4x4x3 cubes to be described qualitatively according to

the different levels of depth at each perspective. Fig. 4 shows

its corresponding Q3D description according to all the possible

views.

Right Front Up Left Back Down

[∗,∗,∗,a] [d,d,d] [d,c,c,a] [a,∗,∗,∗] [a,a,a] [a,a,a,a]
[∗,∗,∗,a] [d,d,d] [d,c,c,a] [a,∗,∗,∗] [a,a,a] [a,a,a,a]
[∗,a,a,a] [b,b,b] [d,c,c,a] [a,a,a,∗] [a,a,a] [a,a,a,a]
[a,a,a,a] [a,a,a] [a,a,a,a] [a,a,a]

Fig. 4. Three dimensional object representation extracted from the technolog-
ical drawing in Fig. 2 which can be divided into a 4x4x3 grid of cubes to be
described qualitatively by the Q3D approach.

It is important to notice that a change in a parameter or

letter in the Q3D description in Fig. 4 corresponds to a line

of the sketch drawing in Fig. 2. This is easily seen in the up

perspective descriptor, where a line may be drawn vertically

separating all d letters from c letters and another line may

be drawn vertically separating c letters from a letters (since

each different letter correspond to a different depth), so that the

technological drawing related to up perspective shown in Fig.

2 would be obtained. Therefore, some hints about the shape of

the object are obtained. However, note that the complete shape

of the object is not described at this stage, and also that circular

or squared holes in an object would be represented equally by

∗, described by the change in depth they produce.

IV. Q3D LOGICS FOR DESCRIBING OBJECTS

The Q3D description of an object can be also described

logically, as follows:

∀X Q3DOb ject(X) → view( f ront,X ,N,N′
,Q3D)∧

view(right,X ,N,N′
,Q3D)∧

view(up,X ,N,N′
,Q3D)

(1)

where X is a particular object; N is the dimension in cubes of

the edge of the object; and Q3D is the qualitative description

corresponding to each of the perspectives front, right and up,

which is built by N lists of N′ elements of depth each.
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The Q3D logic description for the object in Fig. 3 is provided

as follows:

Q3DOb ject(ob ject1) →
view( f ront,ob ject1,3,3, [[c,c,∗], [b,a,c], [a,a,a]])∧
view(right,ob ject1,3,3, [[∗,∗,b], [b,b,a], [a,a,a]])∧
view(up,ob ject1,3,3, [[a,a,b], [b,b,c], [c,b,c]])

(2)

The Q3D logic description for the object in Fig. 4 is provided

as follows:

Q3DOb ject(ob ject2) →
view( f ront,ob ject2,4,3,

[[d,d,d], [d,d,d], [b,b,b], [a,a,a]])∧
view(right,ob ject2,4,4,

[[∗,∗,∗,a], [∗,∗,∗,a], [∗,a,a,a], [a,a,a,a]])∧
view(up,ob ject2,3,4,

[[d,c,c,a], [d,c,c,a], [d,c,c,a]])

(3)

V. REASONING WITH THE Q3D: CONSISTENT AND

INCONSISTENT PERSPECTIVES

According to spatial reasoning, from the perspectives Front

(F), Right (R) and Up (Up), an object can be built in a three-

dimensional space. In mechanical engineering, it is assumed as

a convention that this canonical views correspond to the more

detailed views. So, which are the common sense facts in spatial

reasoning which guide this building? What are the 3D spatial

facts which can or cannot happen?

Let us consider the representation in Fig. 5 to exemplify the

following cases:

• Case 1: a change in an edge affects 2 perspectives at least.

For example, if the cube {F1,2,U3,2} disappears, this must

be reflected at both perspectives F and U.

• Case 2: a change in a vertex affects 3 perspectives. For

example, if the cube {F1,3,R1,1,U3,3} disappears, this must

be reflected at perspectives Front and Up, but also at Right.

• Case 3: each hole affects 2 perspectives at least, two of

them corresponding to opposite views. For example, a hole

in the middle of the object (i.e., cube {F2,2} and follow-

ers disappear) would affect Front and Back perspectives,

whereas a hole involving cubes {F2,3, R2,1, R2,2, R2,3}
would affect 3 perspectives: Front, Right and Back.

F
1
,1

F
1
,2

F
1
,3

F
2
,1

F
2
,2

F
2
,3

F
3
,1

F
3
,2

F
3
,3

R1,1

R1,2

R1,3

R2,1

R2,2

R2,3

R3,1

R3,2

R3,3

U
3
,1

U
3
,2

U
3
,3

U
2
,1

U
2
,2

U
2
,3

U
1
,1

U
1
,2

U
1
,3

Fig. 5. Example of an object showing the constraints at the boundary of the
canonical perspectives.

The spatial constraints appear along the boundary of the

perspectives or the edges of the object, since a change in

a perspective must be consistent with a change in another

perspective. In Fig. 5, each cube is named according to the

perspectives Front (F), Right (R) and Up (U). Therefore, the

descriptions must be consistent where the edges meet at F-R,

F-U, and R-U perspectives:

consistent Q3D(F,R,U) →
consistent perspective(F,R)∧
consistent perspective(F,U)∧
consistent perspective(R,U)

(4)

Note that the problem is simplified by abstracting one dimen-

sion/view in each comparison, that is, the views meeting at each

edge are those related and those that must be consistent.

Let us consider the edges meeting at cube {F1,3,R1,1,U3,3},

then the consistent conditions for front (F) and right (R)

perspectives can be defined as:

consistent perspective([[F11,F12,F13], [F21,F22,F23], [F31,F32,F33]],
[[R11,R12,R13], [R21,R22,R23], [R31,R32,R33]]) →
consistent side(F13, [R11,R12,R13])∧
consistent side(F23, [R21,R22,R23])∧
consistent side(F33, [R31,R32,R33])∧
consistent side(R11, [F11,F12,F13])∧
consistent side(R21, [F21,F22,F23])∧
consistent side(R31, [F31,F32,F33])

(5)

The conditions to obtain a consistent perspective in the sides

R-U and F-U are defined similarly. It has been observed that

the same constraints must be fulfilled for each edge, F-R, R-U

and F-U, so they can be generalised:

consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level a(Fi3) ∧ level a(Ri1)

(6)

The logic rule (6) is explained as follows: if any cube exists

on the right edge at front perspective, then it must exist also a

cube on the left edge at right perspective, since a cube involves

a volume which continues in both dimensions or perspectives.

Note that i means some row and 1,2,3 means column 1,2,3,

respectively. Note also that nothing is constrained on the Ri2

and Ri3 cubes.

consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level b(Fi3) ∧ level a(Ri2)∧
(level b(Ri1) ∨ level c(Ri1) ∨ no exist(Ri1))

(7)

The logic rule (7) is explained as follows: if only a cube

disappear on the right edge at front perspective (that is,

Fi3 ≡ b in Q3D), then it must exist also a cube located on

the second column at right perspective, since this is the cube

seen from the front (that is, Ri2 ≡ a). And the constraints

on the cubes located on the left edge at right perspective

(Ri1) are that: they cannot be level a of depth since that

would mean that missing cubes, appeared again, which is

inconsistent. For Ri1 all the other possibilities can happen:

Note that nothing is constrained on the Ri3 cubes.
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consistent side(Fi3, [Ri1,Ri2,Ri3]) →
level c(Fi3) ∧ level a(Ri3)∧
(level b(R1i) ∨ level c(R1i) ∨ no exist(R1i))∧
(level b(R2i) ∨ level c(R2i) ∨ no exist(R2i))

(8)

The logic rule (8) is explained as follows: if two cubes

disappear on the right edge at front perspective (that is, Fi3 ≡ c

in Q3D), then it must exist also a cube located at the third

column at right perspective, since this is the cube seen from

the front (that is, Ri3 ≡ a). And the constraints on the cubes

located on the left edge at right perspective (Ri1 and Ri2) are

that: they cannot be level a of depth since that would mean

that the missing cubes appeared again, and that is inconsistent.

For Ri1 and Ri2 all the other possibilities can happen:

consistent side(Fi3, [R1i,R2i,R3i]) →
no exist(Fi3)∧
(level b(R1i) ∨ level c(R1i) ∨ no exist(R1i))∧
(level b(R2i) ∨ level c(R2i) ∨ no exist(R2i))∧
(level b(R3i) ∨ level c(R3i) ∨ no exist(R3i))

(9)

The logic rule (9) can be explained as follows: if all the

cubes disappear on the right edge at front perspective (that

is, Fi3 ≡ ∗ in Q3D), then no cube on the first row at right

perspective must exist (Ri1 6= a, Ri2 6= a, Ri3 6= a) but all

the rest of possibilities can happen for Ri1, Ri2 and Ri3:

Note that Fi3 denotes F1,3, F2,3 or F3,3; that R1i denotes R1,1,

R1,2 or R1,3; also R2i denotes R2,1, R2,2 or R2,3; and R3i denotes

R3,1, R3,2 or R3,3, and also,

∀X level a(X) → a

∀X level b(X) → b

∀X level c(X) → c

∀X no exist(X) → ∗

(10)

If information is given about the rest of perspectives (Back

-B-, Left -L-, Down -D-), the consistency conditions between

the edges at each perspective are defined similarly.

Note that, as each vertex is proving consistency in 3 edges,

only by proving the consistency conditions in 4 opposite vertices

in the cube, all the edges of the cube are covered. Let us show

an example:

(B,R,D)(F,L,D)

(B,L,U)

(F,R,U)

Proving the consistency at the 4 vertices in the draw-

ing above (consistent Q3D(F,R,U), consistent Q3D(B,L,U),
consistent Q3D(F,L,D), consistent Q3D(B,R,D)) is enough to

cover the 12 edges of a complete consistent description of a 3D

object.

The computational complexity of the consistency algorithm

is calculated as follows. When choosing 4 opposite vertices in

the cube where to apply the consistent Q3D function, all the

12 edges of the cube are covered, since the consistent Q3D

function checks the consistency of the 3 edges meeting at a

specific vertex. Then, the final computational complexity is 12

times the complexity of the consistent perspective function.

And the complexity of this function is 2N where N is the edge

size in volume-cubes. In summary, 12 · 2 ·N = 24 ·N, thus the

computational cost is O(N).

VI. INFERRING THE MAXIMAL VOLUME OF THE OBJECT

FROM THE Q3D

The maximal volume of an object described by a Q3D can

be obtained as:

Q3Dvolume = min(volumeP(F),volumeP(R),volumeP(U)) (11)

where Q3Dvolume refers to the volume of the object measured

in cubes of side x ∈ R; and min refers to the minimum of the

volumes corresponding to each perspective F,R,U ∈ P, that is

(volumeP) which is defined as follows.

The volume of a perspective is the opposite to its levels of

depth. If an object is described by N cubes, then the volume is

calculated as:

volumeP(P) =
N·N

∑
i=1

volume(σ) (12)

where, the volume of an element σ is defined as:

volume(σ) =
σ

∑
i=1

N − i (13)

that is, for example, for N=3, volume(a)≡ N, volume(b)≡ N−
1, volume(c)≡ N −2 and volume(∗)≡ 0.

As an example, the volume of the object in Fig. 3 is

calculated as follows:

Object 1 Front view Right view Up view

if N=3, [c,c,∗] =1+1+0 [∗,∗,b] =0+0+2 [a,a,b] =3+3+2
a=3, b=2 [b,a,c] =2+3+1 [b,b,a] =2+2+3 [b,b,c] =2+2+1
c=1, ∗=0 [a,a,a] =3+3+3 [a,a,a] =3+3+3 [c,b,c] =1+2+1

= 17 = 18 = 17

Note that the minimal result obtained is 17, which is the

correct volume of the object, as it can be checked in Fig. 3.

The minimum volume of all canonical perspectives is cal-

culated, since, for example, some holes may only be seen

from a specific perspective. Then, it is important to notice that

the volume obtained is the maximal that the object can have

when being observed from the FRU perspective. Note that it is

important to select the canonical perspectives as FRU, otherwise

the correct volume might not be obtained since an object might

have a hole at a side which would not be appreciated.

The computational cost of the maximal volume algorithm is

obtained as follows. The complexity of calculating the volume

of a Q3D view is the complexity of getting the value of the N

depths at each row and the N depths at each column, being N

the size of the edge, thus the cost is N ·N. This volume must

be computed using the 3 views at a vertex (i.e., FRU), that is

3 ·N ·N, so the computational complexity of the algorithm is

O(N2).
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VII. INFERRING SOME DEPTHS IN UNKNOWN

PERSPECTIVES FROM OPPOSITE VIEWS

Taking into account the spatial relations showed by the

drawing in Fig. 6, from the views Front (F), Right (R) and

Up (Up), how much can we deduce logically from the rest of

the object? Can the rest of the views be computed?

Front Right Up

[c,c,∗] [∗,∗,b] [a,a,b]
[b,a,c] [b,b,a] [b,b,c]
[a,a,a] [a,a,a] [c,b,c]

Fig. 6. Q3D description of object 1 used to explain inferences.

According to the properties of continuity and relativity of

spatial substrates, some features of the unknown views can be

inferred:

Hole Continuity: all the holes observed in a view affect the

opposite views of the object, that is, front-back, right-left, up-

down. Taking into account this property, the following features

could be inferred regarding the back, left and down views of

object 1:
Back Left Down

[∗, , ] [ ,∗,∗] [ , , ]
[ , , ] [ , , ] [ , , ]
[ , , ] [ , , ] [ , , ]

Note that features that remain unknown are represented by ‘ ’.

Depth Relativity: features indicating the last level of depth in

a view (i.e., level c in a 3x3x3 description), involve the existence

of the first level of depth in the opposite view (always level a).

Taking into account this property, the following features could

be inferred regarding the back, left and down views of object 1:
Back Left Down

[∗,a,a] [ ,∗,∗] [ , , ]
[a, , ] [ , , ] [a, , ]
[ , , ] [ , , ] [a, ,a]

The consistency properties mentioned in Section V must be

fulfilled also by the unknown perspectives and they can be used

to infer the depths in them. For example, the neighbouring

perspectives of back are right, up, and left. If Right and Up

perspectives are known (R, U) or given by a Q3D, some

features regarding the perspective Left can be inferred. These

inference inter-relationships between neighbouring perspectives

to discover more features in unknown views are currently under

study.

VIII. IMPLEMENTATION

First-order logic knowledge bases are usually built using

Horn clauses [32], which contains at most one positive literal.

Prolog programming language [33] is based on Horn clause

logic and it was selected as the logic programming language

for implementing the logics of the Q3D description. SwiProlog3

was the testing platform [34], and the Prolog Contest book [35]

was a guide.

3SWI-Prolog: http://www.swi.2prolog.org/

The Q3D description of objects was written using Prolog

facts as: view(View, Object, N, Q3D).

For example, the Q3D description of the object in Fig. 3 is

described as:
view(front,obj1,3,[[c,c,*],[*,*,b],[a,a,b]]).

view(right,obj1,3,[[b,a,c],[b,b,a],[b,b,c]]).

view(up,obj1,3,[[a,a,a],[a,a,a],[c,b,c]]).

The correctness of the input Q3D was checked. The consis-

tency logics were also programmed and tested. The maximal

volume of the objects regarding the Q3D was also programmed

and tested. And the inference of some features of the unknown

perspectives from their opposite perspectives were also pro-

grammed and checked.

As an example, the results of the Prolog implementation for

the Q3D description of the object in Fig. 3 are given:
?- qualitative_3D(object1).

Front:[[c,c,*],[b,a,c],[a,a,a]] Correct description.

Right:[[*,*,b],[b,b,a],[a,a,a]] Correct description.

Up:[[a,a,b],[b,b,c],[c,b,c]] Correct description.

Consistent Q3D F,R,U views.

Maximal volume:17

Back constrained wrt Front:[[*,a,a],[a,?,?],[?,?,?]]

Left constrained wrt Right:[[?,*,*],[?,?,?],[?,?,?]]

Down constrained wrt Up:[[?,?,?],[a,?,?],[a,?,a]]

true.

More examples of the testings are provided in the Appendix.

All the Prolog code corresponding to the Q3D is available for

downloading4. For easily testing, the on-line platform Pengines5

can be used.

IX. DISCUSSION ABOUT RELATED WORK

In the literature, objects are also described using 3D shape

grammars [36]. As linguistic grammars build sentences and

paragraphs, shape grammars follow also rules (i.e., recursively

subdivision) to build 3D objects. In these grammars, although

the rules applied are logical, the obtained description of the

object is not qualitative, in contrast to the one proposed in this

paper.

Moreover, another approach related to shape grammars is

constructive solid geometry [37] (or computational binary solid

geometry), that is, a technique used in solid modelling which

can define the steps of building/synthesising complex objects

by combination of other objects and Boolean operations (i.e.,

intersection, union, difference). It has a broad application in

computer graphics for generating objects in computer games

[38].

Both shape grammars and constructive solid geometry meth-

ods are useful for object building/synthesis, but challenging to

use for object description/analysis because they sometimes use

not-reversible operations. Moreover, there is not a specific set

of grammar rules or constructive geometry methods to obtain

a specific object, since different methods can produce the same

result. Therefore, the descriptions obtained might be not unique

and then difficult to use for object identification. The Q3D

model defined here can be useful for designing the plan to

4Data download: https://sites.google.com/site/zfalomir/projects/cognitive.
2ami

5Pengines by SWI-Prolog: http://pengines.swi.2prolog.org/apps/swish/index.
html
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synthesise/build the object, but also to uniquely describe that

object when it is created.

In the literature, the main theoretical approaches in qualitative

3D representation which are studied in psychology of object

perception are:

• Marr and Nishihara’s approach [39] which uses a 3D

composition of generalised cylinders to describe a sketch or

skeleton of the objects and their parts. This model is hier-

archical, that is, component parts can also be decomposed

into parts and recognition is achieved when matching a

description derived from an image to a previous stored 3D

object type. The Q3D approach presented in this paper is

similar to Marr and Nishihara’s approach [39] in the sense

that it uses a generalised cube to describe the structure

of the object, similarly to Marr and Nishihara’s cylindre.

However the Q3D approach represented the whole object,

not only its skeleton.

• Biederman’s approach [40] describes 3D objects using

more geometric shapes or geons, not only cylinders or

cubes. However, they are obtained from a 2D image repre-

sentation rather than from a 3D representation as in Marr

and Nishihara’s approach [39]. According to Biederman,

geons are detected on the basis of certain properties of

contours in the image (i.e., linearity, parallelism, curvi-

linearity, symmetry) or at regions of concavity. Therefore,

Biederman’s approach tries also to represent the different

shapes of the components of the object, not only the volume

parts.

• Guesgen’s approach [1] approximate objects to polygons

with parallel sides which are projected to a coordinate

axis. The relations between the objects (or intervals in the

axis) are represented qualitatively (i.e., left of, attached to,

overlapping, inside) similarly to the relations between tem-

poral intervals defined by Allen’s model [41]. This model

is similar to the Q3D in the sense that both approximate

objects, Guesgen’s approach to polygons and the Q3D to

arrangements of cubes. However, the Q3D uses the cube

as a unit which allows to calculate the volume of the

object, whereas Guesgen’s method do not obtain it, but

it is independent of it.

The approaches above describe objects based on their 3D

structural skeletons or sides and produce object centred de-

scriptions. That is, view-independent descriptions are obtained

which are not designed to detect inconsistencies in object per-

ception from different views. The Q3D approach presented here

describes the depth of 3D objects in its canonical views. The

representation obtained is object-centred, but allows comparison

between perspectives in order to detect inconsistencies and also

in order to infer unknown perspectives, which is a novel aspect

in the literature, as far as we are concerned. Moreover, there

is support for the general idea that human object recognition

involves view-dependent representations, that is, people prefer

to imagine, view, or photograph objects from certain “canonical”

views [30]. Therefore, the Q3D has a cognitive basis.

X. CONCLUSION AND FUTURE WORK

This paper presents the definition of a qualitative 3D object

descriptor based on a qualitative concept of depth which con-

siders a cube as the minimal unit of volume. This representation

can be considered a spatial substrate [31], since if a single cube

is added or removed at an edge, this change is produced for free

to 3 perspectives (i.e., front, right and up) without no computing

effort needed to readjust the views.

Abstraction, continuity and interrelation properties are pro-

posed in this paper as the basis to define spatial substrates. The

logics to test the consistency of the Front, Right and Up Q3D

descriptions corresponding to real 3D objects are presented.

Then, the maximal volume of an object is calculated logically

from the Q3D obtained. Moreover, logics to infer some features

of the unknown back, down and left views are proposed.

All the Q3D logics described above have been implemented

in Prolog and tested using the SwiProlog platform. Results are

promising and they inspire future work towards an approach

which could give humans a hint about which projections of

a 3D object are impossible when solving spatial problems, so

that they could understand and reason about 3D object repre-

sentations such as those in the test by the German Academic

Foundation for scholarships2.

As future work, it is intended to: (i) implement further

reasoning methods to infer the rest of features of depth of

the unknown back, left and down perspectives, from the data

known regarding its neighbouring perspectives; (ii) extend the

Q3D description to include hidden concavities; and (iii) define

an approach to describe the boundary shape of each of the

perspectives of the object taking into account the Q3D as a

basis.

Applications in education are envisioned when helping stu-

dents in engineering to understand conventions in technical

drawing. Other applications in computer vision would be in-

teresting, for example when computing 3D attention saliency in

proto-objects [42], a Q3D description could help to store a short

memory narrative of the evolution of the proto-objects in these

attention artificial systems.
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APPENDIX

Other examples of Q3Ds implemented in Prolog and used in

the testings.

Object 2:

Front Right Up

[c,∗,∗] [∗,∗,c] [a,b,b]
[a,b,c] [c,b,a] [b,b,c]
[a,a,b] [b,a,a] [b,c,∗]

Back Left Down

[∗,∗,a] [a,∗,∗] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]
[a,a,a] [a,a,a] [∗,a,a]
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?- qualitative_3D(object2).

Front:[[c,*,*],[a,b,c],[a,a,b]] Correct description.

Right:[[*,*,c],[c,b,a],[b,a,a]] Correct description.

Up:[[a,b,b],[b,b,c],[b,c,*]] Correct description.

Consistent Q3D F,R,U views.

Maximal volume:15

true .

Object 3:

Front Right Up

[a,∗,a] [a,∗,a] [a,b,a]
[a,a,a] [a,a,a] [b,b,b]
[a,a,a] [a,a,a] [a,b,a]

Back Left Down

[a,∗,a] [a,∗,a] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]
[a,a,a] [a,a,a] [a,a,a]

?- qualitative_3D(object3).

Front:[[a,*,a],[a,a,a],[a,a,a]] Correct description.

Right:[[a,*,a],[a,a,a],[a,a,a]] Correct description.

Up:[[a,b,a],[b,b,b],[a,b,a]] Correct description.

Consistent Q3D F,R,U views.

Maximal volume:22

true .

Object 4:

Front Right Up

[b,a,a] [a,b,a] [a,a,a]
[b,a,a] [a,b,a] [a,a,∗]
[a,a,a] [a,b,a] [c,a,a]

Back Left Down

[a,a,a] [a,a,b] [a,a,a]
[a,a,a] [a,a,b] [∗,a,a]
[a,a,a] [a,a,a] [a,a,a]

?- qualitative_3D(object4).

Front:[[b,a,a],[b,a,a],[a,a,a]] Correct description.

Right:[[a,b,a],[a,b,a],[a,b,a]] Correct description.

Up:[[a,a,a],[a,a,*],[c,a,a]] Correct description.

Consistent Q3D F,R,U views.

Maximal volume:22

true .
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[5] Z. Falomir, L. Museros, V. Castelló, and L. Gonzalez-Abril, “Qualitative
distances and qualitative image descriptions for representing indoor
scenes in robotics,” Pattern Recognition Letters, vol. 38, pp. 731–743,
2013. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2012.08.012
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