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Abstract—Recurrent drift, as a specific type of concept drift,
is characterised by the appearance of previously seen concepts.
Therefore, in those cases the learning process could be saved or
at least minimized by applying an already trained classification
model. In this paper we propose Fuzzy-Rec, a framework that is
able to deal with recurrent concept drifts by means of a repository
of classification models and a similarity function.

Fuzzy logic is used in the framework to implement the simi-
larity function needed to compare different classification models.
This is a crucial aspect when dealing with drift recurrence, as
long as some measure must be implemented to determine which
model better fits a previously seen context. As it can be seen in
the experimentation results of this paper, this fuzzy similarity
function provides excellent results both in synthetic and real
datasets. As a conclusion, we can state that the introduction of
fuzzy logic comparisons between models could lead to a better
efficient reuse of previously seen concepts, saving computational
resources by applying not just equal models, but also similar
ones.

I. INTRODUCTION

T
RADITIONAL data stream classification [1] aims to learn
a classification model from a stream of training records

in order to use it later to predict the class of unlabeled records
with high accuracy. Most of these kinds of classification
models lack an efficient adaptation to the environment where
they are implemented which, in most cases, is constantly
changing. For this reason, coping with the improvement and
adaptation of classification algorithms on data streams is still
a great challenge, as long as data stream mining imposes
some requirements that have to be accomplished, namely:
maintaining an efficient behaviour in the system, i.e. stable
computational and memory load; while providing suitable
quality in the classification process, i.e. high accuracy of
predictions.

Concept drift is known as the intrinsic changes that occur
on the data being processed during data-mining tasks. These
changes might be caused by data distribution alterations or by
the appearance of a new context that alters the relations among
the data attributes. Keeping this scenario in mind, different
concept drift techniques have been extensively applied to cope
with changes in the underlying distribution of records over

time, allowing classification models to be able to adapt their
behaviour when needed [2, 3, 4].

Moreover, it is common in real-world data streams for
previously seen concepts to reappear [5]. This represents
a particular case of concept drift [6], known as recurring
concepts [7]; [8]; [5]; [9]; [10]. An adequate management of
recurrent concept drifts would lead to a better overall data
stream learning and classification processes efficiency and
efficacy.

Some real cases where concept recurrence is likely to appear
are:

1) Product recommendation systems. Drift in these kind
of systems is usually related to fashion trends, economy
fluctuations or other hidden context. Anyway, in the first
two causes recurrence it is likely to reappear. This is due
to the fact that fashion and economy trends reappear
during time. A system able to deal with concept recur-
rence could save some precious training time by means
of reusing previously seen recommendation models.

2) Weather prediction. The changes that occur in weather
predictions are usually recurrent according to the sea-
sons. Therefore, prediction models that deal well with a
specific season could be reused latter on time.

3) Intrusion detection systems. An intrusion detection sys-
tem (IDS) is a typical monitoring problem which aims
to detect cyber incidents. In this case, a trained classi-
fication model could send alerts to the operator when a
malfunction in the system occurs. A concept drift in an
IDS means that the system is behaving in a different way
from that expected. But that different behaviour may be
caused by a new kind of intrusion that is probably taking
place, or because the system monitored is changing in
a controlled environment (no intrusion is taking place).
If we were able to store all the patterns that represent
the different situations of the system monitored (its
concepts), we could reuse previously seen models easily.

4) Fraud detection. A similar situation like the one ex-
plained in the case of IDS, would be the case of
a set of systems dealing with fraud detection. Fraud
detection systems are able to detect misbehaviours on
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a big amount of data. In this kind of scenarios drift
is usually related to economy variations or seasons. As
in the previous cases, the detection of drift recurrence
could aid in the performance and precision values of the
prediction mechanism.

Therefore, there are situations in which a new training
is not needed, as the new concept is equal or similar to a
previous one. In those cases we could reuse a previously-
trained model, saving computation costs and thus providing
an efficient method to undertake this new context.

Extending this idea, in this work we propose Fuzzy-Rec
as a novel data-stream learning system to help in the process
of recurrent concept drift management. In situations where
concepts reappear we propose to use a fuzzy similarity func-
tion to help in the process of getting the most similar model
in a specific context. Some approaches already exist for that
goal, but they refer to crisp logic based on true/false values.
We assume that a similarity function based on fuzzy logic
[11] would improve the similarity process, also allowing us to
obtain a better knowledge of what is happening in that process.
Furthermore a fuzzy logic similarity function could be adapted
for each situation, depending on the feature space of the data
stream or on the computational capabilities of the system.

This is a crucial aspect to improve the storing process in
the repository effectively. When a model has to be stored in
the repository, it is required to know if the concept that the
model is representing is recurrent or not. In case of a recurrent
concept, it should not be stored, as there are already previous
models representing it.

In order to calculate the fuzzy similarity level between
models, two main features have been used in this work: i) the
level of accuracy of the different models involved regarding
a specific set of instances; ii) the number of instances used
to train the different models, as a measure of maturity and
stability of the model. This process helps the system as a
whole to save memory consumption, as long as just the models
needed are stored in the repository. In this way, the proposed
mechanism makes it feasible to work with complex data-
stream environments where an overloaded repository would
make it difficult to achieve a suitable quality of the system.

To the best of our knowledge, this is the first work to deal
with concept drift by means of the use of fuzzy logic to predict
similar previously seen concepts.

Experiments performed with different real and synthetic
datasets show that Fuzzy-Rec provides similar precision results
when comparing it with other approaches.

The rest of the paper is organized as follows. In Section
II, we summarize related work on concept drift and fuzzy
logic, which is followed in Section III by the preliminaries of
the approach where the motivation, challenges and problem
definition are stated. Furthermore, in Section IV, we propose
Fuzzy-Rec as a solution to work in recurring concept drift
environments, with a detailed description of its components
and the algorithm used. Section V presents the results obtained
by the experimentation phase. Finally Section VI presents the
main conclusions and discussion of future lines of research.

II. RELATED WORK

The approach that we propose in this paper relies on
the storage of previously learnt concepts. A fuzzy similarity
function is used to retrieve a previously built model which is
similar to the current one.

Consequently, in this section we review and compare our
proposal with methods that address the problems of: recurring
concepts, change detection and conceptual equivalence.

A recent review of the literature related to the problem of
concept drift can be found in [4]. Moreover, a review on the
challenges for adaptative learning systems have been published
in [12].

A. Recurring Concepts

There have been several techniques developed to achieve
the challenge that arises when dealing with concept drift,
be they algorithms adaptations or wrapper mechanisms. New
algorithms have recently appeared [1, 2, 3, 4, 5, 13, 14], but
some other related challenges have received far less attention.
Such is the case of situations where the same concept or a
similar one reappears, and a previous model could be reused
to enhance the learning process in terms of accuracy and
processing time [7, 8, 10, 15, 16].

In this way, most existing proposals do not exploit this and
have to learn new concepts from scratch even if they are
recurrent. However, there are some solutions that deal with
concept recurrence, as is the case of the work presented by
Ramamurthy and Bhatnagar [15]. In this research, the authors
present an ensemble approach that exploits concept recurrence,
using a global set of classifiers learned from sequential data
chunks. If no classifier in the ensemble performs better than
the error threshold, a new classifier is learned and stored
to represent the current concept. The classifiers with better
performance on the most recent data form part of the ensemble
for labeling new records. In [17] and [18] an ensemble
mechanism is used to deal with concept drift. Similarly, in
[8] an ensemble is also used, but incremental clustering is
performed to maintain information on historical concepts.
In this way, the proposed framework captures batches of
examples from the stream into conceptual vectors. Conceptual
vectors are clustered incrementally according to their distance
and for each cluster a new classifier is learnt. Classifiers in
the ensemble are then learnt using the clusters. Recently [19]
proposed Learn++.NSE, an extension of [20] for nonstationary
environments, Learn++.NSE is also an ensemble approach that
learns from consecutive batches of data without making any
assumptions on the nature or rate of drift. The classifiers
are combined using dynamic weight majority and the major
novelty is on the weighting function that uses the classifiers
time-adjusted accuracy on current and past environments. To
deal with resource constraints [21] proposes a novel algorithm
to manage a pool of classifiers when learning recurring con-
cepts. The main drawback of these methods, apart from the
computational process time needed, is the need of constantly
train the models used being them recurrent or not.
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More sophisticated approaches that use drift detection [3]
have also been proposed to address concept recurrence, such as
[7, 10]. These approaches store learned models and reuse them
when a similar concept reappears in the stream, thus avoiding
the effort necessary to relearn a previously observed concept.
The method proposed by Yang et al. [10] consists of using a
proactive approach to recurring concepts, which means reusing
a concept from the concept history. This concept history is
represented as a Markov chain which allows the most probable
concept to be selected according to a given transition matrix.
The approach proposed by Gama and Kosina [7] uses the drift
detection method presented in [3] to identify stable concepts
and it also memorizes learned classifiers that represent these
concepts. After a change is detected in situations of recurrence,
referees are used to choose the most appropriate classifier to
be reused (i.e., the referee prediction on the applicability of
the classifier is greater than a pre-defined threshold). [22] is
a recent work on drift detection which uses a control chart to
monitor the misclassification rate of the data stream classifier.
RCD [23] is a recent recurring concept drift framework that
uses a non-parametric multivariate statistical tests to check for
recurrence. [24] proposes a semi-supervised recurring concept
learning algorithm that takes advantage of unlabelled data.

In the approach proposed in [16] context-concept relation-
ships are learnt from the concept history. A model from a
previously learnt concept associated with a particular context
is reused in situations of recurrence. Moreover, the proposed
method does not require the partition of the dataset into small
batches. The concept representations are learnt by a base
learner algorithm from an arbitrary number of records. These
concept boundaries are determined when a drift detection
method signals a change/drift. To improve [16], which relies
on a single classifier to deal with recurring concepts, the use
of ensembles has been proposed in [25].

B. Change Detection

Although online learning systems are able to adapt to evolv-
ing data without any additional change detection mechanism,
the advantage of explicit change detection is providing infor-
mation about the intrinsic dynamics of the process generating
data. In this way, the change detection module characterizes
the techniques and mechanisms for drift detection. One ad-
vantage of detection models, is that they can provide a mean-
ingful description (indicating the change-points or small time-
windows where the change occurs) and the quantification of
changes. They may be divided into two different approaches:

• Monitoring the evolution of performance indicators [5].
Some indicators (e.g., performance measures, properties
of the data, etc.) are monitored over time. In the work
presented in [26] the monitoring of three performance
indicators (accuracy, recall, and precision) has been
proposed. Furthermore, a highly referenced work that
uses this approach is the FLORA family of algorithms
developed by [5].

• Monitoring distributions on two different time-windows.
A reference window, which usually summarizes past

information, and a window over the most recent records.
The work proposed by [27] uses statistical tests based
on Chernoff bound to determine if the samples drawn
from two probability distributions are different and then
decide if a concept change occurred. Also [28, 29, 30]
approaches are based on monitoring two different time-
windows.

[3] and [9] approaches monitor the error-rate of the learning
algorithm to find drift events. In [3], when the learning
process error-rate increases above certain pre-defined levels,
the method signals that the underlying concept has changed.
Alternatively [31] uses the distribution of the distances be-
tween classification errors to signal drift. If the distance, which
results from more consecutive errors is above pre-defined
threshold, the underlying concept must be changing and an
event is triggered. The basic adaptation strategy after drift is
detected is to discard the old model and learn a new one to
represent the new underlying concept [3, 31].

C. Conceptual equivalence

To determine whether a certain model represents a new
concept or a reappearing one, a similarity measure is required.
The current work is an improvement of the Conceptual equiv-

alence measure proposed by Yang et al. [9] where a fuzzy
logic function [32] is used to better represent the relationship
between different concepts.

III. PROBLEM DEFINITION AND PRELIMINARIES

This section provides the necessary background to under-
stand Fuzzy-Rec system. We start by motivating and defining
the problem, including some basic definitions to understand the
basics of the solution proposed as well as the main challenges
we are dealing with in this paper.

From now on we assume that the data streams that are used
as input in the Fuzzy-Rec model are already preprocessed and
adapted to work well with incremental data stream classifica-
tion processes. In this way, we can then assume that we do
not need to preprocess the data streams, this work being out
of the scope of this paper.

A. Motivation

Data stream mining algorithms must come up with the
problem of having to keep in memory just a limited number
of records to train their models. That is why these algorithms
have to cope with the task of processing each training record
only once, while maintaining a suitable quality on the resulting
model. This is the main difference from traditional data mining
algorithms, where multiple passes over data are common.

In particular, that leads to classification techniques on data
streams where models have to be learned incrementally with
each incoming record. With the availability of these kinds of
models, it is feasible to predict the class of unlabeled records
anytime from an early stage. Obviously, the more training
records the better precision values obtained.

However, in scenarios where the data distribution changes
the accuracy of the classification is expected to decrease. In
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these cases, to continuously maintain the quality of the models,
it is also important for them to be able also to detect and
adapt anytime to changes in the underlying concept that they
represent [2].

One of the causes of changes in the underlying concept may
be recurrence, as a particular case of concept drift [5, 7, 8, 10].
In those cases, a previously learned concept is expected to
reappear.

We envisage that recognizing and predicting already learned
concepts might help the system to better adapt to future
changes where these concepts reappear. With that recognition
task in place, it would be possible for the algorithms to
avoid relearning something from scratch that has been already
learned [5, 7, 8, 10, 16]. This same idea has been already
explored in [16], where concepts are able to be saved in a
repository.

However in our approach we propose a fuzzy based mech-
anism to decide about similarity of models, improving the
storage of the models. As a result, by means of a good
similarity selection, the number of instances needed for the
training process is expected to decrease.

B. Preliminaries

1) Learning with Concept Drift: Let X be the space of
attributes with its possible values; Y the set of possible discrete
class values. Let D be the data stream of training records
arriving sequentally Xi = (~xi , yi) with xi ∈ X (feature space)
and yi ∈ Y , where ~xi is a vector of the attribute values and
yi is the (discrete) class label for the ith record in the stream.
In order to train a base learner based on a classification model
m incrementally, these records are processed by m with the
goal of predicting the class label of a new record ~x ∈ X , so
that m(~x) = y ∈ Y .

As stated in [9], the concept term is more subjective than
objective. That is why in the scope of this paper a concept
is represented by the learning results of the classification
algorithm used as a base learner, such a Hoeffding Tree [33].

In this field, we consider that a stable concept has been
learned when the records used during a given period k are
independently and identically distributed according to a prob-
ability distribution Pk(x, y). In these situations where concept
change, Pk(x, y) 6= Pk+1(x, y).

2) Recurring Concepts : A recurring concept change can
be detected when the input records during a period k are
generated based on the same distribution as a previously
observed period, in a way that Pk(x, y) = Pk−j(x, y). To
deal with these kinds of situation, the model mk learned
from a certain period k could be saved to be reused later
if it is needed. This would avoid the need to learn a new
model representing the same concept as mk. With this solution
the continuous learning process improves its behaviour, not
requiring a previously learned concept to be learnt from
scratch. In addition this approach needs fewer training records
to be processed than other approaches that do not deal with
recurrent concepts. However, to better calculate whether a
concept is recurrent or not, a similarity function is usually

Fig. 1. Fuzzy-Rec Components

used. This is the case of the similarity function proposed in
[9], which is the starting point in developing the new fuzzy
similarity method proposed in this paper.

C. Challenges

The main challenges we deal with in this paper are:

• Arranging a fuzzy similarity function in order to better
calculate the level of similarity between different con-
cepts.

• Improving the precision values of similar recurrent meth-
ods.

• Reducing the number of instances needed to train the
classification model.

Fuzzy-Rec faces the aforementioned challenges by means
of a fuzzy function to deal with concept similarities evaluation.

D. Fuzzy-Rec

The main elements of Fuzzy-Rec, as depicted in figure 1,
are:

• A repository of previously seen models.
• A concept similarity function based on fuzzy logic. This

function is used to determine the level of similarity be-
tween concepts. This fuzzy similarity function is crucial
to solve the problem of deciding not just which is the
most suitable model, but also if the storage of a specific
model in the repository is required.

This is therefore a substantial improvement in the work
presented in [16], where the problem of concept drift in
recurring scenarios was solved in a similar way also by using
a repository of concepts and a crisp similarity function.

The proposed Fuzzy-Rec system allows us to better deal
with recurrent situations in a classification problem in data
streams, helping the evolving base learner to adapt to drifts.
Hence the Fuzzy-Rec system is a feasible tool to be used in
a wide range of real application scenarios.

We propose a concept similarity function that uses fuzzy
logic and it is based on that presented in [9]. This function is
defined by the following parameters:

• A conceptual degree of equivalence based on the match-
ing of two different models classifying many instances,
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even when their classifications are both wrong. It is not
therefore an accuracy equivalence, but a measure of the
level of both models to classify in the same way.

• A measure that represents the difference in the number
of records used to train each model. This parameter
is intended to provide a measure on the maturity and
stability of the model.

From the aforementioned two parameters, a fuzzy [34]
similarity value is estimated from a previously defined set of
rules, making it possible to obtain the poor, average or high
values.

There are two situations where a similarity function is
required:

1) A model must be stored in the repository of previously
trained concepts: in this case the fuzzy similarity func-
tion is used to assess the need to store a new model.
If there is a similar model in the repository, storing
a similar one would not improve the quality of the
classification process while unnecessarily increasing the
memory consumption.

2) A drift is taking place and it is time to decide whether
the new concept is recurrent or not: in this case, the
system has been training two different models in parallel
to adapt to the drift in a recurrent way (the current model
and a new one).

IV. IMPLEMENTATION OF FUZZY-REC

As in the case of the MRec system proposed in [16], Fuzzy-
Rec can be seen as a two-layer framework:

1) A basic layer where an incremental learning algorithm
is able to represent the underlying concept by means of
a classification model.

2) An extended layer in which detection and adaptation to
concept changes takes place. The detection of recurrent
concepts is implemented in this layer. It is also at this
level where Fuzzy-Rec implements its fuzzy similarity
mechanism.

To provide an in depth knowledge of the implementation of
the Fuzzy-Rec system proposed in this paper, first the learning
process is described in section IV-A, whereas the description
of the fuzzy similarity concepts is presented in section IV-C.

A. The Learning Process

The on-line learning process for the proposed learning
system, as well as the method to detect and adapt to recurrent
concepts are detailed in Algorithm 1. The process proceeds as
follows:

• It continuously processes the records Xi = {~x, y} with
~x ∈ X as they appear in the Data Stream.

• In line 3, currentClassifier represents the base learner
classifier that is currently being used to classify unlabeled
records. Its prediction y, being right or wrong, on Xi is
passed to the drift detection method used to identify the
suitable drift level (stable, warning or drift ), as explained
in IV-B.

• If the process is at the normal level (line 7), the base
learner represented by the currentClassifier is updated
with the new training record. This is the same behaviour
as in any other traditional data mining model ready to
work with data streams.

• In the case of a warning level (line 8), if the repository
does not have the currentClassifier, or a similar way as
referred to in IV-C, the currentClassifier is stored. Still
at this level (lines 12 and 13), a newLearner is updated
with the training record; the training record is also added
to a warningWindow. The warningWindow contains
the latest records (which should belong to the most recent
concept), and will also be used to calculate the conceptual
equivalence and estimate the accuracy of models stored
with the current concept.

• When drift is signalled (line 14), until there are enough
records (i.e., stability period) in the warningWindow

the newLearner is updated. When the stability period is
over (line 18) it is compared with repository models in
terms of conceptual equivalence as stated in IV-C. If the
current underlying concept is recurrent a stored model
from the repository is used to represent the recurring
underlying concept, otherwise the newLearner is used.
It is important to remark that the benefit of implementing
a previously seen model is that it does not need to be
trained again, as it is supposed to be a stable model. When
using the newLearner, it needs to be constantly trained
during the learning process as it is still an immature
model. Therefore, if newLearner is used there is not
a decrease in the number of training instances needed.
However, the risk of reusing a not suitable recurrent
model is still latent. In those cases, the accuracy of the
classification base learner would drop.

• A false alarm (line 24) case is used when a warning
is signaled but then the learner returns back to nor-
mal without achieving drift. In those cases, both the
warningWindow and the newLearner are cleared.

In short, the Fuzzy-Rec system can be seen as a continuous
learning process with the following steps:

1) The base learner processes the incoming records from
data streams by means of an incremental learning al-
gorithm to generate a decision model m representing
the underlying concept. The model m will be used to
classify unlabelled records.

2) A drift detection method is continuously monitoring
the error-rate of the learning algorithm [3]. When the
error-rate goes beyond some predefined levels, the drift
detection method signals a warning (possible drift) or a
drift.

3) Throughout the life cycle of the system, two different
cases may be used to adapt to changes in the underlying
concept: i) the concept similarity method detects that
the underlying concept is new, and the base learner has
to learn it by processing the current incoming labelled
records in an incremental way. ii) the (fuzzy) concept
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Algorithm 1 Data Stream Learning Process
Require: Data stream DS, ModelRepository MR

1: repeat

2: Get next record Xi from DS;
3: prediction = currentClassifier.classify(Xi);
4: DriftDetection.update(prediction);
5: switch DriftDetection.level
6: case Normal
7: currentClassifier.train(Xi);
8: case Warning
9: if ¬MR.containsSimilar(currentClassifier) then

10: MR.store(currentClassifier);
11: end if

12: WarningWindow.add(Xi);
13: newLearner.train(Xi);
14: case Drift
15: repeat

16: WarningWindow.add(Xi);
17: newLearner.train(Xi);
18: until WarningWindow.size > τ //Stability Period
19: if ¬MR.containsSimilar(newLearner) then

20: currentClassifier = newLearner;
21: else

22: currentClassifier = MR.getEquivalent(newLearner);
23: end if

24: case FalseAlarm
25: WarningWindow.clear();
26: newLearner.delete();
27: end switch

28: until END OF STREAM

similarity method detailed in IV-C detects that the un-
derlying concept is recurrent, and a previous model is
applied.

B. Drift Detection Mechanism

The Fuzzy-Rec system needs to know when a concept drift
is taking place from the behaviour of a base learner. For this
purpose Fuzzy-Rec uses the method proposed by Gama el al.
[3]. From this method, it is important to remark the following
characteristics:

• The system assumes the observation of periods of stable
concepts followed by changes that lead to new stable
periods with different underlying concepts.

• The error-rate of the base learning algorithm is considered
as a random variable from a sequence of Bernoulli trials.

• The general form of the probability of detecting an error
is given by means of a binomial distribution.

• Three different drift levels are defined to manage con-
cept changes: stable or at a control level, warning level
and drift or out of control level. These levels represent
the confidence of the mechanism of having detected a
concept drift.

It also important to note that other similar methods can be
used to detect change detections in concepts. Since the Fuzzy-

Rec system has been developed as a wrapper mechanism, the
specific method used for it is transparent, so it is not necessary
to change the learning process.

Having detected a change in the underlying concept, there
are some situations in which a concept recurrence appears. In
these cases it is worth anticipating to the reappearing concept,
in order to improve the learning process efficiency [16]. In
order to do so, a concept similarity method must be used.

C. Concept Similarity

To determine whether a certain model represents a new con-
cept or a reappearing one, a similarity measure is required. In
this paper, the Conceptual equivalence measure is developed
by means of a fuzzy logic system [35] where two variables
are used to calculate the similarity between two models.

The term “fuzzy logic” was introduced in [34], and is a
way of representing many-valued logic, allowing approximate
reasoning to be applied through the definition of variables with
several truth ranges (from 0 to 1) and rule sets. A rule set
determines which fuzzy operator must be used in each case.

By means of using fuzzy logic, it is easy to deal with the
concept of partial truth, where a truth value may range from
completely true to completely false. In fuzzy logic applications
it is common to use linguistic variables to facilitate the imple-
mentation of rules and truth values. In this way, a linguistic
variable may have several truth values in the same system.
These truth values can be seen as subranges of a continuous
variable.

In the proposed Fuzzy-Rec system, three linguistic variables
are defined:

• The variable equal_classified, used to represent the
similarity in the classification precision behaviour of two
different models, may take the values: poor, good and
excellent.

• The variable diff_training, used to represent the dif-
ference that exist in the number of training records used
between two different models, may take the values: small
and big.

• The variable similarity, a variable use to calculate the
output of the fuzzy system based on the aforementioned
variables, may take the values: poor, average and high.

Therefore, it is assumed to get a value of “high” when
calculating the similarity variable, although in some cases
the range could be lowered to “average” values, depending on
the characteristics of the dataset used.

The variable equal_classified is based on the method pro-
posed by Yang et al. [9] to calculate its conceptual equivalence.
In our case, as it has been outlined, the equivalence between
two models when dealing with classification similarity is just
one parameter of the global fuzzy function. This parameter is
calculated as follows:

1) Given two classification models m1,m2 and a sample
dataset Dn of n records, it is possible to calculate for
each instance Xi=(~xi , yi) a score, score(Dn) = +1 if
(prediction(m1(~xi)) = prediction(m2(~xi)))
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Fig. 2. Membership function of “equal_classified”

Fig. 3. Membership function of “diff_training”

2) score(Dn) is used to represent the degree of equivalence
in the classification process between m1 and m2.

3) The final classification equivalence ce value, that is a
continuous value score with range [0,1], is calculated
by

ce =
score(Dn)

N

Depending on the value of ce, equal_classified will take
one or another membership value, as represented in the figure
2, where we can see the values this variable may take.
The larger the output value of ce, the higher the degree of
classification equivalence. For the records in Dn it compares
how m1 and m2 classify the records. As in [9], the similarity
in the classification processes is not necessarily related to the
accuracy attribute. This means that two models that present
low accuracy for a set of records will have a high ce value,
and therefore a high equal_classified value.

As regards the variable diff_training, its value represents
the difference in the number of instances used to train each
model we are trying to compare. In figure 3 we can see the
values this variable may take.

The rule set implemented to develop the fuzzy logic infer-
ence is defined as follows:

1) IF equal_classified IS poor OR diff_training IS big

THEN similarity IS poor;
2) IF equal_classified IS good AND diff_training IS

big THEN similarity IS poor;
3) IF equal_classified IS good AND diff_training IS

small THEN similarity IS average;
4) IF equal_classified IS excellent AND

diff_training is big THEN similarity is average;

5) IF equal_classified IS excellent AND
diff_training is small THEN similarity is
high;

Finally, a defuzzification method [35] is needed to get a
crisp value of the variable measured. In the case of Fuzzy-
Rec, “Center Of Gravity” is the method used to calculate
the final value of the similarity variable representing the
conceptual equivalence, it being a very popular method in
which the “center of mass” of the result provides the crisp
value.

From the crisp value returned by the defuzzification method,
we evaluate if it is above a predefined threshold. In that case,
we assume that the models are similar and thus represent the
same underlying concept.

It is important to highlight that without the existence of such
a fuzzy method the similarity process should be more naive,
being able to integrate just one of the aforementioned variables
in the process. As a consequence, a biased classification model
with a short life cycle but a high performance could be selected
as similar to a more mature and stable model. The fuzzy
similarity function implemented in Fuzzy-Rec avoids these
kind of behaviours, strengthening the similarity process.

V. EXPERIMENTS

In order to validate the Fuzzy-Rec method, and taking into
account that Fuzzy-Rec is an extension of the MRec method
cited in [16], two different experiments have been developed:

1) Experiment 1: The goal of this experiment is to prove
that the precision of Fuzzy-Rec is similar to the MRec
method, and no worse than other methods able to deal
with concept drift. In order to do so, accuracy and kappa
statistic measures are evaluated.

2) Experiment 2: The goal of this experiment is to prove
that the training instances needed by Fuzzy-Rec when
drifts appear are fewer than the ones needed when using
MRec.

In addition a statistical analysis has been developed to
validate the results provided by the execution of experiments
1 and 2.

To sum up, the main goal of this experimentation phase is
to test the feasibility of using a fuzzy similarity procedure to
determine similar previously seen concept drifts.

A. Parameters setting

To develop the aforementioned experiments, both synthetic
and real datasets have been used. A description of the different
datasets applied is presented below. Regarding the similarity
threshold values needed both for the MRec and Fuzzy-Rec
methods, the experiments were developed setting high simi-
larity values; in the specifica case of MRec, a threshold of 0.9
value was used; in the case of Fuzzy-Rec, a similarity value
of 0.9 after defuzzification was used. This similarity threshold
must be established to afford the comparison process between
models. This is important because we must assure that the
reused models really fit the context of the data during the
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learning process. Hence, lower values of the similarity thresh-
old would lead to reuse models that may be not appropriate
to the new concept in course. In contrast, higher values would
make MRec and Fuzzy-Rec to look for previously seen models
that really fit the concept represented by data. In situations
where noise could be present in the data, it is important to set
higher similarity threshold values to avoid misconceptions.

Regarding the number of classifiers stored in the repository,
10 was the value set for both experiments.

Below a description of the different datasets used during the
experimentation phase is made.

B. Datasets

1) SEA dataset: This synthetic dataset is made up of 1.8M
instances, representing two drifts repeated for three times.
Specifically this dataset was created by means of the following
methodology:

1) Create a dataset with 2 concept drifts, changing from
SEA function 1 to function 4.

2) Create a dataset with 2 concept drifts, changing from
SEA function 2 to function 3.

3) Merge the previous files for three times in a global
dataset to ensure that concepts are mixed and may
appear in any time during the execution of the dataset.

2) Hyperplane dataset: A different synthetic dataset with
gradual drifting concepts was created based on a moving
hyperplane. A hyperplane in d-dimensional space is denoted
by equation:

∑d

i=1
aixi = a0. Instances are labeled as positive

if
∑d

i=1
aixi ≥ a0, and as negative if

∑d

i=1
aixi < a0. Hy-

perplanes have been used to simulate time-changing concepts
because the orientation and the position of the hyperplane can
be changed in a smooth manner by changing the magnitude
of the weights [13]. This dataset contains 170,000 instances
and it represent different recurrent drifts. Taking into account
that some noise has been introduced to the dataset, a threshold
value of 0.9 is set to ensure that the reused models really fit
the concept represented by the data when drifts happen.

3) Electricity dataset: The Electricity Market Dataset
(Elec2) [36] is a real dataset that uses data collected from
the Australian New South Wales Electricity Market, where
the electricity prices are not stationary and are affected by the
market supply and demand. The market demand is influenced
by context such as season, weather, time of the day and central
business district population density. In addition, the supply
is influenced primarily by the number of on-line generators,
whereas an influencing factor for the price evolution of the
electricity market is time. During the time period described
in the dataset, the electricity market was expanded with the
inclusion of adjacent areas (Victoria state), which led to more
elaborate management of the supply as oversupply in one area
could be sold interstate.

The Elec2 dataset contains 45,312 records obtained from 7th
May 1996 to 5th December 1998, with one record for each half
hour (i.e., there are 48 instances for each time period of one
day). The class label identifies the change in the price related
to a moving average of the last 24 hours. As shown in [36],

the dataset exhibits substantial seasonality and is influenced
by changes in context. Taking into account that this dataset is
expected to have gradual or soft drifts, a similarity threshold
of 0.9 is used for this dataset in order to force both MRec
and Fuzzy-Rec to reuse just the models associated to concepts
really similar to the new appearing one in case of a drift.

4) Sensor dataset: Sensor stream [37] is a real dataset that
contains information (temperature, humidity, light, and sensor
voltage) collected from 54 sensors deployed in Intel Berkeley
Research Lab. The whole stream contains consecutive infor-
mation recorded over a 2 months period (1 reading per 1-
3 minutes) which makes a total of 2,219,803 instances. The
learning task of the stream is to correctly identify which of
the 54 sensors is associated to the sensor information read.
The goal of this experiment is to effectively detect and adapt
to the multiple concept drifts that this dataset contains.

Taking into account that recurrent drifts are expected to
appear in this dataset, a similarity threshold of 0.9 is set in
order to force both MRec and Fuzzy-Rec to use previously
seen models just in case there were a high level of certainty
of equivalence between concepts.

C. Environment

The implementation of the Fuzzy-Rec learning system was
developed in Java, using the MOA [38] environment as a test-
bed. The specific fuzzy similarity function implemented in
Fuzzy-Rec was developed using jFuzzyLogic [39].

During the execution of the different experiments, the
following MOA evaluation features were established:

1) The Prequential-error method [38] as the main evalu-
ation technique. When using this evaluator, each indi-
vidual example can be used to test the model before it
is used for training, and from this the accuracy can be
incrementally updated. Therefore, the results presented
in tables I and II have been gathered in this way.

2) The Naive Bayes [40] class as base learner.
3) The SingleClassifierDrift class as the method in charge

of detecting drifts. This class implements the drift de-
tection method of [3] and adapts to drift by learning a
new classifier (i.e., discards previous concept represen-
tations).

It is important to note that no distributed environment has
been available for the execution of the experimentation phase.

In order to develop the statistical analysis R [41] software
was used with the “coin” and “multcomp” packages. Taking
into account that when comparing several methods over multi-
ple datasets a post-hoc analysis is desired, in this case the post-
hoc tests have been developed using the Wilcoxon-Nemenyi-
McDonald-Thompson test [42], using the code of [43].

D. Results

A description of the results obtained during the execution of
the different experiments presented in the beginning of section
V is made below. All the experiments have been executed on
the datasets presented in section V-B, and comparisons are
made with the following methods:
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1) MRec with Naive Bayes class as base learner.
2) The RCD method presented in [23] also using Naive

Bayes.
1) Experiment 1: The goal of this experiment was to

prove that the precision values (accuracy and kappa statistic)
provided by Fuzzy-Rec were better to the ones provided by
the MRec and RCD methods.

As it can be seen in table I, when testing the electricity
dataset MRec and Fuzzy-Rec improve the RCD precision
values, both behaving in a similar way. This is caused by
an application of the same recurrent concepts, so in this case
the fuzzy similarity function does not improve the precision
values. However, in this case it is demonstrates that in the
worst case Fuzzy-Rec provides similar precision values to
MRec.

In the case of the sensor dataset, Fuzzy-Rec improves the
precision values of MRec by applying a better selection of
previously seen models. As long as the difference of training
instances between models is one of the variables used when
comparing models in Fuzzy-Rec, this allows a more precise
choice. Due to the fact that MRec does not make use of such
variable, it is using in some cases possible similar models that
do not count with enough training records, and therefore the
similarity process is biased. When comparing Fuzzy-Rec to
RCD in this dataset, similar results are obtained.

When using the SEA dataset there is a big difference on the
precision values of Fuzzy-Rec when comparing it with MRec
method. The reason of this behaviour is the same than before:
the fuzzy similarity function allows to make more precise
choices of previously seen models. Also in this case the values
obtained when using RCD are similar to Fuzzy-Rec.

Lastly, in the case of the hyperplane dataset Fuzzy-Rec is
the method that provides better precision results, improving
the behaviour of both RCD and MRec methods.

To sum up, we can conclude in this experiment that Fuzzy-
Rec provides similar or even better precision values than MRec
or RCD methods in all cases. There are no situation in which
Fuzzy-Rec behaves worst than the other methods assessed.

2) Experiment 2: The goal of this experiment is to prove
that the training instances needed by Fuzzy-Rec when drifts
appear are fewer than the ones needed when using MRec and
RCD.

The results of this experiments are shown in table II. We
can see that except in the case of SEA dataset, Fuzzy-Rec
needs fewer training instances than RCD. Comparing these
results to the one presented in the previous experiment, we
can state that Fuzzy-Rec makes a more efficient use of training
instances, improving the precision values of RCD. The reason
why Fuzzy-Rec needs more instances when using SEA dataset
is due to the high threshold value established to determine
similarity. This threshold forces the method to reuse models
with a high similarity, which is not reached for this dataset.
However, as it has been shown in table I, the precision values
are similar to RCD.

Lastly, when comparing the training instances needed by
Fuzzy-Rec with the ones needed by MRec, we can see that

there are just some slightly differences. As in the previous
case, the unique exception is when using the SEA dataset,
because of the aforementioned reasons. However, although the
instances usage is similar, when comparing these results with
the precision values of the previous experiment (see table I),
we can conclude that Fuzzy-Rec makes an optimal selection
of previously seen models. It is important to note the case of
MRec when dealing with SEA dataset, because comparing it
with Fuzzy-Rec we can see that although the former makes a
lower use of training instances, the precision values obtained
drop significantly; in contrast, Fuzzy-Rec while needing more
instances provides the better precision results among all the
methods assessed. The behaviour of MRec and Fuzzy-Rec
with SEA dataset reinforce the idea that the latter provides
a more appropriate selection of similar models.

VI. CONCLUSIONS AND FUTURE LINES OF RESEARCH

In this paper the Fuzzy-Rec system, has been described as
a mechanism to deal with concept drift in recurring situations.

The main contributions of Fuzzy-Rec are:

1) The implementation of a new similarity concept function
using fuzzy logic techniques, which helps in the assess-
ment of similarity between concepts in an improved way.

2) The development of Fuzzy-Rec as a wrapper mecha-
nism, allowing it to be used in an easy way with different
base learners and drift detector methods. Furthermore,
this wrapper mechanism allows the behaviour of the
similarity concept function to be parametrized depending
on the needs of each dataset or real-world environment.

Fuzzy-Rec has been tested on different synthetic and real
datasets, and comparisons have been made with other similar
context-aware algorithms able to deal with drift recurrence.
The main conclusions obtained from those experiments are
that:

• Fuzzy-Rec is the method that provides the better balance
between training instances needed and precision values
obtained.

• Fuzzy-Rec needs a low rate of training instances as long
as it reuses previously seen models.

• The fuzzy similarity function helps to find the most
appropriate model without loosing precision.

• Fuzzy-Rec does not decrease the precision values when
comparing it with similar methods.

Future lines of research are: i) analysis of a loss function
to penalize bad similarity calculus; ii) implementation of a
common fuzzy similarity function in distributed environments.

In both cases, an improvement on precision values is
foreseen.
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