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Abstract—The paper presents the results of research related to
the efficiency of the so called rule quality measures which are used
to evaluate the quality of rules at each stage of the rule induction.
The stages of rule growing and pruning were considered along
with the issue of conflicts resolution which may occur during the
classification. The work is the continuation of research on the
efficiency of quality measures employed in sequential covering
rule induction algorithm. In this paper we analyse only these
quality measures (9 measures) which had been recognised as
effective based on previously conducted research.

I. INTRODUCTION

T
HE SEQUENTIAL covering rule induction algorithms

can be used both for classification and descriptive pur-

poses [1, 2, 3, 4, 5, 6, 7]. The main principle of the sequential

covering rule induction algorithms is unchanged, despite the

development of increasingly sophisticated versions of such

algorithms. It involves the induction of rules in two phases:

growing phase and pruning phase. In the growing phase,

the elementary conditions occurring in the rule premise are

specified. In the pruning phase, some of these conditions are

removed. In comparison with other induction methods, rule

sets obtained by the covering algorithms are characterised by

good classification as well as descriptive capabilities. Taking

into consideration only the classification abilities, better results

can be often obtained using other methods, for example

neural-fuzzy networks [8, 9] support vector machines [10],

or ensemble of classifiers [11]. Models obtained in this way,

however, are characterised by much less interpretability than

classification (decision) rules. In the case of rule learning

for descriptive purposes, the algorithms for induction of rules

satisfying certain minimum quality criteria are most commonly

used [12, 13, 14]. Induction of all rules that satisfy the given

quality criteria leads to the induction of a very large number

of rules which then must be limited by the filtering algorithms

using so-called rule interestingness measures [15, 16, 17]. If
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the primary objective is to describe data, it is possible to use

modified covering algorithms (so-called rule-based subgroup

discovery [18, 13, 19]). These algorithms aim at the induction

of statistically significant rules which cover regions in the fea-

ture space of as small union as possible. Rule sets generated in

this way are characterised by worse classification abilities than

in the standard covering algorithms. If the analysis objective

is to create a classification system that uses an interpretable

data model, application of sequential covering rule induction

algorithms is the most sensible solution. The quality of the rule

set obtained by the covering algorithm depends on the quality

measure [20, 1, 21, 22, 23, 24, 25, 26] used in the growing

and pruning phases. The used quality measure is one of the

factors affecting the classification accuracy, the number of

rules induced and their other characteristics (e.g. the statistical

significance).

The objective of the paper is to present the results of

research related to the efficiency of using the combinations

of different measures at each stage of the rule induction. The

sequential covering approach and the top-down method were

applied as the basic induction algorithm. In this approach one

can distinguish the stages of the rule growing and pruning. In

these stages it is possible to use different optimisation criteria

which control the rule creation process. These criteria are

commonly called rule quality measures or search heuristics.

Different quality measures can also be used at the stage of

classification conflicts resolution - this way the mechanism of

weighted voting gets modified. The paper features an analysis

of the combination of 9 measures which were recognised as

effective (this choice will be explained further in the paper).

The analysis was conducted based on 34 data sets. In addition,

the paper contains some supplementary information about the

applied quality measures.

II. RELATED WORKS

Measures used for the rule evaluation are divided into two

categories [16]: objective and subjective measures. Most of the

objective measures are defined on the basis of the contingency
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table that characterises the quality of a rule in the context of a

fixed (usually training or validation) data set [27, 23]. The task

of the subjective measures is to evaluate the rules according to

subjective user’s preferences. The subjective measures evaluate

such features of rules as: unexpectedness, surprisingness,

novelty, utility or actionability [16]. The method of measuring

these features depends on the application domain and the pur-

pose of analysis. Our range of interest includes objective rule

quality measures, also known as evaluation or search heuristics

[22, 28, 29]. At present, in the literature over 50 objective

measures can be found [20, 22, 15, 23, 28, 24, 26, 29]. A lot

of measures used for evaluation of decision (classification)

rules have wider significance - they function also as rule

interestingness (attractiveness) measures [15, 30, 16, 17, 31].

Interestingness measures are used for evaluation of already

induced rules, both decision and association. In the next part of

the paper we will use the common term quality measures. The

quality measure applied in decision rule induction is significant

for the quality of an output set of rules. This is confirmed by

empirical research [32, 20, 21, 23, 25, 26].

In [22, 23] Fürnkranz and Janssen conducted an analysis

of the efficiency of measures which contain one or several

parameters. These authors present a methodology to adapt

the values of parameters contained in quality measures to the

specifics of the analysed data set. In addition, they demonstrate

that, as the parameters change, certain measures begin to

behave similarly to others (such an analysis was conducted for

m-estimates and Klösgen measures). In our articles [26, 33],

in turn, we are analysing the measures which do not contain

parameters and we demonstrate their efficiency on a data set

similar to the one quoted in Fürnkranz’s work. However, we

use an algorithm which generates the rule set instead of a

rule list. This results in the necessity to use the mechanism

for classification conflicts resolution, i.e. there is another

place (apart from rule growing and pruning) where a rule

quality measure can be applied. This way it is possible to

achieve better accuracy of the classification, particularly higher

specificity and sensitivity of the classifier [33].

There are also works that deal with the decision rule

length. In the paper [34] the analysis of relationships between

length and the coverage of the decision rule is described.

Relationships are considered as the influence of the length

on the rule coverage and also as the reversed: the influence

of the rule coverage on its length. In the other paper [35]

a Dominance Based Rough Set Approach generated rules,

and their length, determines the relevance of attributes, what

becomes a criterion for a feature selection. There was also an

attempt to characterise rule induction as a process specified by

domain ontology [36], describing all data mining algorithms.

III. RULE INDUCTION

Let us assume that a finite set Tr of examples is given.

Each training example is described by a set A ∪ {d} of

features, i.e. a : Tr → V a for each a ∈ A ∪ {d}. The set

V a is called the range of the attribute a. Elements of A are

called conditional attributes, the variable d is called a decision

attribute, and its value is identified with the assignment of

an example to a specific concept (decision class). Conditional

attributes can be of symbolic (discrete-valued) or of numeric

(real-valued) type. The decision attribute is of symbolic type.

Each example x belonging to the Tr set can be written as a

vector x = (x1, x2, . . . , x|A|, y), where ai(x) = xi for each

i ∈ {1, 2, . . . , |A|} and y = d(x). The conditional expression

of the following form is called a decision rule:

IF w1 AND w2 AND . . . AND wk THEN d = v

An example satisfying all elementary conditions wi is

assigned to the concept indicated in the rule conclusion.

Construction of elementary conditions wi may be various

and depends on a rule induction algorithm. Any elementary

condition is most often the expression of the one of the two

following forms: wi ≡ ai op Zi, where ai is the name of

the conditional attribute, op is one of the relation operators

{=,≤,≥, >,<}, Zi is the element of the range of the attribute

or just wi ≡ ai ∈ Zi where Zi is a interval in the range V ai:
Zi ⊂ V ai. The positive examples are those belonging to the

decision class pointed in the rule conclusion. The negative

examples are the remaining ones.

Let p denote the number of positive examples covered by

the rule (P stands for all positive examples in the training set),

and let n denote the number of negative examples covering

the rule (N stands for all negative examples). On the basis

of this notation a contingency table for the rule can be built

(Table I).

TABLE I
THE CONTINGENCY TABLE FOR THE RULE COVERING p POSITIVE AND n

NEGATIVE EXAMPLES.

p n p+ n
P − p N − n P +N − p− n

P N P +N

The aim of majority of rule induction algorithms is to

find the minimal set of classification rules which cover and

correctly predict decision classes of a given set of examples

and which additionally are characterised by high values of p
and low values of n. Finding the optimal solution for such a

problem is a computationally expensive task, therefore most of

the rule induction algorithms use some heuristics. One of the

most common approaches, used also in our implementation, is

the sequential covering (known also as separate-and-conquer)

strategy [4, 6].

To put it briefly, this strategy consists in learning a rule

which covers some part of training examples. Next, the

examples covered by the learnt rule are removed from the

training set and the rule learning process starts recursively for

the remaining examples.

Our implementation of the rule induction algorithm also

works in the separate and conquer fashion. The outcome of

the algorithm is a set of rules describing each decision class

of a training set. The process of induction of a single rule

consists of two phases: growing and pruning. In the growing
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1 RuleInduction(examples, ruleQualityMeasure)
2 the set of generated rules (initially empty)

3 ruleSet := ∅
4 decisionClass is a set of examples which have the same value of

decision attribute
5 foreach decisionClass in examples do

6 uncoveredPositives := decisionClass
7 while uncoveredPositives 6= ∅ do
8 rule with empty antecedent and consequent pointing current

decision class

9 rule := ∅
10 the set of examples covered by the rule (initially empty rule

covers all examples)

11 covered := examples
12 rule growing phase

13 do
14 conditions := PossibleElementaryConditions(covered,

uncoveredPositives)
15 bestQuality := −∞
16 bestCondition := ∅
17 foreach c in conditions do

18 evaluate the quality of rule with c condition added

to its antecedent
19 quality := Evaluate(rule c, ruleQualityMeasure)
20 if quality > bestQuality then

21 bestQuality := quality
22 bestCondition := c
23 end

24 end

25 add selected elementary condition to the antecedent of
the rule

26 rule := rule ∪ bestCondition
27 covered := Covered(rule, examples)
28 while until (stop criterion);
29 rule pruning phase

30 Prune(rule, ruleQualityMeasure)
31 covered := Covered(rule, examples)
32 uncoveredPositives := uncoveredPositives \ covered
33 ruleSet := ruleSet ∪ rule
34 end

35 end
36 return ruleSet

Algorithm 1: The algorithm of rule induction

phase, the elementary conditions are added one by one to

the premise of the rule. In the case of nominal attributes,

the elementary condition can take the form of (a = v), and

for the numerical attributes it can take one of two forms:

(a < v) or (a ≥ v). For the numerical attributes the value

v is the arithmetic mean between two successive values from

the range of attribute a. The set of all the possible elementary

conditions which might be added to the rule is created on the

basis of examples currently covered by the rule. It means that

the domains of the attributes are narrowed to the values which

are taken by the examples covered by the currently formed

rule. Moreover, the elementary condition is tested only if its

addition to the rule causes that such a refined rule covers at

least one positive example not covered by rules generated so

far. The refinement that has the highest value of the specified

rule quality measure among all refinements possible in a single

step is selected as the final one. If several refinements obtain

the same value of the rule quality measure, the refinement

covering more uncovered positive examples is chosen.

During the induction of rules it should be taken into

account that some attribute values of individual examples are

not always known. In the literature, several propositions of

strategies for handling unknown values of the attributes in rule

learning algorithms can be found [37]. In our implementation

it is assumed that the elementary condition always returns truth

value false for the unknown value of the attribute. It means

that if the example has unknown values, it can be covered only

by the rule which does not contain attributes with unknown

values for this example.

The process of rule growing is terminated if the rule is

accurate (i.e. it covers none of the negative examples) or if the

addition of the next conditions to the rule no longer increases

its precision (which may take place if examples with identical

attributes values but different decisions exist in the training

set). After the rule growing phase, the rule is pruned. The

rule pruning algorithm uses a hill-climbing strategy. At each

iteration, it deletes the elementary condition without which

the rule has the highest improvement in the value of quality

measure. After each removal, the value of rule quality measure

is recalculated on the entire set of training examples and

the deletion of conditions is repeated until it does not cause

decrease in the current value of quality measure. The pruned

rule is added to the final set of rules, and then the process

of rule induction starts again for the rest of the uncovered

positive examples.

The assumed heuristic of rule building therefore focuses on

induction of rules characterised by high values of specified

quality measure and thus constitutes a generic framework for

studying behaviour of various quality measures.

IV. RULE QUALITY MEASURES

Quality measures strongly associated with decision rules

evaluation are collected in surveys [27, 21, 23, 28, 29].

The papers [27, 21] focus mainly on studying measures

influence’ on conflicts resolution during classification. Janssen

and Fürnkranz [23] present research on parametrised quality

measures and the procedure of data driven selection of their

parameters. Papers by Yao and Zhong [29] and Lavrac, Flach,

and Zupan [28] focus on defining quality measures in the

language of probability. Interestingly enough, the mentioned

authors’ considerations concern disjoint sets of measures.

Our choice of nine decision rule quality measures is pro-

vided in Table II. The selection is a result of a previous

experiments — in already quoted works [26, 33], about 30

measures were analysed with respect to their efficiency. To

check the efficiency, the measures were used in the rule

induction algorithm - the same measure was used at each

induction stage and during the resolution of classification

conflicts. Then the classification abilities of the obtained rule

classifier were checked. The classification abilities were anal-

ysed from the point of view of overall classification accuracy

and balanced accuracy. In the case of two decision classes and

the discrete classifier, this measure is equivalent to the AUC

criterion [38]. In the case of a bigger number of classes, the

balanced accuracy informs about the average accuracy of each

decision class. This measure is suitable to verify the classifier

which works on unbalanced data. Additionally, the number
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of rules was analysed with respect to the interpretability of

the obtained rule sets. Without going deeper in the measure

selection methodology, which is presented for example in [33],

9 evaluation measures were selected. These measures achieved

good results, at least from the point of view of one of the three

above mentioned criteria - statistically they performed better

than other measures in the majority of data sets.

TABLE II
THE LIST OF SELECTED OBJECTIVE RULE QUALITY MEASURES.

g =
p

p+ n+ 2

wLap =
(p + 1)(P +N)

(p + n+ 2)P

LS =
pN

nP

Rss =
p

P
−

n

N

MS =
p

n+ P

C1 = Coleman ·
2 + Cohen

3

C2 = Coleman · 0.5

(

1 +
p

P

)

corr =
pN − Pn

√

PN(p+ n)(P − p+N − n)

s =
p

p+ n
−

P − p

P − p +N − n

Cohen =
(P +N)( p

p+n
)− P

P+N
2

p+n+P

p+n
− P

Coleman =
(P +N) p

p+n
− P

N

Now, we will focus on a brief discussion of the measures

and presentation of their properties. The g − measure (g
= 2) was proposed by Fürnkranz and Flach [22] and is a

simplified version of the Laplace estimate. The g−measure (g
= 2) assumes that a rule covering only one positive example

is assigned true precision equal to 0.33. Many experiments

(e.g. in papers [39, 23]) indicate that the precision of a rule

evaluated on a training set is too optimistic. This especially

concerns rules covering a small number of positive examples.

If a rule covers large number of positive examples, the correc-

tion introduced by the number 2 has less and less meaning.

The Weighted Laplace (wLap) measure is derived from

decision tree induction algorithms and it is the Laplace esti-

mate multiplied by (P + N)/P . So it takes into account the

distribution of examples between the current positive class (P )

and the remaining classes (N ).

The Logical sufficiency (LS) measure is applied to

association rule evaluation as well as to decision rule induction

[29]. It belongs to the group of measures which emphasise

precision of rules during their evaluation and pay less attention

to the number of examples covered by the evaluated rule.

The RSS measure is a measure equivalent, in terms of

the generated rule order, to the well-known weighted relative

accuracy (WRA) measure used by Lavrac, Flach, and Zupan

[28], both in rule induction and subgroup discovery. However,

RSS and WRA have different ranges of values. The use of RSS

for classification conflicts resolving leads to better results than

the use of the WRA measure.

The MutualSupport (MS) measure is, in context of

decision rule evaluation, presented in the paper by Yao and

Zhong [29]. Let us assume that a rule of the form ϕ → ψ
is given. MS measures the strength of dependencies not only

between ϕ → ψ, but also between ϕ ← ψ. It follows that

we can consider it as a measure evaluating the strength of the

double implication ϕ ↔ ψ. Therefore, the measure prefers

rules characterised by high coverage.

The Correlation (Corr) measure computes the correlation

coefficient between the predicted and the target labels. It was

applied to classification rule induction algorithms as well as

to subgroup discovery and evaluation of association rules [15,

23, 40].

The s − Bayesian confirmation (s) measure has been

proposed by Christensen [41] and Joyce [42] as a confirmation

measure. The first component of the measure evaluates the rule

precision and the second is responsible for decrease in the

quality of rules that cover small number of positive examples.

Its application in evaluation of decision rules obtained by the

rough set theory was considered in papers [43, 30].

Measures C1 and C2 have been proposed by Bruha [27,

21]. The measures are a combination of two quality measures

known as the Coleman and Cohen (see Table II) measures.

Bruha noticed that the Coleman measure prefers rules with

high precision and small coverage, while the Cohen measure

prefers rules with high coverage. Hence, C1 and C2 join the

assessment made by the Coleman and Cohen measures

V. EXPERIMENTS AND RESULTS

In this paper, the performance of the rule-based classifier

is evaluated by the two criteria: overall classification ( Acc )

accuracy and balanced accuracy ( BAcc ). The overall accuracy

is the ratio of the number of correctly classified examples to

the number of all examples. This is one of the most common

criteria for assessing a classifier. However, in the case of

unbalanced distribution of examples between decision classes,

higher value of overall accuracy is often achieved at the cost

of low accuracy of minority classes, therefore in such a case

the balanced accuracy is more appropriate. It calculates the

classification accuracy of each decision class and then takes

an average over all classes. In the case of 2-class problems,

balanced accuracy is equivalent to Area Under the ROC Curve

(AUC) criterion [38]. One can meet with the interpretation

that balanced accuracy calculated for a number of classes is a

generalization of AUC for multi-class problems [44].

The used rule induction algorithm generates an unordered

set of rules, therefore during the classification of examples

it may happen that the test example is covered by rules

pointing at different decision classes. In that case, a strategy
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TABLE III
CHARACTERISTICS OF DATA SETS USED IN EMPIRICAL STUDIES.

dataset cl. obj. maj. attributes dataset cl. obj. maj. attributes
class all nom. class all nom.

anneal 5 898 76.17 38 32 hepatitis 2 155 79.35 19 13
audiology 24 226 25.22 69 69 horse-colic 2 368 63.04 22 15
auto-mpg 3 398 62.56 7 2 hungarian-heart-disease 2 294 63.95 13 7

autos 6 205 32.68 25 10 iris 3 150 33.33 4 0
balance-scale 3 625 33.33 4 0 mammography-masses 2 961 53.69 5 2
breast-cancer 2 286 70.28 9 9 mushroom 2 8124 51.80 22 22

breast-w 2 699 65.52 9 0 prnn-synth 2 250 50.00 2 0
car 4 1728 70.02 6 6 segment 7 2310 14.29 19 0

cleveland 5 303 54.13 13 7 sick-euthyroid 2 3772 93.88 29 22
contact-lenses 3 24 62.50 4 4 sonar 2 208 53.37 60 0

credit-g 2 1000 70.00 20 13 soybean 19 683 13.47 35 35
cylinder-bands 2 540 57.78 35 18 titanic 2 2201 67.70 3 3

diabetes 2 768 65.10 8 0 vehicle 4 846 25.77 18 0
echocardiogram 2 131 67.18 11 2 vote 2 435 61.38 16 16

ecoli 8 336 42.56 7 0 wine 3 178 39.89 13 0
flag 4 194 46.91 28 18 yeast 10 1484 31.20 8 0

heart-statlog 2 270 55.56 13 0 zoo 7 101 40.59 16 15

for resolving such conflicts has to be chosen. The most popular

one is known as the voting scheme and consists in assigning

a numeric value called the confidence degree to each rule.

Confidence degrees of the rules covering the test example are

summed up for each decision class and then the class with a

maximal confidence degree is picked. In this paper the voting

scheme is also used during classification. Initially, we assumed

that the confidence degree of each rule is equal to its value

of some quality measure used during the rule induction. If the

test example is not covered by any of the rules, it is treated

as wrongly classified.
All presented results stand for average values obtained based

on the analysis of 34 data sets from the UCI Repository

[45]. The analysis of each set was conducted with the use

of the stratified 10-fold cross validation strategy. Comparisons

were made on the same partitions of the data sets. The

characteristics of these sets are presented in Table III. As it can

be seen, the sets with different characteristics were selected for

the analysis, particularly in relation to the number of decision

classes, the distribution of examples between the classes and

types of the attributes. The following abbreviations mean: cl. –

number of classes, obj. – number of objects, maj. class – a ma-

jority class fraction in %, nom. – a number nominal attributes.
Tables IV and V contain the results of the classification of

rule based classifiers which were obtained in such a way that

the same quality measure was used at each stage of the rule

induction and during the resolution of classification conflicts.
It can be seen that the C2 measure leads, on average,

to the highest overall classification accuracy, wLap to the

highest balanced accuracy, and RSS to the smallest number

of rules but with significantly worse classification qualities

(in the paper [33] it was proven that this worsening is

statistically relevant). What is more, the Corr measure can

be a reasonable compromise between the number of generated

rules and their classification abilities. A more detailed analysis

of the measures efficiency can be found in [26, 33]. Table V

presents yet unpublished results which characterise the rule

TABLE IV
RESULTS OF THE MEASURES COMPARISON ON 34 DATA SETS.

measure rules Acc[%] BAcc[%]
g 144 81.4 74.2
wLap 156 81.1 77.8
LS 172 80.7 75.8
RSS 34 78.2 72.3
MS 32 77.8 70.5
C1 151 82.0 73.0
C2 127 82.3 76.3
Corr 44 79.9 74.3
s 86 80.3 74.9

TABLE V
CHARACTERISTICS OF THE INDUCED RULE SETS.

Measure

Classification
Rules

conflicts
elementary Avg Avg

all wrong number conditions Prec. Cov.
g 32 10 144 2.9 0.96 0.32
wLap 29 9 156 2.6 0.98 0.26

LS 29 8 172 2.4 0.98 0.19
RSS 58 18 34 3.6 0.77 0.74
MS 59 19 32 3.8 0.73 0.77
C1 29 8 151 2.5 0.98 0.28
C2 33 9 127 2.8 0.96 0.36
Corr 53 16 44 3.7 0.81 0.68
s 51 15 86 2.6 0.96 0.34

sets generated by means of particular measures. Here we can

find the following interesting regularities:

• the highest values of Acc and BAcc take (with a

few exceptions) the measures leading to induction of

more rules, the average precision of the rule (denoted

as AvgPrec) obtained by such measures is greater than

0.95, the average coverage (denoted as AvgCov) is

not greater than 0.36; if the induction of rules aims at

classification, it is appropriate to use measures attaching

the utmost importance to the rule precision;

• in the classifiers obtained based on measures leading
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TABLE VI
AVERAGE RANKING OF DIFFERENT MEASURE APPLICATION ON THE CLASSIFICATION PHASE.

induction criterion C1 C2 Corr g LS MS Rss s wLap

g
Acc 5.0 4.5 5.1 5.1 4.5 4.5 4.1 5.9 6.4
BAcc 5.0 5.1 5.0 6.3 5.2 5.5 4.9 4.2 3.8

C1
Acc 4.5 3.8 4.4 5.3 5.4 4.8 4.7 5.6 6.5
BAcc 4.7 4.9 4.2 6.8 5.6 5.2 5.0 4.3 4.3

C2
Acc 4.1 3.9 4.6 4.9 5.9 5.9 6.0 4.7 5.1
BAcc 4.5 4.9 4.6 6.2 5.3 6.1 6.1 4.1 3.3

Corr
Acc 4.3 4.1 4.7 5.0 5.0 5.6 5.7 4.4 6.1
BAcc 4.8 4.7 4.9 6.4 3.2 6.8 5.3 5.0 4.2

wLap
Acc 4.5 4.3 4.1 5.3 5.0 5.0 4.8 5.8 6.3
BAcc 4.6 5.0 4.2 6.5 5.3 5.9 5.5 4.2 3.8

LS
Acc 4.0 3.9 4.9 4.6 4.9 5.0 4.8 6.2 6.7
BAcc 4.5 4.9 4.5 6.6 5.7 5.5 5.1 4.5 3.6

MS
Acc 4.7 4.3 4.8 4.7 5.9 4.7 5.9 4.1 5.9
BAcc 4.6 4.7 4.9 6.1 3.5 6.5 5.3 5.4 4.1

Rss
Acc 4.3 4.3 4.9 5.6 3.9 5.5 5.6 4.9 6.1
BAcc 4.9 5.1 4.9 6.6 3.2 6.2 5.0 4.9 4.3

s
Acc 4.3 4.4 4.8 4.6 5.4 5.4 5.8 4.5 5.9
BAcc 4.2 4.6 5.0 6.2 4.7 6.1 5.9 4.1 4.3

avg
Acc 4.4 4.2 4.7 5.0 5.1 5.2 5.3 5.1 6.1
BAcc 4.6 4.9 4.7 6.4 4.6 6.0 5.3 4.5 4.0

TABLE VII
CLASSIFICATION IMPROVEMENT COMPARISON.

Induction Class. Acc [%]
Wilcoxon

test p-value

g
g 81.37

0.1271
C2 82.24

C1
C1 81.95

0.1885
C2 82.06

corr
corr 79.77

0.0572
C2 80.28

wLap
wLap 81.02

0.0154
C2 82.80

LS
LS 80.80

0.3684
C2 81.02

MS
MS 77.90

0.5723
C2 77.14

Rss
Rss 78.07

0.0383
C2 79.08

s
s 80.39

0.9357
C2 79.43

Induction Class. BAcc [%]
Wilcoxon

test p-value

g
g 74.17

0.0050
wLap 78.15

C1
C1 76.91

0.0512
wLap 77.81

C2
C2 76.22

0.0066
wLap 78.35

corr
corr 74.21

0.2206
wLap 76.01

LS
LS 75.67

0.0161
wLap 77.04

MS
MS 70.67

0.0090
wLap 74.57

Rss
Rss 72.21

0.0672
wLap 74.06

s
s 75.03

0.6811
wLap 74.92

to the induction of a smaller number of more general

rules (the average precision of induced rules is not

higher than 0.96, the average coverage is not less than

0.34), there is a large number of classification conflicts

(Classification conflicts); a large number of these conflicts

is resolved incorrectly, which explains the lower quality

of the classifiers;

• the larger the rule coverage, the greater the number of

positive examples covered by them uniquely;

• the rule average precision and rule average coverage are

correlated with the number of induced rules;

• the average number of elementary conditions (Elementary

conditions) contained in the rule premises is correlated

with the number of induced rules and their average

coverage.

The experiments show that the rules generated by means

of measures which lead to the induction of a large number

of precise rules (precision > 0.95) contain fewer elementary

conditions than the rules obtained with the use of measures

which promote more general rules. This means that the ranges

of elementary conditions, set by means of MS and RSS

measures, are wide. This, in turn, implies that each individu-

ally considered condition covers a large number of examples,

including negative ones. In order to have more detailed rules

with “wide” elementary conditions, it is necessary to place

more conditions in the rule premise. The measures which are

oriented towards the induction of precise rules (wLap, C1,

C2) make conditions with narrower ranges, thus the number

of conditions in the rule premise is smaller.

The first experiment to check whether it is sensible to use

the combination of measures aimed at selecting a measure to

resolve classification conflicts. The experiment was conducted

in such a way that for the set measure (the same at the stages

of growing and pruning) applied in the rule induction, the

measure for resolving classification conflicts was changed. The

results are presented in Table VI.
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The first column of this table denotes the quality measure

used in the rule induction. The second column denotes the

quality criterion of a final classification phase. The following

nine columns correspond to nine quality measures used during

the voting in the classification. Each of these nine values is an

average rank of a specific classifier (ranks for the classifiers

should be read by rows) — the lower is the value of the

ranking, the better are the results achieved by the measure

(value equal to 1 would mean that the measure was always first

in the ranking). Experiments were performed on 34 mentioned

datasets in a stratified 10 fold cross validation model. A

Friedman test with the significance level α = 0.05 does not

show statistical differences only for the s measure and the

criterion Acc . If post–hoc analysis is performed and the

critical distance is calculated it occurs that most of measures

behave in a similar way: there are no significant differences

between classification accuracy between different measures

application. However, it is worth to notice that for the Acc
criterion C2 measure is the right choice and for the BAcc
criterion the wLap is the right choice. C2 measure (according

to Acc criterion) is the best in 5 of 9 cases (measures) and

is always in the best three places. wLap measure (according

to BAcc criterion) is four time the best one and not worse

than third in other cases. Additionally, an averaging row is

also included in the bottom of the table. Emphasised averaged

values confirm the above conclusions.

The influence of application of C2 measure during clas-

sification instead of a measure used in the rule induction is

presented on the left side of the Table VII. The first column

points the measure used in a rule induction, second column

points the measure used during the classification and the

third column means the Acc of a classification. Additional

column remarks the p-value of the Wilcoxon test, which null

hypothesis is that there is no statistical significant difference

between the algorithm which uses the same measure during

classification and during the rule induction and the algorithm

which uses the C2 measure during classification. Analogical

summary for the wLap measure applied in the classification

with the BAcc classification quality criterion is presented on

the right side of the Table VII.

As it can be observed in the most of cases the final

classification quality is improved as the result of application a

specified rule quality measure. In the case of a C2 measure this

result is rather expected as this measure is strictly dedicated for

the classification conflict resolution purposes [27, 21]. wLap

measure also improves classification results and the statistical

significance of this improvement is very high in the most of

cases. This is a new and important observation.

Having the selected rule quality measures for two criteria

of classification quality ( Acc and BAcc ) we performed

experiments on application of different rule quality measures

during the rule growing and pruning phase. This time

rankings were calculated on the basis of 81 experiments (nine

measures for the growing and nine for the pruning). Results

are presented on Fig. 1.

It features a matrix which reflects the ranking of the

TABLE VIII
COMPARISON OF RESULTS OF THE COMBINATION OF QUALITY MEASURES

FOR THE Acc .

Growing/Pruning/
Classification Acc Rules Wilcoxon

1. C2-C2-C2 82.3 127 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. C2-Corr-C2 80.1 47 2 - 3 (-)
2 - 4 (-)

3. Corr-C2-C2 80.4 46 3 - 4 (+)
4. Corr-Corr-Corr 79.8 44

1. wLap-wLap-C2 81.8 156 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. wLap-Corr-C2 79.4 47 3 - 2 (+)
2 - 4 (-)

3. Corr-wLap-C2 80.4 46 3 - 4 (+)
4. Corr-Corr-Corr 79.8 44

1. C2-C2-C2 82.3 127 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. C2-RSS-C2 78.7 34 2 - 3 (-)
2 - 4 (-)

3. RSS-C2-C2 79.3 37 3 - 4 (+)
4. RSS-RSS-RSS 78.2 34

1. wLap-wLap-C2 81.8 156 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. wLap-RSS-C2 78.3 30 3 - 2 (+)
2 - 4 (-)

3. RSS-wLap-C2 79.4 37 3 - 4 (+)

4. RSS-RSS-RSS 78.2 34

given combination of measures. As it was already mentioned,

81 combinations of measures were checked. For the Acc
criterion, the conflicts resolving measure was always the C2

measure, while for BAcc - the wLap measure. The matrices

show that it is not possible to draw straightforward conclusions

from such a general comparison. It is interesting that the values

presented in antidiagonal (X-X - showing the case when the

same measure is used in both phases of the rule induction)

are very close to the lowest values in row X and column X.

A more detailed analysis was conducted for the C2 and wLap

measures (as the best due to their classification abilities) as

well as Corr and RSS (as the best due to the number of

generated rules). In Tables VIII and IX an analysis of the

combination of these measures was conducted for the Acc
(Table VIII) and BAcc (Table IX) criteria. The first column

of both tables includes the combination of measures, while the

second one - the Acc ( BAcc ) value obtained by the given

combination. Finally, the third column features the achieved

number of rules. The fourth column contains the results of the

paired comparison of particular combinations (the Wilcoxon

test was used; p-value=0.1) of four models. X-Y (+) means

that the combination X is statistically better than Y. The (-)

symbol means that there is no such a difference.

Let us assume that the precise measure (C2, wLap) is

marked P, while the general measure (Corr, RSS) - C. Ad-

ditionally, the P-C inscription means that in the phase of

the rule growing the precise measure was used, while in the
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Fig. 1. Matrices of average rankings of models with different quality measures used in growing and pruning but a common classification quality: Acc (left)
and BAcc (right).

TABLE IX
COMPARISON OF RESULTS OF THE COMBINATION OF QUALITY MEASURES

FOR THE BAcc .

Growing/Pruning/
Classification Acc Rules Wilcoxon

1. wLap-wLap-wLap 77.8 156 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. wLap-Corr-wLap 74.7 47 3 - 2 (+)
2 - 4 (-)

3. Corr-wLap-wLap 76.1 46 3 - 4 (+)

4. Corr-Corr-Corr 74.4 44

1.C2-C2-wLap 78.4 127 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. C2-Corr-wLap 75.4 47 2 - 3 (-)
2 - 4 (-)

3. Corr-C2-wLap 76.1 46 3 - 4 (+)
4. Corr-Corr-Corr 74.4 44

1. wLap-wLap-wLap 77.8 156 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. wLap-RSS-wLap 72.3 30 3 - 2 (+)
2 - 4 (-)

3. RSS-wLap-wLap 74.5 37 3 - 4 (+)
4. RSS-RSS-RSS 72.3 34

1. C2-C2-wLap 78.4 127 1 - 2 (+)
1 - 3 (+)
1 - 4 (+)

2. C2-RSS-wLap 73.2 34 2 - 3 (-)
2 - 4 (-)

3. RSS-C2-wLap 74.4 37 3 - 4 (+)
4. RSS-RSS-RSS 72.3 34

rule pruning - the general one. Both tables demonstrate the

following dependencies:

• the P-C combination, when compared with P-P, leads to

a significantly worse quality of the classifier and to a

decreasing number of rules,

• the C-P combination, when compared with C-C, leads to

a significant increase of the classification quality with,

simultaneously, a small increase in the number of rules,

• it is not significant for the number of determined rules

whether we use the C-P or P-C sequence, however it is

recommended to use C-P for classification abilities as it

allows to significantly raise these classification abilities

(with respect to C-C).

Moreover, the C2-C2-C2 sequence allowed to achieve the

highest classification accuracy. No other combination allowed

to statistically improve the Acc value. On the other hand, the

C2-C2-wLap combination leads to significantly higher BAcc
values, than the wLap-wLap-wLap combination.

VI. CONCLUSIONS

When real problems are solved (analysed), the measure is

usually selected with respect to the data set specifics. The

automatic method for the measures selection is based on

internal cross-validation. Our earlier works allowed to limit the

number of measures which are considered by the automatic

method [33], which significantly speeds up the calculations.

The results of this work extend the knowledge about the

combinations of measures which should be tested first in the

automatic method. Our results can also be useful for the user

for whom the maximisation of the classification accuracy is

not the most important criterion, while it is more important

to have proper balancing of the model complexity (number of

rules) with its classification abilities.

Currently the RapidRuleInduction plug-in is prepared for

the RapidMiner environment. The plug-in will contain the pos-

sibilities to induce the rules by means of combining different

quality measures - similarly to the plug-in we developed for

the R environment [46].
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