
Logical Structure Recognition of Diagram Images

Jerzy Sas
Wroclaw University of Technology

Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland

Email: jerzy.sas@pwr.edu.pl

Urszula Markowska-Kaczmar
Wroclaw of Technology,

Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland

Email: urszula.markowska-kaczmar@pwr.edu.pl

Abstract—This document presents a method of a logical links
structure recognition between elements on diagrams. The applied
approach intuitively mimics a human way of recognition that
relies on merging already found connectors into more complex
ones. This procedure is modeled by our method where simple
and obvious connectors and gradually extended to more complex
structures. Each iteration may lead to modification of connectors
set obtained so far. The modifications are managed by a rules
set describing logical and graphical constraints that should be
satisfied by the connectors structure. If the extension leads to
violation of constraints defined by the rules then the modification
is not carried out. In this way, the recognized diagram structure
is consistent with the assumed principles. The method was
experimentally validated using the set of diagrams from three
domains. In conclusions, method’s advantages and drawbacks
are discussed.

I. INTRODUCTION

I
N the last years there is a big interest in similar content

image retrieval. There is plenty of research in this area.

A deep survey is presented in [1]. The similar content image

retrieval can be very helpful in automatic image annotation,

in story illustration, copy detection, web image search and art

image analysis.

It can be also helpful in searching similar text documents if

they contain images. Usually, images illustrate the content of

document. They contain information included in document in

condensed form and there is less problems with unambiguous

comparison of expressed idea. This explains a strong interest

in its application to similar patents search in order to speed up

the procedure of patenting and to protect intellectual property

rights. For automatic querying it is necessary to convert

the information in the images into a high-level description.

Usually, in the case of technical documents, images repre-

sent engineering drawings, diagrams, algorithms, operations

and processes shown as charts. Images of this kind present

the structure consisting of certain elements and connections

between them. Automatic recognition of the connections struc-

ture is the first step towards further automatic analysis or even

machine understanding of images. The problem is important

and challenging, because the documents have highly-complex

structure, tabular and graphical information is embedded and

they contain conflicting technical jargon. Processing embedded

images can aid to solve the problem.

Typically, to apply such approach it is necessary to find

images in the whole document. Then, images are processed

in order to classify them to various classes: charts, diagrams,

schemes, flowcharts, plots and photos. Next, a method dedi-

cated to a given class of images is applied in order to recognize

particular elements and their interconnections.

It is worth noting that such image interpretation allows to

write the content of an image in the electronic form, which

facilitates its storage and further processing and comparison.

In our research we focus on connectivity of elements in

diagrams and flowcharts. The methods dedicated to this kind

of graphics have to find: a) types of elements shown (various

depicted shapes), b) segments of lines not belonging to found

shapes, and c) connections created by these segments. Because

diagrams usually contain texts embedded in diagram elements,

it is also necessary to detect text areas, recognize it by

applying OCR techniques and finally assign recognized texts

to graphical diagram elements.

The aim of the research described in this paper was to

find a method that is able to retrieve logical links between

elements depicted in the diagram. This logical structure is then

expressed in an XML file. It is a difficult task especially when

we consider that one connection may exist between more than

two elements and the line segments constituting connectors

can intersect.

The paper consists of six sections. The next section de-

scribes related works. Section III formulates problem to solve.

The subsequent section presents the developed method. Sec-

tion V experimentally validates our approach. Finally, some

conclusions and recommendations related to further works are

presented.

II. RELATED WORKS

Early survey of works in this area is described in [2]. The

author writes that diagram recognition faces many challenges,

including the great diversity in diagrammatic notations, and the

presence of noise and ambiguity during the recognition pro-

cess. Despite the flow of time from the year of this publication,

all mentioned above features characterizing diagram interpre-

tation constantly cause problems in chart recognition now.

The paper [3] reviews research from the last decade. The

authors present the whole process of chart recognition: chart

segmentation, chart classification, chart interpretation and dis-

cuss existing solutions.

Relatively many works are devoted to online flowcharts

recognition. In [4], the analysis to label each stroke of the

flowchart and to group the strokes depending on the symbol

they belong to is presented. The same area of research is

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 215–224

DOI: 10.15439/2015F383

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 215

represented in the paper [5]. In this paper the search for a

suitable interpretation of the input is formulated as a combina-

torial optimization task containing the max-sum problem. The

recognition pipeline consists of two main stages. First, groups

of strokes possibly representing symbols of a sketch (symbol

candidates) are segmented and relations between them are de-

tected. Second, a combination of symbol candidates best fitting

the input is chosen by solving the optimization problem. The

work [6] also concerns online charts but is focused on hand-

drawn electric circuit diagram recognition using 2D dynamic

programming. The paper [7] presents another approach to

hand drawn organizational diagrams that is based on Bayesian

conditional random fields (BCRFs) that jointly analyzes all

drawing elements in order to incorporate contextual cues. The

classification of each object affects the classification of its

neighbors. BCRFs allow flexible and correlated features. The

online recognition of diagram is mainly applied in order to

automatically check student tests.

Currently there is a great interest in flowchart recognition

in the context of patent search. The paper [8] describes mea-

sures for assessing the effectiveness of flowchart recognition

methods in the context of patent-related use cases. A survey of

approaches can be found in [9]. A system for semi-automatic

chart ground truth generation is introduced in the paper [10].

Using the system, the user is able to extract multiple levels of

ground truth data.

Some works are devoted to chart recognition in documents.

They apply various classification methods. In [11] spiking

neural networks are used. The paper [12] presents a system

for recognizing a large class of engineering drawings char-

acterized by alternating instances of symbols and connection

lines. The class of considered images includes domains such

as: flowcharts, logic and electrical circuits, and chemical plant

diagrams. The output of the system includes a list identifying

the symbol types and interconnections. It may be used for

design simulation or as a compact portable representation

of the drawing. The method consists of two steps. First,

domain independent rules are used to segment symbols from

connection lines in the drawing image that has been thinned,

vectorized, and preprocessed in routine ways. Then a drawing

understanding subsystem works together with a set of domain-

specific matchers to classify symbols and correct errors auto-

matically. They also proposed an interface to correct residual

errors interactively.

Another important problem in diagram recognition and its

automatic interpretation is recognition of texts appearing on

diagrams. Separation of textual and graphical layers simplifies

the further diagram structure analysis by reducing a number of

involved graphical elements. It also makes it possible to attach

textual information attributes to detected graphical elements

of the diagram. In our approach we used the text separation

method described in [13]. The method consists of three stages.

In the first stage the text region candidates are elicited based on

connected components analysis and some simple geometrical

properties of connected components clusters. At the second

stage, pattern recognition methods are applied to the set

of candidates to discriminate between true text areas and

other "false" candidates. Finally, OCR is applied to candidate

regions and the final text region set is refined based on the

analysis of the contents of the OCR-recognized strings.

III. PROBLEM FORMULATION

In the further part of this article by a diagram we will mean

a drawing that shows a set of entities - diagram elements (DEs)

and connections between them. In the literature, the term

"diagram" is used interchangeably with "chart", but diagram

seems to be more general. We will be considering diagram

images created with appropriate software or precisely drawn

manually using drawing tools (rulers, drafting templates) and

then converted into raster images by scanning. Hand-sketched

diagrams are out of the scope of this article due to big

inaccuracies appearing in this type of drawings. Our aim

is to retrieve the logical structure of the diagram, so that

it corresponds to intents of the diagram author. Informally,

by the logical structure of the diagram we mean here the

links between diagram elements. Diagram elements represent

various items appearing in the real world modeled by the

diagram. Their meaning depends on the domain of application.

In the case of program flowcharts they can represent: state-

ments, code blocks, conditions, data sources etc. In a logical

circuit diagram they represent gates and functional blocks

like: registers, multiplexers, flip-flops, etc. In organizational

charts their elements are usually officials or departments.

Although the method described here can be applied to any kind

of diagrams, we mainly focus on organizational charts and

program flowcharts. The element of the diagram is depicted

by a simple 2D geometric shape like: rectangle, circle ellipse,

rhombus, diamond. There are some attributes assigned to

diagram elements. The basic attributes of an element are the

kind of 2D shape and the textual description (the text usually

inscribed into the element shape). Additional attributes that

can be easily retrieved from the diagram image are: the shape

interior color, shape line color and the shape border line width.

They can be meaningful in certain types of diagrams, in other

types of diagrams they may be ignored. The methods used to

recognize shapes appearing in diagrams and to evaluate their

attributes will be shortly described in the section IV-I.

The link in the diagram represents a logical relation or an

association between DEs. Links are graphically represented by

polylines or sets of intersecting or connected polylines, which

endpoints are in the close vicinity of DEs being connected.

Depending on an application domain, various types of links

can be distinguished. The simplest links are one-to-one links

which represent the association between a pair of DEs. The

many-to-many link is the more complex case that associates

the larger set of DEs. The links can be undirected or directed.

In directed links some polyline endpoints are arrows. The

directed link usually indicates the information flow or organi-

zational subordination. If directed links are used the many-to-

many association may turn into one-to-many association where

only the single endpoint of the link is not arrowed, while all

remaining endpoints are arrows. The graphical representation

216 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

of the link will be further called connector. The connector

is therefore the set of polylines that intersect each other or

constitute T-style junctions. Finding connectors that are known

to represent one-to-one links is a simple technical problem.

Also in the case where it is known that the connection of

polylines belonging to a common connector is indicated by

dots (or other graphical marks) placed at connection points,

the problem only lies in reliable connection marks recognition.

It is however much more complicated if we cannot assume

that connections of polylines belonging to a connector are

graphically marked by connection marks. In such case the

recognition of diagram structure must be based on the trial

to "guess" the diagram author intention. In the further part of

the paper, we will describe the method that deals with this

kind of diagrams.

We are considering here the method which starts with vec-

torized diagram image on its input. The vector representation

of the original (raster) image is obtained by applying the

sequence of image processing operations followed by the vec-

torization procedure that converts a binary image into the set

of line segments (vectors). Let us also assume that DEs have

been already successfully found. In our approach we used the

shapes recognition method based on vector sequence matching

to basic shapes defined either by rules or algebraically, as de-

scribed shortly in section IV-I. The vectors constituting found

DEs were identified and extracted from further considerations.

Let E = {e1, e2, ..., eN} denote the set of found DEs and let L
denote the set of line segments (called later edges) not assigned

to any detected DE. The edge is a pair of 2D points being its

ends on the plane lj = (p0j , p1j), pi = (xi, yi). Line segments

in L possibly belong to connectors. Formally, a connector is

a subset of connected edges from L. Our aim at this stage

is to gather as many as possible edges into disjoint subsets

Ci ⊆ L corresponding to connectors, while leaving as little as

possible lines unassigned, i.e. belonging to the unassigned set

U . The result is the family of subsets {C1, C2, ..., CM}. The

construction of connector sets can be considered as a rule-

based process, where rules define some constraints that must

be satisfied in order to put a certain subset of edges into a

connector, as well as principles that force inclusion of some

edges in a single connector. Rules determining principles of

reasonable construction of connectors were derived from the

analysis of diagram structures appearing on typical diagram

images. The analysis has been carried out using the set of

diagram images from various domains, that we used for

testing of our diagram analysis methods. The rules defining

the construction of a connector Ci of L are as follows:

• the elements of Ci are coherent (i.e. for each pair of edges

in Ci there is a sequence of other edges in Ci, possibly

empty, that connects them);

• if there is an edge in Ci that has a vertex not shared

with other lines in Ci (i.e. it is the endpoint of a polyline

which elements are within Ci) then it must be close to

one of detected DEs from the set E, such a vertex is a

terminal vertex;

• there are no two vertices of edges in Ci that are terminal

vertices and are close to the same DE (the connector

consisting just of a single edge cannot link the DE with

itself);

• there are no cycles in the graph defined by the set Ci, i.e.

there are no polylines in Ci that intersect with themselves;

• if there is an edge la in Ci that has a common vertex

with another edge lb in L and lb is not assigned to any

other connector Cj then lb must also belong to Ci (no

connectors ending in the middle of polylines);

• if p is an internal vertex shared by two edges belonging

to Ci then it cannot be closer than ǫ to an internal vertex

shared by two edges belonging to another connector Cj

(connectors cannot touch each other, except of the case

that the terminal edge endpoint touches a terminal edge

endpoint of another connector);

• each edge is uniquely assigned to one of subsets Ci or

to U (edges are not shared by connectors);

• the longest path connecting two terminal vertices in

Ci cannot be longer than assumed threshold i.e. 8 (no

connectors of very complicated shape);

• the angle between two adjacent edges in Ci which do not

share the common vertex with any other edge within the

same connector is not smaller than the right angle (no

acute angles in the polyline segments of connectors);

• width of each edge within Ci does not differ by more

than 30% from the weighted average line width in the

connector;

• two elements ei, ej ∈ E cannot be connected along more

than one path within the single connector (they can be

however connected by many paths, provided that they

belong to different connectors).

Because it seems reasonable to merge connectors into more

complex ones, as far as it does not lead to violation of rules

presented above, then the ultimate aim is to partition the set

L into the family of subsets {U,Ci : i = 1, ...,M)} so as

to minimize the number of subsets Ci with the additional

constraint that the set U does not contain any subset of edges

that constitutes a valid connector.

For practical purposes related to automatic analysis of the

diagrams it is essential not just to find connectors (being the

sets of edges) but rather to determine the sets of connected DEs

which are connected by individual connectors. Therefore, the

final result of the structure recognition procedure is the family

of sets of DEs, where each set defines elements connected

by the single connector. Additionally, because each connector

endpoint can be marked with an arrow, this information should

be also retrieved and included in the data structure being the

output of the recognition procedure. Each endpoint of the

connector is described by a pair (e, t) where e ∈ E and

t ∈ {true, false} indicates whether or not the endpoint of

the connector linked to e is an arrow. The elements connected

by the single connector C can be specified by the multiset

VC = {(ei, ti) : ei ∈ E, ti ∈ {true, false}}. The expression

t = true denotes the arrow appearance and t = false

URSZULA MARKOWSKA-KACZMAR, JERZY SAS: LOGICAL STRUCTURE RECOGNITION OF DIAGRAM IMAGES 217

Fig. 1. Exemplary diagram consisting of two connectors sharing a common
element e2.

denotes arrow-less connector endpoint. Multisets are applied

here instead of simple sets because the diagram element can be

connected with itself. In such case there exist two connector

endpoints associated with the same element. It leads to the

appearance of the pair containing this element twice in VC .

Finally, the product of the diagram structure recognition is the

set of connectors and the family of corresponding multisets of

connected diagram elements:

(Ĉ, Û) = ({Ci : i = 1, ...,M}, {VCi
: i = 1, ...,M}), (1)

where M is the number of detected connectors. A DE may

belong to more than one multiset VCi
if it is connected with

other DEs by various connectors. The case where the central

element is shared by two connectors is shown in Fig.1. The

elements of the diagram are connected by two connectors: C1

and C2. In this case, the structure recognition procedure builds

the following diagram description:

(Ĉ, Û) = ({C1, C2},

{{(e1, false), (e2, false), (e4, false), (e6, false)}, (2)

{(e2, false), (e3, false), (e5, false)}}).

IV. DESCRIPTION OF THE METHOD

Unfortunately, the formulation of the diagram structure

recognition problem does not lead to an efficient solution,

other that "brute force" approach based on exhaustive search of

all subsets of L, which is obviously infeasible in most practical

cases. Therefore, we propose simplified suboptimal solution

that leads to construction of a connector set {C1, C2, ..., CM},

which however does not guarantee that the minimal number of

connectors are found. On the other hand however, it applies

some intuitive principles that humans typically apply when

trying to read a structure on a diagram presented on an

image. Experiments described in section V show that diagram

structure recognized with the proposed algorithm is close to

the human interpretation of test diagram images.

The approach taken consists in the observation that when

a human tries to find connectors in a diagram by sight, it

intuitively starts with long edges and tries to interpret them

as "simple connectors" connecting pairs of DEs. Then a

human tries to find "branches" that connect other DEs to

previously found simple connectors. Next, one tries to find

inter-connectors, i.e. polylines that connect previously found

connectors. Finally, we (humans) try to merge already found

connectors into more complex ones by finding intersecting

lines belonging to various connectors that are candidates for

merging. It is a process that starts with simple and obvious

connectors and gradually extend them to more complex struc-

tures. This process can be modeled as a procedure imple-

mented in a computer. Each stage outlined above is in fact

an iterative operation that processes successive items (edges,

polylines, simpler connectors - depending on the stage), where

each iteration may lead to modification of the connector set

obtained so far. The modification is however conditioned on

the rules set presented in the previous section. If it leads

to violation of constraints defined by the rules then the

modification is not carried out. In this way, at each stage of

the procedure we have the diagram structure that is consistent

with the assumed principles.

Now the procedure will be described in more details. The

input to the procedure is the set of diagram elements E and the

set of line segments (vectors) obtained from the raster image

vectorization procedure (vectorizer). The applied vectorization

procedure is based on the algorithm described in [14]. We will

not deal here with the details of methods of shape recognition

used to obtain the set E. They are briefly described in the

subsection IV-I. In the proposed algorithm, the set of constants

usually applied as thresholds are utilized. Values of these

thresholds were estimated experimentally by analyzing a set of

typical diagram images from the validation set. The selected

validation set is disjoint from the testing set used in order to

evaluate the method performance.

The connectors finding method consists of the following

steps:

A. Edge detection

The aim of this step is to create the set of edges L from

the set of line segments fetched by the vectorizer. We use

the term "edge" to emphasize the difference in relation to

the notion of simple line segment which is the direct product

of vectorization. The line segments created by the vectorizer

should not be used directly in further steps of the procedure.

Our experiments showed that there are some troublesome

artifacts, especially at intersections of relatively thick lines

or at vertices of polylines. They are short line segments of

the length of single pixels that connect longer line segments.

Such geometrical structures need a kind of smoothing in

order to obtain longer and straight line segments, most likely

being "true" lines in the original diagram. Here we call such

smoothed and merged line segments "edges". An example of

an erroneous line segment structure created by the vectorizer

is presented in Fig.2. The unwanted artifacts are indicated by

blue circles.

218 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 2. Examples of inaccuracy artifacts introduced at the stage of image
vectorization

The procedure takes the line segment that is not yet assigned

to any element in E nor to any edge in L and tries to

extend it to a longer edge by building a polyline being a

sequence of interconnected line segments. In each iteration the

algorithm tries to attach the next line segment that is adjacent

to one of end points of the already created polyline. This

segment is selected that is most collinear with the straight

line approximating already created polyline. The attachment

criterion is used to select candidates for extension. It takes

into account the angle between the candidate segment and

already approximated line and the length of the candidate.

Short segments (being probably artifacts of the vectorization

procedure) can be connected even if the angle is relatively

big. The logical predicate used as the extension criterion is as

follows:

∠(e, c) < αmax ∨ len(lt) ≤ lmin ∨ len(c) ≤ 1.5 ∗ w, (3)

where e is the edge (single line segment) approximating the

polyline created so far, c is the line segment - the candidate for

extension, lt is the terminal line segment in the polyline that

is adjacent to c and len(•) is the length of the line segment.

w is the average width of the line segments already attached

to the polyline. αmax was experimentally set to 10◦.

According to the criterion (3), the angle between connected

segments must be small enough or at least one of adjacent

segments (the candidate one or the terminal segment) is short

enough. This alternative makes it possible to use residual

vectors of the length of 1-2 pixels that are artifacts of the vec-

torization procedure. Such residual vectors often are oriented

at big angles with the relation to its (longer) neighbors. The

procedure iteratively tries to extend the polyline until no new

segments can be attached. After each extension the new linear

approximation of the polyline (denoted by e in the formula 3)

is evaluated by least square fitting of points on the polyline to

the approximating line.

B. Preparation to processing

The aim of this stage is to identify DEs that are close enough

to endpoints of edges created in the previous stage. In this way

it is possible to identify edges that are candidates for terminal

edges of connectors. The terminal edge of the connector is

the edge directly attached to the element connected by a

connector. Then for all edge vertices the closest DE is found

that is within assumed maximal allowed distance from the

vertex. The tolerance is estimated depending of the shape

and edge line widths. By analyzing the set of exemplary

diagrams we assumed that the tolerance should be evaluated

as min(3 ∗max(we, ws), 0.25 ∗ sBB) where we is the width

of the edge line, ws is the width of the line of the DE shape

and sBB is the smaller of x and y sizes of the bounding box

enclosing the element. The angle between the closest element

edge and the connector edge is also taken into account to avoid

considering as very close an edge that is almost parallel to an

edge of DE. As the result of this stage, each edge endpoint is

annotated either with the index of the close diagram element or

with "dummy" index, denoting that there is no close element to

the edge endpoint. Additionally, the "edge structure" is created,

that makes it possible to quickly find all edges in L adjacent

to a given vertex.

C. Finding simple connectors

At this stage simple connectors are being found, where

two DEs are directly connected by a single edge. It lies in

finding edges with two endpoints marked with various diagram

elements. Cases where the edge connects the shape with itself

and is completely within this shape bounding box are excluded

by applying one of constraints defined in Section III.

D. Finding polyline connectors

This stage consists in finding edge sequences (a polyline

consisting of edges) that connect two shapes. The procedure

used here starts with a polyline consisting of a single edge

that is not yet assigned to any connector. It iteratively tries

to extend the polyline by attaching its left/right endpoint

neighbors until no further extension is possible or the attached

edge is connected to an element. Backtracking is applied in

cases where there are many neighboring edges adjacent to the

terminal edge in the polyline and extending edge selection in

certain iteration leads to the polyline that neither can be further

extended nor it terminates with the edge adjacent to any DE.

The procedure is being repeated, each time starting with an

edge that is not yet assigned to any connector. If it leads to the

polyline connecting two diagram elements then it is assumed

to be the polyline connector. The new connector is then created

and all edges are labeled as assigned to this connector.

E. Finding inter-connectors

In the previous stages only such connectors (or fragments

of connectors) were recognized which link pairs of DEs.

In the next phase, new polyline connectors are tried that

connect already found connectors with other connectors or

diagram elements. The interconnector appears for instance in

the diagram in Fig.1. At the first stage, the simple connector

between elements e1 and e2 is found. The polyline connector

linking elements e4 and e6 is detected in the second stage.

In the current stage the interconnector that links this two

simpler connectors will be recognized. The case of "branch"

URSZULA MARKOWSKA-KACZMAR, JERZY SAS: LOGICAL STRUCTURE RECOGNITION OF DIAGRAM IMAGES 219

Fig. 3. Pine-like connector structures

Fig. 4. Comb-like connector structures

that extends simpler connectors appears in Fig.1 in the case of

the single connector that links elements e2 and e3. The branch

consisting of the vertical edge in the right part of the diagram

links the simple connector with the element e5.

The procedure iterates until a single iteration does not result

in any extension of the obtained connector sets. The single

iteration in turn, consists of subiterations that iterate over all

unassigned line segments, where each unassigned segment is

tried to be extended into a polyline connecting two earlier

detected connectors or a connector and a diagram element.

Typically, this stage creates T-connections. T-connection is the

connection of edges, where one edge perpendicular to another

one touches them in the middle. The connection between the

edge linking e2 with e3 and the vertical edge adjacent to e5
is a typical T-connection.

The next two stages are aimed on merging connectors found

earlier into more complex ones. Pairs of connectors that are

candidates to merging must have intersecting edges. Merging

all connectors having intersecting edges in many cases would

lead to a structure not intended by the diagram author. Actu-

ally, the problem of simpler connector merging seems to be the

hardest one in the process of diagram structure recognition. We

distinguished two specific graphical configurations of edges

that are typically used when composing diagrams and we

perform connector merging only if the merged connector

conforms to the one of these specific configurations. We called

these configurations pine-like and comb-like structures. The

structures are shown in Fig.3 and Fig.4

F. Constructing pine-like connectors

In this step, the specific type of connector is detected

which consists of a simple single edge that intersects other

connectors. It is assumed that in such case the diagram creator

intention was to depict the situation where elements connected

by such a connector are connected each to another.

In order to find pine-like connectors, the simple connectors

(being just single edges) are tested against intersection with

edges of other connectors, let us call it trunk. All other simple

connectors that intersect the trunk are merged to the group

containing the trunk.

G. Constructing comb-like connectors

The comb-like structure is presented in Fig.4. It consists

of the vertical trunk connector intersected by one or more

"combs". Comb is a connector with the principal horizontal

edge to which a series of simple vertical edges (branches)

are T-connected. Additionally, it is required that comb teeth

are approximately of to the same length in the interval

< 0.1 ∗ lpr, 0.7 ∗ lpr > where lpr is the length of the principal

comb edge. The comb-like structure must also have trunk - the

vertical line being a connector that have a single DE at its top

and the trunk length must be at least 2 ∗ ltmin
, where ltmin

is

the shortest tooth length of the comb. The procedure of comb-

like connector construction consists in finding connectors that

satisfy aforementioned conditions. The set of connectors that

satisfies it is replaced in the set {C1, C@, ..., CM} by the

product of the merge operation.

H. Merging connectors by dot-markers

Finally, all these pairs of connectors are merged that contain

lines that cross one with another, where there is a dot-marker

at the intersection of lines belonging to various connectors. In

order to consider two line segments as marked for merging,

the following conditions must be satisfied:

• intersecting lines are approximately of the same width

(0.5 ≤ w1/w2 ≤ 2.0), where w1, w2 are widths of lines;

• lines are approximately of the same color, the color

tolerance is defined for the components of 24-bit RGB

color space;

Rmax −Rmin < 30,

Gmax −Gmin < 30, (4)

Bmax −Bmin < 30,

• the angle between intersecting lines is approximately the

right angle (with the tolerance range from 80◦ to 100◦);

• the four diagonal pixels at the distance
√
(2) ∗

max(w1, w2) from the lines intersection point are closer

in colors to the average lines color than to the background

color.

The last condition is responsible for detecting the dot

intersection marker at the lines intersection point.

220 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

I. Diagram elements recognition

Because this paper is mainly focused on the recognition of

connections between diagram elements, we will only briefly

describe methods used in order to recognize diagram elements.

We assume that diagram elements are: a) polygons, b) circles,

ellipses or arches of ellipses and c) shapes being combination

of a) and b), e.g. the symbol of a drum often used in flowcharts

to denote mass storage. Methods used to recognize polygonal

shapes are based on rules that define the mutual geometrical

relations between line segments constituting polygon edges.

For example, the parallelogram not being just a rectangle is

defined as the sequence of 4 edges (l0, l1, l2, l3) defined by

their endpoints (p
(B)
i , e

(E)
i), i = 0, ..., 3) that satisfy the set of

constraints:

• | p
(E)
i − p

(B)
i⊕1 |≤ ǫ for i = 0, ..., 3;

• either p
(E)
i = p

(B)
i⊕1 or p

(E)
i is connected with p

(B)
i⊕1 by

a chain of short line segments that are entirely included

inside the bounding box defined by p
(E)
i and p

(B)
i⊕1;

• l0 ‖ l2 and l1 ‖ l3;

• ∠(l0, l1) ≤ 90◦ − αtoll or ∠(l0, l1) ≥ 90◦ + αtoll,

where i⊕ 1 = (i+1) mod 4 and αtoll denotes the tolerance

for right angles. The last constraint makes it possible to

distinguish between rectangles and other parallelograms.

The procedure of shape recognition starts with a line seg-

ment from the vector set created by the vectorization procedure

and successively tries to extend it to a sequence of segments,

so that the constraints defined for allowed shapes are satisfied.

It may happen that certain sequence of line segments satisfies

constraints for more that single shape. For example, due to

drawing inaccuracies, a quadrilateral found in the diagram

may satisfy both constraints for the rectangle, the trapezoid as

well as for the rounded vertices rectangle. In such a case, the

measure of inaccuracy for all candidate shapes is computed

and this shape is finally selected for which the inaccuracy

measure is lowest. The procedure is repeated, each time

starting with a next line segments that is not already assigned

to any shape, until all unassigned line segments are tried.

In the case of ellipses and arches the procedure starts with

a candidate edge and tries to extend it to a polyline that best

approximates the ellipse fragment. Only axis-aligned ellipses

are considered. Let S = (l1, l2, ..., ln) be a sequence of line

segments that approximate an ellipse arch. At each stage the

procedure tries to extend it with one of line segments that

is adjacent to l1 or ln. Such extending segment is selected

for which the ellipse approximation error is the lowest. The

approximation error is the average distance of pixels consti-

tuting the polyline S to the best fitting ellipse. The pixel set

used for approximation is created by applying Bresenham line

drawing algorithm to all lines in the set S. The axis-aligned

ellipse is defined by four parameters: coordinates of the ellipse

center (xc, yc), the length of x-axis dx and the shape factor

a - the ratio of x and y axes lengths a = dx/dy. The best

fitting ellipse is found using the method described in [15]. The

parameters of the optimal ellipse as assumed to be within the

reasonable ranges determined in relation to the image size, e.g.

the ellipse (xc, yc) center must be within the range defined by

the image resolution and both ellipse axes must be not longer

than the corresponding image size along x or y axes. If the

parameters computed by the optimization procedure are out

of these ranges then the approximation is assumed to fail and

another extending line is tried. The extension is continued until

the closed ellipse is obtained or no more lines can be attached.

The final ellipse arch is accepted if it constitutes at least

50% of the complete ellipse. This acceptance threshold may

seem to be high, but shapes that we consider here as diagram

elements never consist of shorter ellipse fragments. On the

other hand, setting too low value of the threshold may lead to

false recognition of other shape elements as ellipse fragments.

V. EXPERIMENTS

A. Evaluation of diagram structure recognition accuracy

The accuracy of diagram structure recognition can be as-

sessed by the complexity of operations necessary to convert

the recognized structure into the correct one (ground truth).

This complexity can be measured by the summed cost of

elementary operations that can be used in order to turn the

recognized structure into the correct one. We focus here on the

evaluation of the multiset Û as defined in (1). Let us assume

that the recognized structure described by Û is to be converted

into the correct structure Û∗ by applying the sequence of

elementary operations. In the result, the sequence of structures

is created: (Û = Û1, Û2, ..., ÛK = Û∗) where Ûk is converted

into Ûk+1 by applying one of the following elementary op-

erations from the set O = {oC , oS , oM , oC , oE , oR, oA, oD}
defined as follows:

• oC - creating a new connector that links two DEs;

• oS - splitting the multiset Ui ∈ Ûk into two multisets

U1
i , U

2
i ∈ Ûk+1 - it corresponds to dividing the com-

pound connector into two simpler ones;

• oM - merging two multiset Ui, Uj ∈ Ûk into the single

multiset Ul ∈ Ûk+1 - it corresponds to merging two

connectors;

• oE - adding a branch to a diagram element to a connector,

i.e. replacing Ui,∈ Ûk by the new multiset U ′
i = (Ui ∪

(e, t)) ∈ Ûk+1;

• oR - removing a branch to a diagram element from a

connector, i.e. replacing Ui,∈ Ûk by the new multiset

U ′
i = (Ui \ (e, t)) ∈ Ûk+1;

• oA - changing the arrow status of the connector endpoint

for a certain element descriptor (e, t) in a certain multiset

Ui,∈ Ûk.

• oD - discarding of the whole result of recognition, i.e.

replacing of Û1 by the empty set.

The last operation is only allowed as the first one in the

conversion sequence and can be applied if the recognition

result is extremely different from the ground truth diagram

structure. Each operation has its cost. The accuracy of the

recognized diagram structure can be assessed by the total cost

of the least costly operation sequence that converts Û into Û∗.

This concept is similar to the edit distance widely used e.g. in

URSZULA MARKOWSKA-KACZMAR, JERZY SAS: LOGICAL STRUCTURE RECOGNITION OF DIAGRAM IMAGES 221

automatic speech recognition accuracy evaluation or spelling

errors correction ([16]). The value computed in this way is

however the absolute measure of labor amount necessary to

make a correction to the recognized structure. Certain value of

the edit distance may indicate quite good accuracy in the case

of very complex diagram, while it may correspond to a poor

accuracy in the case where the diagram consists just of few

elements and connector edges. Therefore the relative measure

related to the actual diagram complexity seems to be more

appropriate. The diagram complexity can be measured by the

cost of operations necessary to build the set Û∗ from very

beginning, i.e. from the empty family of multisets, using only

elementary operations. Let po denote the cost of the operation

o, and n
(Û1)
o and n

(∅)
o denote the counts of the operation o that

must be applied to obtain the correct diagram description Û∗

from the actual recognition result Û1 and from the empty set

correspondingly. The total costs of corrections and building

from the very beginning are:

Pcorr =
∑

o∈O

po ∗ n
(Û1)
o ,

Pbuild = pD +
∑

o∈O

po ∗ n
(∅)
o . (5)

and the final recognition accuracy can be computed as:

Q =
Pbuild − Pcorr

Pbuild

∈< 0, 1 > . (6)

The value of Q is normalized into < 0, 1 > interval. If the

diagram is perfectly recognized then Pcorr = 0 and Q = 1.

On the other hand, if the recognition procedure totally misses

then the cost of correction is not higher that discarding all

recognition results (operation oD) and building the structure

from the very beginning. In this case Pcorr = Pbuild and in

result Q = 0.

B. Hardware environment and efficiency issues

The described algorithm was implemented in C++ language.

Tests were carried out using the PC equipped with Intel i7

3610QM CPU and 16GB of RAM. The execution time of the

algorithm varies depending on the image contents. For simple

diagrams consisting of just a few DEs connected by simple

connectors the algorithm is executed in less than a single

second. The longest execution time (17.6 sec.) was observed

in the case of the complex diagram consisting of 58 DEs.

The average processing time (including image vectorization)

of a single diagram was 2.4 sec. Currently the algorithm

implementation is fully sequential.

C. Results

The accuracy of diagram structure recognition was tested

using three types of diagrams that differ in the complexity of

intersecting connectors: a) flowcharts, b) organizational charts

and c) digital circuit block diagrams. The test set consisted of

11 digital circuit diagrams, 15 flowcharts and 17 organizational

charts. Flowcharts seem to have simplest connector structures,

while in the case of digital circuits the intersecting connectors

appear very often. Hence, the later type of diagrams is the

most difficult to recognize. Because in this article we are

dealing merely with the problem of connectors recognition,

we selected for the tests only such diagrams, where there

were no mistakes in diagram elements recognition. For each

recognized diagram structure the counts of operations from

the set O that are necessary to correct the structure were

determined as well as the number of operations necessary

to build the diagram from the very beginning. We assumed

that in the process of construction of the diagram only the

operations of new connector creation (oC) and extension of

the existing connector with an additional branch (oE) were

used. Finally the recognition quality Q was computed for

each diagram. We assumed that the unit cost po of each

operation o is equal to 1.0. The results are presented in Table

I. Columns in the left part of the table include numbers of

individual correcting operations from the set O, summed by

types of diagrams. The meaning of operation symbols used in

Table I were explained in the previous section. The column

containing costs of correction/creation contain average costs

for individual types of diagrams. The bottom row presents the

results analogous to described for individual types of diagrams,

but now they are prepared for the whole set containing all types

of diagrams.

The small number of diagrams used in the tests do not give

rights to create very general conclusions, although the average

result for all diagrams equal to 92% is very promising. From

the perspective of diagram classes, the worst average result

(88% - which seems to be pretty good) was obtained for the

class of digital block diagrams. This set contains the most

difficult intersecting connections. Our subjective evaluation

of the obtained results is very optimistic. Most errors were

caused by low image quality and inaccuracies in drawing.

It can be observed that there were no errors consisting in

detecting neither "false" (i.e. actually not existing) connectors

nor branches. The most typical error consisted in omitting

connector branches to some DEs. Detailed analysis of missing

branches revealed that in most cases errors of this kind were

caused by too wide gaps between a diagram element and a

terminal endpoint of the connector branch.

Table II presents the results of diagram structure recognition

of the exemplary organizational diagram. Fig. II.1 shows the

original image. All detected connectors are drawn in Fig. II.2.

The connectors are drawn with thick blue lines. Remaining

figures show selected individual connectors detected in this

diagram. Some simple connectors were omitted and only

more complex ones are presented. It is clear that intersecting

connectors were properly separated and complex connectors

with "branches" were constructed as intended by the diagram

author. In the case of this diagram all connectors were recog-

nized correctly.

VI. CONCLUSION

The subjective and objective evaluation of the method gives

us good perspective for further development of the method,

222 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

TABLE I
STRUCTURE RECOGNITION ACCURACY EVALUATION ON THREE TYPES OF DIAGRAMS

Diagram type
Correction (number of correcting operations) Construction (number

of constructing
opeartions)

Q

oC oS oM oE oR Correction cost oC oE Construction cost
Digital circuits 3 0 8 0 19 30 191 22 224 0.88
Flowcharts 2 0 1 0 10 13 178 12 205 0.94
Organizational diagrams 2 0 1 0 12 15 308 14 339 0.96
Total: 7 0 10 0 41 58 677 48 768 0.92

although we realize that the set of diagrams used in order

to asses the quality of structure recognition is quite small

and conclusions drawn from described experiments may be

disturbed by the random factor. In future, significantly bigger

set of diagrams will be manually annotated and used for

reliable accuracy estimation.

The main weakness of the proposed method seems that it

utilizes the set of constants-thresholds, in most cases defining

tolerances of various graphical attributes (lengths, angles,

widths, distances etc.). It makes possible to correctly recognize

some structures that are drawn inaccurately but, on the other

hand, it may also lead to recognition errors. In our experiments

we tuned these constants intuitively, so as to obtain best

recognition results on the validation image set (which is

disjoint from the test set). We cannot however assure that

these parameter values are selected optimally. In future works,

other method of parameter tuning should be applied that will

make it possible to find suboptimal parameter values without

the engagement of a human. Image processing methods used

at the stage of diagram image binarization and vectorization

should also be improved, so that low quality images as well

as images with background patters or containing "decorated"

shapes can be more reliably analyzed.

Some problems encountered in determining connections

between diagram elements are caused merely by low quality of

scanned images, while others follow from complicated shapes

of connectors that intersect each other. In future, an experiment

will be carried out which will compare the average accuracy

achieved in a set of scanned images with the accuracy achieved

in a set of images directly converted to the raster format, e.g.

by saving the image created in a graphic diagram editor.

ACKNOWLEDGMENT

This work was partially supported by the European Com-

mission under the 7th Framework Programme, Coordination

and Support Action, Grant Agreement Number 316097, EN-

GINE - European research centre of Network intelliGence for

INnovation Enhancement.

REFERENCES

[1] R. Datta, D. Joshi, J. Li, and J. Wang, “Image retrieval: Ideas,
influences, and trends of the new age,” ACM Computing Surveys,
vol. 40, no. 12, pp. 5:1–5:60, 2012. doi: 10.1145/1348246.1348248.
[Online]. Available: http://doi.acm.org/10.1145/

[2] D. Blostein, “General diagram-recognition methodologies,” Graphics

Recognition Methods and Applications, vol. 1072, pp. 106–122,
1996. doi: 10.1007/3-540-61226-2-10. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-61226-2_10

[3] Y. Liu, X. Lu, Y. Qin, Z. Tang, and J. Xu, “Review of chart
recognition in document images,” in Proc. SPIE 8654, Visualization

and Data Analysis, vol. 865410, 2013. doi: 10.1117/12.2008467.
[Online]. Available: http://dx.doi.org/10.1117/12.2008467

[4] A. Lemaitre, H. Mouch‘ere, J. Camillerapp, and B. Couasnon, “Interest
of syntactic knowledge for on-line cognitionr,” in Proc. of ninth IAPR

International Workshop on Graphics Recognition (GREG2011), 2011.
doi: 10.1007/978-3-642-36824-0 9 pp. 85–98.

[5] M. Bresler, D. Prusa, and V. Hlavac, “Modeling flowchart structure
recognition as a max-sum problem,” in ICDAR, IEEE Computer Society,
2013. doi: 10.1109/ICDAR.2013.246 pp. 1215–1219. [Online]. Avail-
able: http://dblp.uni-trier.de/db/conf/icdar/icdar2013.html/BreslerPH13

[6] G. Feng, C. Viard-Gaudin, and Z. Sun, “On-line hand-drawn electric
circuit diagram recognition using 2d dynamic programming,” in Pattern

Recognition, vol. 42, 2009. doi: 10.1016/j.patcog.2009.01.031 pp. 3215–
3223. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00419076

[7] Y. Qi, M. Szummer, and T. P. Minka, “Diagram structure recognition
by bayesian conditional random fields,” in CVPR 2005. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, vol. 2,
2005, pp. 191 – 196.

[8] Evaluating Flowchart Recognition for Patent Retrieval,
2013. doi: 10.1007/s10791-013-9234-3. [Online]. Avail-
able: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/
EVIA/08-EVIA2013-LupuM.pdf

[9] A. Hanbury, N. Bhatti, M. Lupu, and R. Mörzinger, “Patent image
retrieval: a survey,” in Proceedings of the 4th worshop on Patent

information retrieval, 2011. doi: 10.1145/2064975.2064979 pp. 494–
497.

[10] L. Yan, W. Huang, and C. L. Tan, “Semi-automatic ground truth
generation for chart image recognition,” in Workshop on Document

Analysis Systems (DAS), 2006. doi: 10.1016/j.patrec.2015.02.001 pp.
324–335.

[11] M. Awadalla and A. Sadek, “Spiking neural network-based control
chart pattern recognition,” Journal of Engineering and Technology

Research, vol. 3, no. 1, pp. 5–15, 2011. doi: 10.1007/s10845-012-0659-
0. [Online]. Available: http://www.academicjournals.org/journal/JETR/
article-abstract/59E571210699

[12] Y. Yu, A. Samal, and S. C. Seth, “A system for recognizing a large class
of engineering drawings,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, 1997. doi: 10.1109/34.608290

[13] J. Sas and A. Zolnierek, “Three-stage method of text region
extraction from diagram raster images,” in Proceedings of the

8th International Conference on Computer Recognition Systems

CORES 2013, Milkow, Poland, 27-29 May 2013, 2013. doi:
10.1007/978-3-319-00969-8-52 pp. 527–538. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-00969-8_52

[14] A. N. Kolesnikov, V. V. Belekhov, and I. O. Chalenko, “Vectorization
of raster images,” Pattern Recognition and Image Analysis, vol. 6,
no. 4, pp. 786–194, 1995. [Online]. Available: http://cs.joensuu.fi/
~koles/dissertation/Kolesnikov_Paper1.pdf

[15] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square
fitting of ellipses,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 21, no. 5, pp. 476–480, May 1999. doi:
10.1109/34.765658. [Online]. Available: http://dx.doi.org/10.1109/34.
765658

[16] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J. ACM, vol. 21, no. 1, pp. 168–173, Jan. 1974.
doi: 10.1145/321796.321811. [Online]. Available: http://doi.acm.org/10.

1145/321796.321811

URSZULA MARKOWSKA-KACZMAR, JERZY SAS: LOGICAL STRUCTURE RECOGNITION OF DIAGRAM IMAGES 223

TABLE II
EXAMPLE OF RECOGNIZED DIAGRAM STRUCTURE

Fig.II.1. Original diagram Fig.II.2. All detected connectors Fig.II.3. Example of simple connector

Fig.II.4. Example of compound connector Fig.II.5. Example of compound connector Fig.II.6. Example of compound connector

Fig.II.7. Example of compound connector Fig.II.8. Example of compound connector Fig.II.9. Example of compound connector

224 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

